A. 磁共振的原理是什麼通俗點
核磁共振是當下常見的對機體進行檢測的方式。它通過改變體內的磁場線來觀測出體內器官是否出現了異變情況以及一些疾病的是否產生。
因為不一樣的位置產生的白黑程度不同,將每一個器官區別開來,從而利於對於機體的檢測。核磁共振的基本原理涉及物理上的知識。人體中含有最多的原子核就是H1,所以成像選擇是也是這個,這為檢查成功提供基礎,該物質是人體中磁性最高的。
在檢查過程中,整個磁場里的粒子都是有序地排列。大體分為兩種,低能級的是與大磁場平行同向的,高能級的與大磁場平行反向。當磁場恢復,這些粒子會恢復到原始的狀態。不同的組織因為種類不同所以粒子恢復速度不一致。因為可以得出不同的組織。
做核磁共振是為了檢測身體各個部位是不是出現了異變,從而判斷出是否出現腫瘤以及發散和發展的去向和快慢。這項檢查可以及早發現病狀,做出及時的回應對付病情。治療期間也可以做到檢測監督恢復的狀況。對於懷孕的婦女也是很好的檢查手段。
因為需要改變磁場觀測粒子恢復情況,所以整個檢查過程較長,約在30分鍾左右。這個過程需要醫務人員的幫助,在這個過程中,只要按照醫務人員的指揮。在做完後,通常需要幾個小時的時間,會有醫生給您的結果。醫生從圖中,可以得出是否出現的異常,並且總結好,這個過程中只需要安靜地等待。普通醫院應當是建議檢測者回家等待一到三天。也有的醫院半天就可以拿到結果。如果發現了病情一定要及時就醫診治早日復原。
磁共振的注意事項
1、體內有磁鐵類物質者,如裝有心臟起搏器、人工瓣膜,重要器官旁有金屬異物殘留等,均不能做此檢查,但體內植入物經手術醫生確認為非磁性物體者可行磁共振檢查。
2、要向技術人員說明以下情況:有無手術史;有無任何金屬或磁性物質植入體內包括金屬節育環等;有無假牙、電子耳、義眼等;有無葯物過敏;有無金屬異物濺入體內。
3、不要穿著帶有金屬物質的內衣褲,檢查頭、頸部的病人應在檢查前一天洗頭,不要擦任何護發用品。
4、檢查前需脫去除內衣外的全部衣服,換上磁共振室的檢查專用衣服。去除所配帶的金屬品如項鏈、耳環、手錶和戒指等。除去臉上的化妝品和假牙、義眼、眼鏡等物品。
5、檢查前要向醫生提供全部病史、檢查資料及所有的X線片、CT片、以前的磁共振片等。
6、腹部(肝、脾、腎、胰腺、膽道、輸尿管等)檢查者檢查前禁食4小時,並於檢查前注射654-2一支。
7、磁共振泌尿系造影(MRU)者檢查前口服速尿20mg。
8、做磁共振檢查要有思想准備,不要急躁、害怕,要聽從醫師的指導,耐心配合。
B. MRI的基本原理要通俗版的
核磁共振成像(Nuclear Magnetic Resonance Imaging,簡稱),又稱自旋成像(spin imaging),也稱磁共振成像(Magnetic Resonance Imaging,簡稱MRI),台灣又稱磁振造影,是利用核磁共振(nuclear magnetic resonnance,簡稱NMR)原理,依據所釋放的能量在物質內部不同結構環境中不同的衰減,通過外加梯度磁場檢測所發射出的電磁波,即可得知構成這一物體原子核的位置和種類,據此可以繪製成物體內部的結構圖像。
將這種技術用於人體內部結構的成像,就產生出一種革命性的醫學診斷工具。快速變化的梯度磁場的應用,大大加快了核磁共振成像的速度,使該技術在臨床診斷、科學研究的應用成為現實,極大地推動了醫學、神經生理學和認知神經科學的迅速發展。
物理原理
核磁共振成像是隨著計算機技術、電子電路技術、超導體技術的發展而迅速發展起來的一種生物磁學核自旋成像技術。它是利用磁場與射頻脈沖使人體組織內進動的氫核(即H+)發生章動產生射頻信號,經計算機處理而成像的。原子核在進動中,吸收與原子核進動頻率相同的射頻脈沖,即外加交變磁場的頻率等於拉莫頻率,原子核就發生共振吸收,去掉射頻脈沖之後,原子核磁矩又把所吸收的能量中的一部分以電磁波的形式發射出來,稱為共振發射。共振吸收和共振發射的過程叫做「核磁共振」。核磁共振成像的「核」指的是氫原子核,因為人體的約70%是由水組成的,MRI即依賴水中氫原子。當把物體放置在磁場中,用適當的電磁波照射它,使之共振,然後分析它釋放的電磁波,就可以得知構成這一物體的原子核的位置和種類,據此可以繪製成物體內部的精確立體圖像。通過一個磁共振成像掃描人類大腦獲得的一個連續切片的動畫,由頭頂開始,一直到基部。
核磁共振成像是隨著-{zh-tw:電腦;zh-cn:計算機}-技術、電子電路技術、超導體技術的發展而迅速發展起來的一種生物磁學核自旋成像技術。醫生考慮到患者對「核」的恐懼心理,故常將這門技術稱為磁共振成像。它是利用磁場與射頻脈沖使人體組織內進動的氫核(即H+)發生章動產生射頻信號,經-{zh-tw:電腦;zh-cn:計算機}-處理而成像的。
原子核在進動中,吸收與原子核進動頻率相同的射頻脈沖,即外加交變磁場的頻率等於拉莫頻率,原子核就發生共振吸收,去掉射頻脈沖之後,原子核磁矩又把所吸收的能量中的一部分以電磁波的形式發射出來,稱為共振發射。共振吸收和共振發射的過程叫做「核磁共振」。
氫核是人體成像的首選核種:人體各種組織含有大量的水和碳氫化合物,所以氫核的核磁共振靈活度高、信號強,這是人們首選氫核作為人體成像元素的原因。NMR信號強度與樣品中氫核密度有關,人體中各種組織間含水比例不同,即含氫核數的多少不同,則NMR信號強度有差異,利用這種差異作為特徵量,把各種組織分開,這就是氫核密度的核磁共振圖像。人體不同組織之間、正常組織與該組織中的病變組織之間氫核密度、弛豫時間T1、T2三個參數的差異,是MRI用於臨床診斷最主要的物理基礎。
當施加一射頻脈沖信號時,氫核能態發生變化,射頻過後,氫核返回初始能態,共振產生的電磁波便發射出來。原子核振動的微小差別可以被精確地檢測到,經過進一步的計算機處理,即可能獲得反應組織化學結構組成的三維圖像,從中我們可以獲得包括組織中水分差異以及水分子運動的信息。這樣,病理變化就能被記錄下來。
人體2/3的重量為水分,如此高的比例正是磁共振成像技術能被廣泛應用於醫學診斷的基礎。人體內器官和組織中的水分並不相同,很多疾病的病理過程會導致水分形態的變化,即可由磁共振圖像反應出來。
MRI所獲得的圖像非常清晰精細,大大提高了醫生的診斷效率,避免了剖胸或剖腹探查診斷的手術。由於MRI不使用對人體有害的X射線和易引起過敏反應的造影劑,因此對人體沒有損害。MRI可對人體各部位多角度、多平面成像,其分辨力高,能更客觀更具體地顯示人體內的解剖組織及相鄰關系,對病灶能更好地進行定位定性。對全身各系統疾病的診斷,尤其是早期腫瘤的診斷有很大的價值。
系統組成
NMR實驗裝置
採用調節頻率的方法來達到核磁共振。由線圈向樣品發射電磁波,調制振盪器的作用是使射頻電磁波的頻率在樣品共振頻率附近連續變化。當頻率正好與核磁共振頻率吻合時,射頻振盪器的輸出就會出現一個吸收峰,這可以在示波器上顯示出來,同時由頻率計即刻讀出這時的共振頻率值。核磁共振譜儀是專門用於觀測核磁共振的儀器,主要由磁鐵、探頭和譜儀三大部分組成。磁鐵的功用是產生一個恆定的磁場;探頭置於磁極之間,用於探測核磁共振信號;譜儀是將共振信號放大處理並顯示和記錄下來。
MRI系統的組成
現代臨床高場(3.0T)MRI掃描器[編輯]
磁鐵系統
靜磁場:又稱主磁場。當前臨床所用超導磁鐵,磁場強度有0.5到4.0T(特斯拉),常見的為1.5T和3.0T;動物實驗用的小型MRI則有4.7T、7.0T與9.4T等多種主磁場強度。另有勻磁線圈(shim coil)協助達到磁場的高均勻度。
梯度場:用來產生並控制磁場中的梯度,以實現NMR信號的空間編碼。這個系統有三組線圈,產生x、y、z三個方向的梯度場,線圈組的磁場疊加起來,可得到任意方向的梯度場。
射頻系統
射頻(RF)發生器:產生短而強的射頻場,以脈沖方式加到樣品上,使樣品中的氫核產生NMR現象。
射頻(RF)接收器:接收NMR信號,放大後進入圖像處理系統。
計算機圖像重建系統
由射頻接收器送來的信號經A/D轉換器,把模擬信號轉換成數學信號,根據與觀察層面各體素的對應關系,經計算機處理,得出層面圖像數據,再經D/A轉換器,加到圖像顯示器上,按NMR的大小,用不同的灰度等級顯示出欲觀察層面的圖像。
MRI的基本方法
選片梯度場Gz
相編碼和頻率編碼
圖像重建
磁共振成像的優點
與1901年獲得諾貝爾物理學獎的普通X射線或1979年獲得諾貝爾醫學獎的計算機層析成像(computerized tomography, CT)相比,磁共振成像的最大優點是它是目前少有的對人體沒有任何傷害的安全、快速、准確的臨床診斷方法。如今全球每年至少有6000萬病例利用核磁共振成像技術進行檢查。具體說來有以下幾點:
1.對軟組織有極好的分辨力。對膀胱、直腸、子宮、陰道、骨、關節、肌肉等部位的檢查優於CT;
2.各種參數都可以用來成像,多個成像參數能提供豐富的診斷信息,這使得醫療診斷和對人體內代謝和功能的研究方便、有效。例如肝炎和肝硬化的T1值變大,而肝癌的T1值更大,作T1加權圖像,可區別肝部良性腫瘤與惡性腫瘤;
3.通過調節磁場可自由選擇所需剖面。能得到其它成像技術所不能接近或難以接近部位的圖像。對於椎間盤和脊髓,可作矢狀面、冠狀面、橫斷面成像,可以看到神經根、脊髓和神經節等。不像CT只能獲取與人體長軸垂直的橫斷面;
4.對人體沒有氫(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。
MRI的缺點及可能存在的危害
雖然MRI對患者沒有致命性的損傷,但還是給患者帶來了一些不適感。在MRI診斷前應當採取必要的措施,把這種負面影響降到最低限度。其缺點主要有:
1.和CT一樣,MRI也是解剖性影像診斷,很多病變單憑核磁共振檢查仍難以確診,不像內窺鏡可同時獲得影像和病理兩方面的診斷;
2.對肺部的檢查不優於X射線或CT檢查,對肝臟、胰腺、腎上腺、前列腺的檢查不比CT優越,但費用要高昂得多;
3.對胃腸道的病變不如內窺鏡檢查;
4.掃描時間長,空間分辨力不夠理想;
5.由於強磁場的原因,MRI對諸如體內有磁金屬或起搏器的特殊病人卻不能適用。
MRI系統可能對人體造成傷害的因素主要包括以下方面:
1.強靜磁場:在有鐵磁性物質存在的情況下,不論是埋植在患者體內還是在磁場范圍內,都可能是危險因素;
2.隨時間變化的梯度場:可在受試者體內誘導產生電場而興奮神經或肌肉。外周神經興奮是梯度場安全的上限指標。在足夠強度下,可以產生外周神經興奮(如刺痛或叩擊感),甚至引起心臟興奮或心室振顫;
3.射頻場(RF)的致熱效應:在MRI聚焦或測量過程中所用到的大角度射頻場發射,其電磁能量在患者組織內轉化成熱能,使組織溫度升高。RF的致熱效應需要進一步探討,臨床掃描儀對於射頻能量有所謂「特定吸收率」(specific absorption rate, SAR)的限制;
4.雜訊:MRI運行過程中產生的各種雜訊,可能使某些患者的聽力受到損傷;
造影劑的毒副作用:目前使用的造影劑主要為含釓的化合物,副作用發生率在2%-4%。
C. 核磁共振的基本原理
核磁共振(MRI)又叫核磁共振成像技術。是繼CT後醫學影像學的又一重大進步。自80年代應用以來,它以極快的速度得到發展。其基本原理:是將人體置於特殊的磁場中,用無線電射頻脈沖激發人體內氫原子核,引起氫原子核共振,並吸收能量。在停止射頻脈沖後,氫原子核按特定頻率發出射電信號,並將吸收的能量釋放出來,被體外的接受器收錄,經電子計算機處理獲得圖像,這就叫做核磁共振成像。 核磁共振是一種物理現象,作為一種分析手段廣泛應用於物理、化學生物等領域,到1973年才將它用於醫學臨床檢測。為了避免與核醫學中放射成像混淆,把它稱為核磁共振成像術(MR)。 MR是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈沖激後產生信號,用探測器檢測並輸入計算機,經過處理轉換在屏幕上顯示圖像。 MR提供的信息量不但大於醫學影像學中的其他許多成像術,而且不同於已有的成像術,因此,它對疾病的診斷具有很大的潛在優越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會產生CT檢測中的偽影;不需注射造影劑;無電離輻射,對機體沒有不良影響。MR對檢測腦內血腫、腦外血腫、腦腫瘤、顱內動脈瘤、動靜脈血管畸形、腦缺血、椎管內腫瘤、脊髓空洞症和脊髓積水等顱腦常見疾病非常有效,同時對腰椎椎間盤後突、原發性肝癌等疾病的診斷也很有效。 MR也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MR的檢查,另外價格比較昂貴。
D. 【求助】<核磁共振成像原理> 熊國欣 李立本,電子版下載
核磁共振技術指南,楊正漢編的那本。臨床成像應用技術和方法應該是中文版中最全的了.我在新浪資料上下了PDF掃描版,但是沒有原書自帶的教學光碟。
E. 醫學上的核磁共振的原理是什麼
磁共振成像(MRI)的基本原理是將人體置於特殊的磁場中,用無線電射頻脈沖激發人體內氫原子核,引起氫原子核共振,並吸收能量。在停止射頻脈沖後,氫原子核按特定頻率發出射電信號,並將吸收的能量釋放出來,被體外的接受器收錄,經電子計算機處理獲得圖像,這就叫做核磁共振成像。
MRI提供的信息量不但大於醫學影像學中的其他許多成像術,而且不同於已有的成像術,因此,它對疾病的診斷具有很大的潛在優越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會產生CT檢測中的偽影;不需注射造影劑;無電離輻射,對機體沒有不良影響。MRI對檢測腦內血腫、腦外血腫、腦腫瘤、顱內動脈瘤、動靜脈血管畸形、腦缺血、椎管內腫瘤、脊髓空洞症和脊髓積水等顱腦常見疾病非常有效。
同時對腰椎椎間盤後突、原發性肝癌等疾病的診斷也很有效。 MRI也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MRI的檢查,另外價格比較昂貴。
由於核磁共振是磁場成像,沒有放射性,所以對人體無害,是非常安全的。據了解,目前世界上既沒有任何關於使用核磁共振檢查引起危害的報道,也沒有發現患者因進行核磁共振檢查引起基因突變或染色體畸變發生率增高的現象。
雖然核磁共振在篩查早期病變有著獨到之處,但任何檢查都是有限度的,比如有些病人不適合核磁共振,就不要過度檢查。他呼籲,任何患者都應遵醫囑進行檢查,不要以為影像檢查越貴越好,只有適合自己的檢查才是最好的。
F. 核磁共振原理簡介
當流體 (如水或油等)飽和到岩樣的孔隙內後,流體分子會受到孔隙固體表面的作用力,該作用力的大小取決於孔隙 (孔隙大小、孔隙形態)、礦物 (礦物成分、礦物表面性質)和流體 (流體類型、流體黏度)等因素。
對飽和流體(水或油)的岩樣進行核磁共振t2測量時,得到的t2弛豫時間長短取決於流體分子受到孔隙固體表面作用力的強弱,因此t2弛豫時間的長短是孔隙(孔隙大小、孔隙形態)、礦物 (礦物成分、礦物表面性質)和流體(流體類型、流體黏度)等因素的綜合反映,利用岩樣內流體的核磁共振t2弛豫時間的長短及其分布特徵,可對岩樣孔隙內流體的賦存狀態進行分析。當流體受到孔隙固體表面的作用力很強時(如微小孔隙內的流體或較大孔隙內與固體表面緊密相接觸的流體),流體的t2弛豫時間很短,流體處於束縛或不可動狀態,稱為束縛流體或不可動流體。反之,當流體受到孔隙固體表面的作用力較弱時(如較大孔隙內與固體表面不是緊密相接觸的流體),流體的t2弛豫時間較長,流體處於自由或可動狀態,稱為自由流體或可動流體。t2弛豫時間可以用下面的計算公式來表示:
低滲透油藏滲流機理及應用
式中:ρ——儲層及流體的物性;
綜上所述,利用核磁共振t2譜可對岩樣孔隙內流體的賦存狀態進行分析,可對岩樣內的可動流體和可動油進行分析,飽和地層水或模擬地層水狀態下岩樣的核磁共振t2譜可用於可動流體的分析,同理,飽和油束縛水狀態下的油相t2譜可用於可動油的分析。由於t2弛豫時間的長短取決於孔隙 (孔隙大小、孔隙形態)、礦物 (礦物成分、礦物表面性質)和流體 (流體類型、流體黏度)等因素,因此岩樣內可動流體和可動油含量的高低就是孔隙大小、孔隙形態、礦物成分、礦物表面性質等多種因素的綜合反映。又由於孔隙大小、孔隙形態、礦物成分、礦物表面性質等是與儲層質量好差和開發潛力高低密切相關的,因此,可動流體和可動油是儲層評價尤其是低滲透儲層評價中的兩個重要參數,目前已經在低滲透油氣儲層質量好差和開發潛力高低的前期評價研究工作中得到廣泛應用。另外,根據可動流體和可動油的油層物理含義,這兩項參數也可用於油、氣儲層的儲量和可采儲量的計算,可動流體百分數是初始含油飽和度(油層)或初始含氣飽和度(氣層)的上限,同理,可動油百分數是油層驅油效率的上限。
核磁共振可動流體飽和度是一個完全來自於實驗的概念。下面就用實驗來說明這個概念。圖3.12 是一塊完全飽和水的低滲透岩樣及其經過高速離心甩干後的核磁共振弛豫時間譜。橫坐標表示弛豫時間,縱坐標表示岩心不同弛豫時間組分佔有的份額。較大孔隙對應的弛豫時間較長,較小孔隙對應的弛豫時間較短,弛豫時間譜也就是t2譜在油層物理上的含義為岩心中不同大小的孔隙占總孔隙的比例,從弛豫時間譜中可以得到豐富的油層物理信息。
圖3.12 低滲透油田岩心的弛豫時間譜
可以看到,岩樣經過離心後,長弛豫部分曲線掉了下來,而短弛豫部分幾乎沒有改變。我們知道,岩樣經過高速離心後,仍滯留在岩樣內部的水是由於毛細管力的作用而滯留的;飽和在岩樣內較為寬闊的孔隙中的水,由於毛細管力作用小而被甩出了樣品。從前面我們已經知道了弛豫時間與孔隙比表面
G. 磁共振的工作原理是
固體在恆定磁場和高頻交變電磁場的共同作用下,在某一頻率附近產生對高頻電磁場的共振吸收現象。在恆定外磁場作用下固體發生磁化,固體中的元磁矩均要繞外磁場進動。由於存在阻尼,這種進動很快衰減掉。但若在垂直於外磁場的方向上加一高頻電磁場,當其頻率與進動頻率一致時,就會從交變電磁場中吸收能量以維持其進動,固體對入射的高頻電磁場能量在上述頻率處產生一個共振吸收峰。若產生磁共振的磁矩是順磁體中的原子(或離子)磁矩,則稱為順磁共振;若磁矩是原子核的自旋磁矩,則稱為核磁共振。若磁矩為鐵磁體中的電子自旋磁矩,則稱為鐵磁共振。核磁矩比電子磁矩約小3個數量級,故核磁共振的頻率和靈敏度比順磁共振低得多;同理,弱磁物質的磁共振靈敏度又比強磁物質低。從量子力學觀點看,在外磁場作用下電子和原子核的磁矩是空間量子化的,相應地具有離散能級。當外加高頻電磁場的能量子hv等於能級間距時,電子或原子核就從高頻電磁場吸收能量,使之從低能級躍遷到高能級,從而在共振頻率處形成吸收峰。 利用順磁共振可研究分子結構及晶體中缺陷的電子結構等。核磁共振譜不僅與物質的化學元素有關,而且還受原子周圍的化學環境的影響,故核磁共振已成為研究固體結構、化學鍵和相變過程的重要手段。核磁共振成像技術與超聲和X射線成像技術一樣已普遍應用於醫療檢查。鐵磁共振是研究鐵磁體中的動態過程和測量磁性參量的重要方法。
H. 核磁共振的原理是什麼
原子核的自旋。
核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,可以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系。
原子核是帶正電荷的粒子,不能自旋的核沒有磁矩,能自旋的核有循環的電流,會產生磁場,形成磁矩(μ)。當自旋核(spin nuclear)處於磁感應強度為B0的外磁場中時,除自旋外,還會繞B0運動,這種運動情況與陀螺的運動情況十分相像,稱為拉莫爾進動(larmor process)。
自旋核進動的角速度ω0與外磁場感應強度B0成正比,比例常數即為磁旋比(magnetogyric ratio)γ。式中ν0是進動頻率。
(8)核磁電路圖擴展閱讀:
核磁共振原理主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可以用核的自旋量子數I來表示。
觀察到的人體內H質子運動的一個成像,做檢查的時候,被檢查者會在一個大的磁體內,就是大的圓筒之內,通過射頻的激發,人體內的不同器官的H質子有不同的活動狀況。
產生的射頻脈沖,在經過線圈的吸收產生圖像,所以磁共振的成像其實是人體內H質子的成像。有心臟起搏器的植入的患者、發燒的患者、貼膏葯的患者禁止做磁共振。
I. 核磁共振基本原理,要總結過的!
由於原子核攜帶電荷,當原子核自旋時,會由自旋產生一個磁矩,這一磁矩的方向與原子核的自旋方向相同,大小與原子核的自旋角動量成正比.將原子核置於外加磁場中,若原子核磁矩與外加磁場方向不同,則原子核磁矩會繞外磁場方向旋轉,這一現象類似陀螺在旋轉過程中轉動軸的擺動,稱為進動.進動具有能量也具有一定的頻率.原子核進動的頻率由外加磁場的強度和原子核本身的性質決定,也就是說,對於某一特定原子,在一定強度的的外加磁場中,其原子核自旋進動的頻率是固定不變的.原子核發生進動的能量與磁場、原子核磁矩、以及磁矩與磁場的夾角相關,根據量子力學原理,原子核磁矩與外加磁場之間的夾角並不是連續分布的,而是由原子核的磁量子數決定的,原子核磁矩的方向只能在這些磁量子數之間跳躍,而不能平滑的變化,這樣就形成了一系列的能級.當原子核在外加磁場中接受其他來源的能量輸入後,就會發生能級躍遷,也就是原子核磁矩與外加磁場的夾角會發生變化.這種能級躍遷是獲取核磁共振信號的基礎.為了讓原子核自旋的進動發生能級躍遷,需要為原子核提供躍遷所需要的能量,這一能量通常是通過外加射頻場來提供的.根據物理學原理當外加射頻場的頻率與原子核自旋進動的頻率相同的時候,射頻場的能量才能夠有效地被原子核吸收,為能級躍遷提供助力.因此某種特定的原子核,在給定的外加磁場中,只吸收某一特定頻率射頻場提供的能量,這樣就形成了一個核磁共振信號.