A. LM324及其應用的介紹
LM324是四運放集成電路,它採用14腳雙列直插塑料封裝,lm324原理圖如圖所示。它的內部包含四組形式完全相同的運算放大器,除電源共用外,四組運放相互獨立。每一組運算放大器可用圖1所示的符號來表示,它有5個引出腳,其中「+」、「-」為兩個信號輸入端,「V+」、「V-」為正、負電源端,「Vo」為輸出端。兩個信號輸入端中,Vi-(-)為反相輸入端,表示運放輸出端Vo的信號與該輸入端的相位相反;Vi+(+)為同相輸入端,表示運放輸出端Vo的信號與該輸入端的相位相同。lm324引腳圖。LM324四運放電路具有電源電壓范圍寬,靜態功耗小,可單電源使用,價格低廉等優點,因此被廣泛應用在各種電路中。
B. lm324引腳圖及功能是什麼
LM324是四運放集成電路,它採用14管腳雙列直插塑料(陶瓷)封裝。它的內部包含四組形 式完全相同的運算放大器,除電源共用外,四組運放相互獨立。
每一組運算放大器可用圖1所示的符號來表示,它有5個引出腳,其中「+」、「-」為兩個信號輸入端,「V+」、「V-」為正、負電源端,「Vo」為輸出端。兩個信號輸入端中,Vi-(-)為反相輸入端。
產品介紹:
該四路放大器可以工作於低至3.0 V或高達32 V的電源電壓,靜態電流是MC1741的五分之一左右(每個放大器)。共模輸入范圍包括負電源,因此在眾多應用中無需外部偏置元器件。輸出電壓范圍也包括負電源電壓。
應用領域包括感測器放大器,直流增益模塊和所有傳統的運算放大器可以更容易地在單電源系統中實現的電路。例如,可直接操作的LM324系列,這是用來在數字系統中,輕松地將提供所需的介面電路,而無需額外的±15V電源標準的5V電源電壓。
以上內容參考:網路-lm324
C. 有4個運放的片子叫什麼
還叫運放集成電路呀!
不管晶元內集成了多少個運放,其電路的性質不變,名稱也不變。最多就是加一個前綴:四運放集成電路。
比較常見且價廉的就是:LM324。
D. 4個理想運算放大器組成的電路,求輸出電壓u。
Uo=U1+u2
E. LM324原理
【LM324原理】LM324是四運放集成電路,它採用14腳雙列直插塑料封裝,外形如圖所示。它的內部包含四組形式完全相同的運算放大器, 除電源共用外,四組運放相互獨立。每一組運算放大器可用圖1所示的符號來表示,它有5個引出腳,其中「+」、「-」為兩個信號輸入端,「V+」、「V-」為正、負電源端,「Vo」為輸出端。兩個信號輸入端中,Vi-(-)為反相輸入端,表示運放輸出端Vo的信號與該輸入端的位相反;Vi+(+)為同相輸入端,表示運放輸出端Vo的信號與該輸入端的相位相同。LM324的 引腳排列見圖2 :
圖2
由於LM324四運放電路具有電源電壓范圍寬,靜態功耗小,可單電源使用,價格低廉等優點,因此被廣泛應用在各種電路中。
【LM324】M324系列是低成本的四路運算放大器,具有真正的差分輸入。在單電源應用中,它們與標准運算放大器類型相比具有幾個明顯的優勢。該四路放大器可以工作於低至3.0 V或高達32 V的電源電壓,靜態電流是MC1741的五分之一左右(每個放大器)。共模輸入范圍包括負電源,因此在眾多應用中無需外部偏置元器件。輸出電壓范圍也包括負電源電壓。
F. lm324線性范圍
由於LM324四運放電路具有電源電壓范圍寬,靜態功耗小,可單電源使用,價格低廉等優點,因此被廣泛應用在各種電路中。
LM324系列器件帶有真差動輸入的四運算放大器,具有真正的差分輸入。與單電源應用場合的標准運算放大器相比,它們有一些顯著優點。該四放大器可以工作在低到3.0伏或者高到32伏的電源下,靜態電流為MC1741的靜態電流的五分之一。共模輸入范圍包括負電源,因而消除了在許多應用場合中採用外部偏置元件的必要性。
LM324DR2G是單電源四路運算放大器。
LM324系列是低成本的四路運算放大器,具有真正的差分輸入。在單電源應用中,它們與標准運算放大器類型相比具有幾個明顯的優勢。
該四路放大器可以工作於低至3.0 V或高達32 V的電源電壓,靜態電流是MC1741的五分之一左右(每個放大器)。共模輸入范圍包括負電源,因此在眾多應用中無需外部偏置元器件。輸出電壓范圍也包括負電源電壓。
應用領域包括感測器放大器,直流增益模塊和所有傳統的運算放大器可以更容易地在單電源系統中實現的電路。例如,可直接操作的LM324系列,這是用來在數字系統中,輕松地將提供所需的介面電路,而無需額外的±15V電源標準的5V電源電壓。
G. lm324n原理電路圖及各引腳的作用
1、LM324是四運放集成電路,它採用14管腳雙列直插塑料(陶瓷)封裝。它的內部包含四組形 式完全相同的運算放大器,除電源共用外,四組運放相互獨立。每一組運算放大器可用圖1所示的符號來表示
3、LM324系列運算放大器是價格便宜的帶差動輸入功能的四運算放大器。可工作在單電源下,電壓范圍是3.0V-32V或+16V。LM324內含4個獨立的高增益、頻率補償的運算放大器,既可接單電源使用 (3~30 V),也可接雙電源使用(±1.5~±15 V),驅動功耗低,可與TTL邏輯電路相容。
(7)四運放電路擴展閱讀:
LM324n的特點:
1、短跑保護輸出
2、真差動輸入級
3、具有內部補償的功能
4、行業標準的引腳排列
5、共模範圍擴展到負電源
6、每封裝含四個運算放大器
7、輸入端具有靜電保護功能
8、可單電源工作:3V-32V
9、低偏置電流:最大100nA(LM324A)
H. 電動車充電器上一個晶元LM324另一個是什麼晶元
需要看電路板才能分析。一般情況下,LM324是四運放集成電路,它採用14腳雙列直插塑料封裝,外形如圖所示。它的內部包含四組形式完全相同的運算放大器,除電源共用外,四組運放相互獨立。每一組運算放大器可用圖1所示的符號來表示,它有5個引出腳,其中「+」、「-」為兩個信號輸入端,「V+」、「V-」為正、負電源端,「Vo」為輸出端。兩個信號輸入端中,Vi-(-)為反相輸入端,表示運放輸出端Vo的信號與該輸入端的位相反;Vi+(+)為同相輸入端,表示運放輸出端Vo的信號與該輸入端的相位相同。由於LM324四運放電路具有電源電壓范圍寬,靜態功耗小,可單電源使用,價格低廉等優點,因此被廣泛應用在各種電路中。
下面介紹其應用實例。
反相交流放大器電路見附圖。此放大器可代替晶體管進行交流放大,可用於擴音機前置放大等。電路無需調試。放大器採用單電源供電,由R1、R2組成1/2V+偏置,C1是消振電容。
放大器電壓放大倍數Av僅由外接電阻Ri、Rf決定:Av=-Rf/Ri。負號表示輸出信號與輸入信號相位相反。按圖中所給數值,Av=-10。此電路輸入電阻為Ri。一般情況下先取Ri與信號源內阻相等,然後根據要求的放大倍數在選定Rf。Co和Ci為耦合電容。
同相交流放大器見附圖。同相交流放大器的特點是輸入阻抗高。其中的R1、R2組成1/2V+分壓電路,通過R3對運放進行偏置。電路的電壓放大倍數Av也僅由外接電阻決定:Av=1+Rf/R4,電路輸入電阻為R3。R4的阻值范圍為幾千歐姆到幾十千歐姆。交流信號三分配放大器
此電路可將輸入交流信號分成三路輸出,三路信號可分別用作指示、控制、分析等用途。而對信號源的影響極小。因運放Ai 輸入電阻高,運放 A1-A4 均把輸出端直接接到負輸入端,信號輸入至正輸入端,相當於同相放大狀態時 Rf=0 的情況,故各放大器電 壓放大倍數均為 1 ,與分立元件組成的射極跟隨器作用相同
。R1、R2組成1/2V+偏置,靜態時A1輸出端電壓為1/2V+,故運放A2-A4輸出端亦為1/2V+,通過輸入輸出電容的隔直作用,取出交流信號。
有源帶通濾波器
許多音響裝置的頻譜分析器均使用此電路作為帶通濾波器,以選出各個不同頻段的信號,在顯示上利用發光二極體點亮的多少來指示出信號幅度的大小。這種有源帶通濾波器的中心頻率 ,在中心頻率fo處的電壓增益Ao=B3/2B1,品質因數 ,3dB帶寬B=1/(п*R3*C)也可根據設計確定的Q、fo、Ao值,去求出帶通濾波器的各元件參數值。
R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。
上式中,當fo=1KHz時,C取0.01Uf。此電路亦可用於一般的選頻放大。
此電路亦可使用單電源,只需將運放正輸入端偏置在1/2V+並將電阻R2下端接到運放正輸入端既可。
比較器
當去掉運放的反饋電阻時,或者說反饋電阻趨於無窮大時(即開環狀態),理論上認為運放的開環放大倍數也為無窮大(實際上是很大,如LM324運放開環放大倍數為100dB,既10萬倍)。此時運放便形成一個電壓比較器,其輸出如不是高電平(V+),就是低電平(V-或接地)。當正輸入端電壓高於負輸入端電壓時,運放輸出低電平。使用兩個運放組成一個電壓上下限比較器,電阻R1、R1ˊ組成分壓電路,為運放A1設定比較電平U1;電阻R2、R2ˊ組成分壓電路,為運放A2設定比較電平U2。輸入電壓U1同時加到A1的正輸入端和A2的負輸入端之間,當Ui >U1時,運放A1輸出高電平;當Ui 會點亮。
若選擇U1>U2,則當輸入電壓Ui越出[U2,U1]區間范圍時,LED點亮,這便是一個電壓雙限指示器。
若選擇U2 > U1,則當輸入電壓在[U2,U1]區間范圍時,LED點亮,這是一個「窗口」電壓指示器。
此電路與各類感測器配合使用,稍加變通,便可用於各種物理量的雙限檢測、短路、斷路報警等。
此電路可用在一些自動控制系統中。電阻R1、R2組成分壓電路,為運放A1負輸入端提供偏置電壓U1,作為比較電壓基準。靜態時,電容C1充電完畢,運放A1正輸入端電壓U2等於電源電壓V+,故A1輸出高電平。當輸入電壓Ui變為低電平時,二極體D1導通,電容C1通過D1迅速放電,使U2突然降至地電平,此時因為U1>U2,故運放A1輸出低電平。當輸入電壓變高時,二極體D1截止,電源電壓R3給電容C1充電,當C1上充電電壓大於U1時,既U2>U1,A1輸出又變為高電平,從而結束了一次單穩觸發。顯然,提高U1或增大R2、C1的數值,都會使單穩延時時間增長。如果將二極體D1去掉,則此電路具有加電延時功能。剛加電時,U1>U2,運放A1輸出低電平,隨著電容C1不斷充電,U2不斷升高,當U2>U1時,A1輸出才變為高電平。