❶ 求音頻功率放大器設計!!!急!急!急!
音頻功率放大器電路設計
一、題目 音頻功率放大器
二、電路特點
本電路由於採用了集成四運算放大器μPC324C和高傳真功率集成塊TDA2030,使該電路在調試中顯得比較簡單,不存在令初學者感到頭疼的調試問題;與此同時它還具有優良的電氣性能:
① 輸出功率大:在±16V的電源電壓下,該電路能在4Ω負載上輸出每路不少於15W的不失真功率,或在8Ω負載上輸出每路不少於10W的不失真功率,其相對應的音樂功率分別為30W和20W。
② 失真小:放大器在輸出上述功率時,最大非線性失真系數小於1%,而頻寬卻能達到14kHz以上,音域范圍內的頻率失真很小,具備高傳真重放的基本條件。
③ 噪音低:若把輸入端短路,在揚聲器1米外基本上聽不到噪音,放送高傳真節目時有一種寧靜、舒適的感覺;另外由於使用性能優異的功率集成塊,放大器的開機沖擊聲也很小。
該電路所採用的高傳真功率集成塊TDA2030是義大利SGS公司的產品,是目前音質較好的一種集成塊,其電氣性能穩定、可靠,能適應常時間連續工作,集成塊內具有過載保護和熱切斷保護電路。電氣性能參數如下:
電源電壓Vcc
±6V~±18V
輸出峰值電流
3.5A
功率帶寬(-3dB)BW
10Hz~140KHz
靜態電流Icco(電源電流)
<60μA
諧波失真度
<0.5%
三、電路圖(另附)
四、電路原理
該電路是由前置輸入級、中間級和輸出級三部分組成的。
前置輸入級是由集成運放1/4μPC324C組成的源級輸出器,它具有輸入阻抗較高而輸出阻抗較低的特點。
中間級是由集成運放1/4μPC324C以及由R4、R5、R6;C4、C5、C6;Rw2、Rw3、組成的選頻網路一起構成的電壓並聯負反饋式音調控制放大電路。它具有高低音提升或衰減功能。其工作原理如下:輸入信號通過C4耦合,分兩路輸入運放,一路由R4、C4、Rw3輸入到5反相端。集成運放B輸出端經過R6、C5反饋到反相端,形成電壓並聯反饋;另一路由Rw2、C6、 R5、輸入到反相端。在此電路中,選頻網路中電容量較大的C4、C5對高頻信號(高音)可看作短路,電容量叫小的C6對低頻信號(低音)可看作開路,所有這些電容對中頻信號(中音)可認為開路。根據反相比例運算關系可知,當Rw2、Rw3滑臂在中點時,放大倍數為-1。當Rw3滑點在A端,C4被短路,C5、Rw3並聯與R6串聯後阻抗增加,對低頻信號來說負反饋增強,增益下降,其低音衰減過程,當Rw2滑至C處,R5、R6和R3並聯後的阻抗減小,對高頻信號負反饋削弱,增益提高,對高音起提升作用;在D點,R5、C6與R6並聯後的阻抗減小,並聯後阻抗減小,對高頻信號負反饋增強,對高音起衰減作用。
輸出級是功率放大器,它由集成運放TDA2030和橋式整流電路組成,其中組件C8、R9為電源退耦電路。
由於該電路為雙聲道功率放大器,所以下部分電路與上部分電路完全對稱,故電路原理同上。
五、印刷電路板設計圖(另附)
六、元器件清單及使用儀表工具
電阻:
R1
1K
R2
1K
R3
10
R4
100K
R5
100K
R6
3.3K
R7
100K
R8
3.3K
R9
10
R10
100K
R11
100K
R12
100K
R13
10K
R14
10K
R15
10K
R16
10K
R17
1K
R18
1K
R19
1.5K
R20
1.5K
R21
10K
R22
10K
R23
20K
R24
20K
R25
100K
R26
10K
R27
100K
R28
10K
電容:
C1
2200μ/16V
C2
2200μ/16V
C3
33μ/16V
C4
33μ/16V
C6
0.1
C7
220μ/16V
C8
220μ/16V
C9
10μ/16V
C11
10μ/16V
C12
10μ/16V
C13
33μ/16V
C14
33μ/16V
C16
10μ/16V
C17
0.033
C18
0.033
C19
3300
C21
10μ/6V
C22
10μ/16V
C23
0.047
C23
0.047
C25
300
C26
300
C20
3300
C15
10μ/16V
C5
0.1
C10
10μ/16V
其它組件:
TDA2030(兩塊)、QSZ2A50V、μPC324C(四塊)、滑動變阻器Rw1、Rw2、Rw3、Rw4,散熱片。
儀表工具:萬用表。
七、電路製作及調試過程
首先在拿到電路圖紙後,看清、弄懂邏輯電路圖和印刷電路圖。在熟知電路的原理和特性後,將印有印刷電路圖的貼紙貼在所分發的金屬板上,接著用小刀對其進行雕刻,將多餘的貼紙颳去,並用鹽酸和雙氧水比例為1:3的溶液進行腐蝕。然後用清水把腐蝕後的電路板洗凈,並在其上對照印刷電路板進行描點、打點,過後用砂紙將其打磨光滑,再用松香水均勻地塗抹在電路板上。收集齊所需的元件,並對元器件的質量進行判定。(注意:預留的集成塊管腳的空間要准確,不能有太大的誤差;同時二極體、電解電容的極性一定不能接反。)最後進行元器件的焊接,必須在集成塊焊好的情況下才能接著對二極體、RC元件及導線等進行焊接。(因為集成塊不能受熱,所以動作一定要干凈利落。)
在確認電路焊接無誤後,開始進行電路的調試。先把電源接在③、④線上,⑥、①線接地,②、⑤線接入揚聲器,用萬用表對集成運放TDA2030和μPC324C的各引出管腳測出它們之間的電壓與電流,並與其典型值進行對比,看看是否有明顯的差距,判斷集成電路工作是否正常。
❷ 關於音頻放大電路的設計原理
很簡單的電路,典型的共發射極放大器。
3V電壓源提供電源,R1提供基極偏置,R2與三極體構成共發射極放大器,兩個電容用於隔離直流信號,提供交流信號通路。
輸入信號經過電容隔直傳輸到三極體的基極,經過三極體放大後在集電極輸出,然後再經過電容隔直送給喇叭。
❸ 音頻電壓放大器課程設計
音頻電壓放大器的設計
技術指標要求:電壓增益大於100倍(1280),最大不失真電壓輸出幅度大於1.5伏,帶寬30Hz-20kHz,輸入阻抗大於1KΩ(1.7 KΩ),輸出阻抗小於1KΩ(980Ω)。
該課題的內容:
一、多級放大電路的耦合方式
直接耦合放大電路存在溫度漂移問題,但因其低頻特性好,能夠放大變化緩慢的信號,便於集成化,而得到越來越廣泛的應用。
阻容耦合放大電路利用耦合電容「隔離直流,通過交流」,但低頻特性差,不便於集成化,故僅在費用分立元件電路不可的情況下才用。
二、多級放大電路的動態參數
多極放大電路的電壓放大倍數等於組成它的各級電路電壓放大倍數之積。其輸入電阻是第一級的輸入電阻,輸出電阻是末級的輸出電阻。在求解某一級的電壓 放大倍數時應將後級輸入電阻作為負載。
一、頻率響應描述放大電路對不同頻率信號的適應能力。耦合電容和旁路電容所在的迴路為高通電路,在低頻段使放大的倍數的數值下降,且產生超前相移。極間電容所在的迴路為低通電路,在高頻段使放大倍數的數值下降,且產生滯後相移。
二、在研究頻率響應時,應採用放大管的高頻等效模型。在晶體管的高頻等效模型中,極間電容等效為C'。
三、放大電路的上限頻率和下限頻率決定於電容所在的迴路的時間常數。通頻帶等於上限頻率和下限頻率的差。
四、在一定條件下,增益帶寬約為常量。要想高頻特性後,首先應選擇截止頻率高的管子,然後合理選擇參數使C'在迴路的等效電阻盡可能小。要想低頻特性好,應採用直接耦合方式。
五、多級放大電路的波特圖是已考慮了前後級相互影響的各級波特圖的代數和。
重點所在:
上限頻率、下限頻率以及通頻帶。電壓峰峰值、增益帶寬積。
設計框圖:
因為交流電壓源(VSIN)客觀的存在內阻,為了使電壓源充分利用,應減小其內阻值,所以使得輸入電阻阻值盡可能的大;輸出電阻阻值盡可能的小。
應採用多級放大電路頻率。
因為涉及低通電路和高通電路,所以在設計電路框圖應考慮極間電容、偶和電容和旁路電容。
因涉及靜態工作點,所以該電路圖應有直流電源(VDC)。
音頻電壓放大器電路圖
模擬模擬參數設置如下圖
模擬模擬結果:
各節點電壓
各支路電流
電壓增益
如圖:上限截止頻率 38.312K 下限截止頻率 23.815
故其通頻帶 38.312K-23.815 38.288K
輸出電壓V(7)
輸入阻抗Ri=2.752k
求輸出阻抗時的模擬模擬電路圖
模擬模擬後的各節點電壓
模擬模擬後的各支路電流
輸出阻抗R0=967.660
模擬結果說明
因為ICBO是集電結加反向電壓時平衡少子的漂移運動形成的,所以當溫度升高時,熱運動加劇,從而使少子濃度明顯增大。因而參與漂移運動的少子數目增多,從外部看就是ICBO增大。由於ICEO=(1+ )ICBO,所以溫度升高ICBO增大 比模擬值小
課程設計體會與收獲
本學期我們開設了《模擬電路》課,這門學科屬於電子電路范疇,與我們的專業有密切聯系,且都是理論方面的指示。正所謂「紙上談兵終覺淺,覺知此事要躬行。」學習任何知識,僅從理論上去求知,而不去實踐、探索是不夠的,所以在本學期模電學習即將結束的時候,老師為我們安排了電子課程設計 。課程設計是培養學生綜合運用所學知識發現、提出和解決實際問題,鍛煉實踐能力的重要環節。這樣不僅能加深我們對電子電路的認知,而且還及時、真正的做到了學以致用。
緊張而辛苦的三周課程設計結束了,當我快要完成老師下達給我的任務時,我彷彿經過一次翻山越嶺,登上了高山之顛,頓感心曠神怡,眼前豁然開朗……
回顧起此課程設計,感慨頗多,從理論到實踐,在這三個星期里,可以說苦多於甜,但是我從中學到了許多東西,不僅鞏固了以前所學的書本上的知識,而且還學到了許多書上沒有的東西,同時也提高了我的動手操作能力,以及科學嚴謹的設計態度。當然在設計的過程中,我遇到了許多問題,首先是不知道該如何選課題,後來在老師的指導下並根據理論課的學習情況選定課題;然後在模擬模擬過程中也遇到了許多攔路虎,比如說電壓增益的模擬模擬、輸入阻抗、輸出阻抗的計算……計算值與模擬結果相差較大,這花費了我好長時間去去修改電路,後來我翻閱了大量書籍,查資料,終於在書中查到了有關章節,並參考;最後終於使理論值與模擬結果相符合。
通過課程設計,使我深深體會到,干任何事都必須耐心,細致。課程設計過程中,許多計算有時不免;令我感到有些心煩意亂:有兩次因為不小心的幾翻出錯,只能豪不情願的重來,但一想起老師平時對我們耐心的教導,想到今後自己應該承擔的社會責任,想到世界上因為某些細小的的失誤而出現的令人無比震驚的事,我不禁時刻提醒自己,一定要養成一種高度責任,一絲不苟的良好習慣。這次課程設計使我在工作作風上得到了一次難得的磨練。
短短的3周課程設計,使我發現了自己所掌握的知識真的如此貧乏,自己的綜合應用所學的專業知識的能力是如此的不足,幾年來學了那麼多的課程,今年才知道自己並不會用,想到這里,我真的有點心急了,老師卻對我說,這說明課程設計確實使你有收獲了,老師的親切勉勵像春雨注入我的心理,是我自信。
最後,我要忠心的感謝老師,是您的嚴厲批評喚醒了我,是您的敬業精神感動了我,是您的教誨啟發了我,是您的殷切期望鼓舞了我,我感謝老師您今天又為我增添了一副堅強的翅
❹ 8歐0.5瓦喇叭接耳機孔,求高人設計個最精簡的音頻功放電路
最簡單的音頻放大電路,就是用一個9014三極體的單管放大器。線路圖如下:
圖中三極體的基極偏流電阻1k為調整電阻。喇叭阻抗4-8歐姆都可以。
❺ 怎樣設計一個放大聲音的電路
設計音頻放大器,
包括前級小信號放大,
和後級功率放大兩部分電路
同時要考慮電路的兩級放大倍數,
失真度,
信噪比,
這和你的電源濾波、電路布線、工作點的選擇、都有較大關系。
一般來說模擬電路要設計好的話,比數字電路要難。
專業設計需要的儀器也比較多。
如:信號發生器、示波器、毫伏表、失真度測試儀、晶體管JT儀、萬用表等等。
一般來說前級使用NEC5532功放模塊很多,
不講究的話也可以使用TDA4558等做前級放大。
電腦有源音箱一般用TDA2030,LM1875==
電腦微型功放一般使用的是數字功放晶元
車載級功放模塊TDA7385,TDA7384==,
家用功放電路,使用模塊的一般都是低檔次的(傻瓜模塊等)
高檔一點的一般使用對管做甲類、乙類、甲乙類放大電路。
發燒級的一般都是膽機。(電子管放大器)
再配上一整套的發燒級Hi—Fi音響.
整個音響系統就算是完成了。
(不過發燒級的音響一整套的話,最少也要大幾萬——幾十萬
從音源——功放——音箱每一細節都非常考究!)
❻ 三極體音頻放大電路
你用的話筒應該是駐極體話筒吧?這種話筒的輸出端實際上是它內部一個MOSFET管的漏極與源極,而且是有方向的,源極接地,漏極接一個偏置電阻到電源正極。你量到的不
一定就是它在工作時的電阻。說明白一點就是話筒內部集成了一級相當於三極體的放大電路,但是它用的不是三極體,而是場效應管,因為電容式話筒的輸出電阻非常大,無法直
接帶動放大電路的輸入端,所以必須加一級放大電路在裡面以降低輸出電阻。但是場效應管也需要電源才能工作,這樣就要一個偏置電阻給它供電。電源電壓為3V-6V時,這個電阻
一般選為2K-5K之間。
按照你圖中的電路是不對的,因為話筒兩端的電壓直接給三極體的B-E極限制在0.6V左右了,因為三極體的B-E極就是這個電壓,這樣子話筒的工作是不正常的,必須在三極體
的輸入端串聯一個電容以隔離開話筒的偏置電流被三極體的基極影響。
還有,三極體的放大倍數指的是電流放大倍數,而不是電壓放大倍數!算一下你的這個放大電路偏置是不是正常的,由於你沒有給出9014的放大倍數是多少,在這里就設為100
。話筒的工作電壓被限制在0.68V,幾乎沒有分流,流經5.6K電阻的電流全部經過三極體的基極,這個電流是:
(3.7V-0.68V)/5.6K=0.54mA
這個電流經過三極體放大後,集電極的電流是:
0.54mA*100=54mA
但是這個集電極電流不一定就有54mA,還要看電源給不給它這么多的電流!請注意一下,集電極串有一個430歐的電阻,就算直接把430歐電阻並聯在電源電壓兩端,通過電阻的電
流也才有(3.7V/0.43K=)8.6mA,遠遠達不到54mA,三極體的集電極如果要不到那麼多的電流它就會進入飽和狀態,C-E極的飽和電壓為0.1V左右,飽和了就不能正常工作了!就算
三極體不飽和,你直接把30歐的喇叭並聯在三極體的C-E極也是不行的,因為這樣是一個430歐電阻與一個30歐電阻分壓了,在喇叭兩端也只有0.2V左右的電壓,這樣也不能讓三極
管正常工作!要用一個電容串聯在喇叭上,以隔離開流經喇叭的直流電!
我下面給出了兩種電路,第一種輸出功率大一點,偏置電路設置簡單,缺點就是喇叭一直通有直流電流,會把喇叭的紙盆一直推向一邊,這樣會限制一定的振幅,如果直流電
流過大會把喇叭燒壞,但是在40mA以下是沒有問題的。調試時最好用電流表量一下集電極的電流,如果過大,就把Rb加大一點,讓電流變小。圖中的集電極電流大約為10mA,也即
流經喇叭的電流為10mA,因為流經基極的電流約為0.1mA(計算過程是:電源電壓-Ube的差再除以Rb=(3.7-0.65)/30K=0.1mA),放大倍數是100,把0.1mA*100=10mA,這就是集電極
的電流。(注意:因為這種放大電路沒有反饋電路,它的放大倍數會隨溫度而改變,這個集電極電流會有所變化。)
第二種輸出功率小一點,因為它的輸出功率被Rc的大小限制了,而且它的偏置電路的計算比第一種略為復雜一點。這種電路的最佳工作點還要看喇叭的電阻大小才能定下來,
為了簡單起見,就把C-E極的工作電壓設為電源電壓的一半。如何讓C-E兩端的電壓剛好等於電源電壓的一半,計算過程是:
一般9014的集電極電流最大為50mA左右,這里取10mA。電源的一半等於3.7V/2=1.85V,從原理圖上可知,C-E極的電壓也等於電阻Rc上的電壓,因為等於電源的一半,所以是相等的
。那麼只要求出電阻值就可確定出C-E極的電壓,Rc=3.7V/2/10mA=0.185K=185R。下面再求Rb,在Rb之前要先求出基極電流Ib,Ib=集電極電流/放大倍數=10mA/100=0.1mA。Rb=(電
源電壓-Ube)/Ib=(3.7V-0.65)/0.1mA=30.5K約等為30K。
❼ 求個簡單音頻放大電路圖
TDA2822,1腳接電容輸出,2腳接電源,3腳接電容輸出,4腳接地,5腳是接反饋電容對地,6、7腳輸入,對地10k電阻,或10k電位器,8腳接反饋電容對地,這是雙聲道設計接法。
電路圖一搜索就有。祝你好運。
❽ 設計並製作一個小信號音頻放大電路. 基本要求: 能對音頻范圍的小信號進行放大。 能接受輸出幅度小於
要求增益將1mV放大至1V,增益60dB ,最好分三級放大。前置放大器要求輸入阻抗遠遠大於100k,可採用內FET輸入級的運放,並容且最後級放大為功率放大級,使用相關功率晶元可驅動揚聲器,中間級最好為帶通濾波兼放大,可以提高信號的信噪比。
❾ 音頻功率放大器電路設計
你用2N3904這種小功率三極體也能實現2瓦的功率放大?
起碼的用2SB649,2SD669這套對管,最好用2N2955,2N3055這套對管(這個是大功率管,理論上20W輸出都沒問題,不過前面要加小功率三極體,以達林頓管形式驅動)
❿ 音頻採集與放大電路的設計與實現
音頻採集與放大電路的設計,都可以使用晶體管或者運放實現。音頻信號如果是麥克風採集的微弱信號,需要設計一個低噪的多級放大電路。