導航:首頁 > 電器電路 > 晶硅電池電路

晶硅電池電路

發布時間:2022-02-23 02:56:39

1. 晶體硅電池漏電都有哪些原因

在晶體硅太陽電池生產過程中,部分晶體硅太陽電池難免會因為各種原因導致局部漏電,甚至短路。晶體矽片在製作生產過程中導致局部漏電主要原因為1)通過PN結的漏電流;2)沿電池邊緣的表面漏電流; 3)金屬化處理後沿著微觀裂紋或晶界形成的微觀通道的漏電流[1]。本文主要探究了晶體硅電池漏電的原因,並進行具體分析。
一、晶體硅太陽電池工作原理
如圖1所示,當處於開路的情況下,當光生電流和正向電流相等的時候,則由於電子和空穴分別流入N區和P區,使N區的費米能級比P區的費米能級高,在這兩個費米能級之間,P-N結兩端將建立起穩定的電勢差Voc(P區為正,N區為負)。如果將外電路短路,則外電路中就有與入射光能量成正比的光電流流過,這個電流稱作短路電流,只要光生電流不停止,就會有源源不斷的電流通過電路,P-N結起到了一個電源的作用。這就是太陽能電池的工作原理[2]。

圖2是利用P/N結光生伏特效應做成的理想光電池的等效電路圖。

圖中把光照下的p-n結看作一個理想二極體和恆流源並聯,恆流源的電流即為光生電流IL,由於前面和背面的電極和接觸,以及材料本身具有一定的電阻率,基區和頂層都不可避免的要引入附加電阻。流經負載的電流,經過它們時,必然引起損耗。在等效電路中,可將它們的總效果用一個串聯電阻RS來表示。由於電池邊沿的漏電和製作金屬化電極時,在電池的微裂紋、劃痕等處形成的金屬橋漏電等,使一部分本應通過負載的電流短路,這種作用的大小可用一並聯電阻RSH來等效。本文主要研究的就是在實際太陽電池生產中的漏電原因[3]。
二、 晶體硅太陽電池漏電分析
從晶體硅太陽電池生產工藝流程看,以下幾個因素與電池片漏電有關:1)刻蝕不完全或未刻蝕; 2)點狀燒穿;3)印刷擦片或漏漿。對上述三方面進行實驗研究,在研究過程中發現除了以上三種漏電原因外,還有Si3N4顆粒、多晶晶界等也會造成電池片漏電[4,5]。
1刻蝕不完全或未刻蝕造成的漏電
擴散工藝中在矽片的上表面和周邊都擴散上了N型結,如果不去除周邊的N型結會導致電池片正負極被周邊的N型結聯接起來,使電池正負極接通,起不到電池的作用了,我們用等離子刻蝕去除太陽能電池的周邊結,其腐蝕反應方程為:
CF4 ------C+4F* (1)
Si+4F------SiF4* ↑ (2)
等離子體刻蝕是採用高頻輝光放電反應,使反應氣體激活成活性粒子,如原子或游離基,這些活性粒子擴散到需刻蝕的部位,在那裡與被刻蝕材料進行反應,形成揮發性生成物而被去除。
如果矽片未刻蝕或刻蝕不完全沒有及時發現,並且下傳印刷,將產生局部漏電的電池片,我們可以通過IR紅外熱成像儀,判斷局部漏電矽片是否刻蝕原因產生的。
IR紅外熱成像儀的工作原理是在連接電池片的正負極時,使電池片上會形成一個電流迴路,當有區域漏電時,該區域的電流就會特別大,產生的熱量就會比較多,紅外成像儀可以根據矽片表面產生的不同熱量轉換為電信號,進而在顯示器上形成熱圖像,可以對發熱的異常區域進行准確的識別。

刻蝕不完全或未刻蝕的矽片在IR下表現為電池片邊緣發紅,如圖3所示。刻蝕不完全或未刻蝕的電池片在進行四周打磨後漏電流會減少到2A以下,如表1所示。

以上幾點可以判斷為刻蝕不完全或未刻蝕造成的。刻蝕不完全主要是由於矽片邊結由於設備原因或人為原因未去除干凈,導致漏電過大的異常現象主要有以下原因:1)刻蝕功率過小; 2)刻蝕時間不足; 3)刻蝕壓力波動導致刻蝕不均; 4)刻蝕時機台故障,以致刻蝕未進行完全; 5)刻蝕時,矽片底部托盤未旋轉,導致刻蝕不均;6)人為原因,將未刻蝕矽片下傳;針對以上原因需要加強刻蝕機的監控,增加人員的責任意識。
2點狀燒穿造成的漏電
點狀燒穿通常意義上指IR拍攝出呈現點狀發紅的漏電現象,具體表現如圖4所示,其主要由以下三種因素引起,1)隱裂引起的點狀燒穿;2)微隱裂引起的點狀燒穿;3)未知因素引起的點狀燒穿。

隱裂引起的點狀燒穿主要有兩種方式產生,1) 擴散前隱裂即在擴散步磷源順著裂縫擴散,從而導致上下導通,產生點狀燒穿;2)印刷前隱裂即在印刷過程中,漿料恰巧印過裂縫,銀漿通過裂縫滲透到背面產生點狀燒穿。對於由隱裂而產生的點狀燒穿,我們必須規范生產現場操作,盡量避免產生隱裂片的可能。比如裝舟卸舟時輕拿輕放,保持印刷機台干凈平整等等。

2. 化學:晶體硅制光電池的原理是什麼

光電池(photovoltaic cell,注意photocell一般指光敏電阻),是一種在光的照射下產生電動勢的半導體元件。它是是能在光的照射下產生電動勢的元件。用於光電轉換、光電探測及光能利用等方面

光電池也叫太陽能電池,直接把太陽光轉變成電。因此光電池的特點是能夠把地球從太陽輻射中吸收的大量光能轉化換成電能。是一種在光的照射下產生電動勢的半導體元件。光電池的種類很多,常用有硒光

電池、硅光電池和硫化鉈、硫化銀光電池等。主要用於儀表,自動化遙測和遙控方面。有的光電池可以直接把太陽能轉變為電能,這種光電池又叫太陽能電池。太陽能電池作為能源廣泛應用在人造地球衛星、燈塔、無人氣象站等處
光伏發電是利用半導體pn結(pn junction)的光生伏特效應而將光能直接轉變為電能的一種技術。這種技術的關鍵元件是太陽能電池(solar cell)。太陽能電池經過串聯後進行封裝保護可形成大面積的太陽電池組件(mole),再配合上功率控制器等部件就形成了光伏發電裝置。光伏發電的優點是較少受地域限制,因為陽光普照大地;光伏系統還具有安全可靠、無雜訊、低污染、無需消耗燃料和架設輸電線路即可就地發電供電及建設周期短的優點。光伏發電是根據光生伏特效應原理, 當P-N結受光照時,樣品對光子的本徵吸收和非本徵吸收都將產生光生載流子。但能引起光伏效應的只能是本徵吸收所激發的少數載流子。因P區產生的光生空穴,N區產生的光生電子屬多子,都被勢壘阻擋而不能過結。只有P區的光生電子和N區的光生空穴和結區的電子空穴對(少子)擴散到結電場附近時能在內建電場作用下漂移過結。光生電子被拉
工作原理
向N區,光生空穴被拉向P區,即電子空穴對被內建電場分離。這導致在N區邊界附近有光生電子積累,在P區邊界附近有光生空穴積累。它們產生一個與熱平衡P-N結的內建電場方向相反的光生電場,其方向由P區指向N區。此電場使勢壘降低,其減小量即光生電勢差,P端正,N端負。於是有結電流由P區流向N區,其方向與光電流相反。如果這時分別在P型層和N型層焊上金屬導線,接通負載,則外電路便有電流通過,如此形成的一個個電池元件,把它們串聯、並聯起來,就能產生一定的電壓和電流,輸出功率。

3. 晶體硅太陽電池單體工作電壓是多少

太陽能電池板背面標貼上一般都標為該板的標稱電壓(Voc)和工作電壓(Vm).
標稱電壓也叫做開路電壓,也就是太陽能電池板在峰值光照條件下,不接入任何負載,沒有電流輸出情況下的電壓值。因些也可以認為是該太陽能電池板的輸出電壓的上限值。
工作電壓,就是太陽能電池板在峰值光照條件下,接入電器負載後,有電流輸出的情況下的電壓值。
如果對於蓄電池充電來說,主要看太陽能電池板的工作電壓,一般鉛酸蓄電池是12V,那麼對於太陽能電池板的工作電壓要求是18左右,才可以保障正常充電。
很高興為您解答,這些一般都是最基本的,懂得這些基本知識才能更加了解光伏,進入光伏這個行業,嘿!希望你能採納我的意見!!!

4. 薄膜太陽能電池與晶硅電池各有什麼優點、缺點

當然是硅薄膜了。
非晶硅(a-Si)太陽電池是在玻璃(glass)襯底上沉積透明導電膜(TCO),然後依次用等離子體反應沉積p型、i型、n型三層a-Si,接著再蒸鍍金屬電極鋁(Al).光從玻璃面入射,電池電流從透明導電膜和鋁引出,其結構可表示為glass/TCO/pin/Al,還可以用不銹鋼片、塑料等作襯底。

5. 晶硅電池和非晶硅電池有什麼不同

晶硅電池表示使用的硅材料為多晶硅或者單晶硅,多晶硅相對於單晶硅電池來說,價格要便宜的多,但是其光電轉換效率要低。晶硅太陽能電池是依靠PN結產生電的。
非晶硅電池表示使用的硅材料是非晶硅。其價格要稍高一點,且轉換效率也較高,但是其光電轉換的機制與晶硅電池是不一樣的。不是靠PN結,而是靠電對

6. 晶硅太陽能電池的工作原理是什麼

硅材料是一種半導體材料,太陽能電池發電的原理主要是利用這種半導體的光電效應,一般半導體的分子結構是這樣的:正電荷表示硅原子,負電荷表示圍繞在硅原子旁邊四個電子。而黃色的表示摻入的硼原子,因此,硼元子周圍只有三個電子,所以就能產生藍色的空穴,這樣的空穴,因為沒有電子而變得很不穩定,容易吸收電子中和,形成p型半導體。

7. 晶硅太陽能電池工作原理

一、硅太陽能電池 1.硅太陽能電池工作原理與結構 太陽能電池發電的原理主要是半導體的光電效應,一般的半導體主要結構如下: 硅材料是一種半導體材料,太陽能電池發電的原理主要就是利用這種半導體的光電效應。一般半導體的分子結構是這樣的: 上圖中,正電荷表示硅原子,負電荷表示圍繞在硅原子旁邊的四個電子。 當硅晶體中摻入其他的雜質,如硼(黑色或銀灰色固體,熔點2300℃,沸點3658℃,密度2.34克/厘米,硬度僅次於金剛石,在室溫下較穩定,可與氮、碳、硅作用,高溫下硼還與許多金屬和金屬氧化物反應,形成金屬硼化物。這些化合物通常是高硬度、耐熔、高導電率和化學惰性的物質。)、磷等,當摻入硼時,硅晶體中就會存在一個空穴,它的形成可以參照下圖說明:
圖中,正電荷表示硅原子,負電荷表示圍繞在硅原子旁邊的四個電子,而黃色的表示摻入的硼原子,因為硼原子周圍只有3個電子,所以就會產生如圖所示的藍色的空穴,這個空穴因為沒有電子而變得很不穩定,容易吸收電子而中和,形成P(positive)型半導體。 (附,什麼是P型半導體呢?在半導體材料硅或鍺晶體中摻入三價元素雜質可構成缺殼粒的P型半導體,摻入五價元素雜質可構成多餘殼粒的N型半導體。) 同樣,摻入磷原子以後,因為磷原子有五個電子,所以就會有一個電子變得非常活躍,形成N(negative)型半導體。黃色的為磷原子核,紅色的為多餘的電子,如下圖所示:
P型半導體中含有較多的空穴,而N型半導體中含有較多的電子,這樣,當P型和N型半導體結合在一起時,就會在接觸面形成電勢差,這就是PN結。
當P型和N型半導體結合在一起時,在兩種半導體的交界面區域里會形成一個特殊的薄層,界面的P型一側帶負電,N型一側帶正電。這是由於P型半導體多空穴,N型半導體多自由電子,出現了濃度差。N區的電子匯擴散到P區,P區的空穴會擴散到N區,一旦擴散就形成了一個有N指向P的「內電場」,從而阻止擴散進行。達到平衡後,就形成了這樣一個特殊的薄層形成電勢差,從而形成PN結。當晶片受光後,PN結中,N型半導體的空穴往P型區移動,而P型區中的電子往N型區移動,從而形成從N型區到P型區的電流。然後在PN結中形成電勢差,這就形成了電源。下面就是這樣的電源圖。

由於半導體不是電的良導體,電子在通過p-n結後如果在半導體中流動,電阻非常大,損耗也就非常大。但如果在上層全部塗上金屬,陽光就不能通過,電流就不能產生,因此一般用金屬網格覆蓋p-n結(如圖 梳狀電極),以增加入射光的面積。 另外硅表面非常光亮,會反射掉大量的太陽光,不能被電池利用。為此,科學家們給它塗上了一層反射系數非常小的保護膜(如圖),實際工業生產基本都是用化學氣相沉積沉積一層氮化硅膜,厚度在1000埃左右。將反射損失減小到5%甚至更小。一個電池所能提供的電流和電壓畢竟有限,於是人們又將很多電池(通常是36個)並聯或串聯起來使用,形成太陽能光電板。 2.硅太陽能電池的生產流程 通常的晶體硅太陽能電池是在厚度350~450μm的高質量矽片上製成的,這種矽片從提拉或澆鑄的硅錠上鋸割而成。 上述方法實際消耗的硅材料更多。為了節省材料,目前制備多晶硅薄膜電池多採用化學氣相沉積法,包括低壓化學氣相沉積(LPCVD)和等離子增強化學氣相沉積(PECVD)工藝。此外,液相外延法(LPPE)和濺射沉積法也可用來制備多晶硅薄膜電池。 化學氣相沉積主要是以SiH2Cl2、SiHCl3、SiCl4或SiH4,為反應氣體,在一定的保護氣氛下反應生成硅原子並沉積在加熱的襯底上,襯底材料一般選用Si、SiO2、Si3N4等。但研究發現,在非硅襯底上很難形成較大的晶粒,並且容易在晶粒間形成空隙。解決這一問題辦法是先用 LPCVD在襯底上沉積一層較薄的非晶硅層,再將這層非晶硅層退火,得到較大的晶粒,然後再在這層籽晶上沉積厚的多晶硅薄膜,因此,再結晶技術無疑是很重要的一個環節,目前採用的技術主要有固相結晶法和中區熔再結晶法。多晶硅薄膜電池除採用了再結晶工藝外,另外採用了幾乎所有制備單晶硅太陽能電池的技術,這樣製得的太陽能電池轉換效率明顯提高。 二、納米晶化學太陽能電池 非晶硅薄膜太陽能電池
在太陽能電池中硅系太陽能電池無疑是發展最成熟的,但由於成本居高不下,遠不能滿足大規模推廣應用的要求。為此,人們一直不斷在工藝、新材料、電池薄膜化等方面進行探索,而這當中新近發展的納米TiO2晶體化學能太陽能電池受到國內外科學家的重視。 以染料敏化納米晶體太陽能電池(DSSCs)為例,這種電池主要包括鍍有透明導電膜的玻璃基底,染料敏化的半導體材料、對電極以及電解質等幾部分。 陽極:染料敏化半導體薄膜(TiO2膜) 陰極:鍍鉑的導電玻璃 電解質:I3/I 如圖所示,白色小球表示TiO2,紅色小球表示染料分子。染料分子吸收太陽光能躍遷到激發態,激發態不穩定,電子快速注入到緊鄰的TiO2導帶,染料中失去的電子則很快從電解質中得到補償,進入TiO2導帶中的電於最終進入導電膜,然後通過外迴路產生光電流。 納米晶TiO2太陽能電池的優點在於它廉價的成本和簡單的工藝及穩定的性能。其光電效率穩定在10%以上,製作成本僅為硅太陽電池的1/5~1/10.壽命能達到20年以上。但由於此類電池的研究和開發剛剛起步,估計不久的將來會逐步走上市場。 三、染料敏化TiO2太陽能電池的手工製作 1.製作二氧化鈦膜 (1)先把二氧化鈦粉末放入研缽中與粘合劑進行研磨 (2)接著用玻璃棒緩慢地在導電玻璃上進行塗膜 (3)把二氧化鈦膜放入酒精燈下燒結10~15分鍾,然後冷卻 2.利用天然染料為二氧化鈦著色 如圖所示,把新鮮的或冰凍的黑梅、山梅、石榴籽或紅茶,加一湯匙的水並進行擠壓,然後把二氧化鈦膜放進去進行著色,大約需要5分鍾,直到膜層變成深紫色,如果膜層兩面著色的不均勻,可以再放進去浸泡5分鍾,然後用乙醇沖洗,並用柔軟的紙輕輕地擦乾。 3.製作正電極 由染料著色的TiO2為電子流出的一極(即負極)。正電極可由導電玻璃的導電面(塗有導電的SnO2膜層)構成,利用一個簡單的萬用表就可以判斷玻璃的那一面是可以導電的,利用手指也可以做出判斷,導電面較為粗糙。如圖所示,把非導電面標上『+』,然後用鉛筆在導電面上均勻地塗上一層石墨。 4.加入電解質 利用含碘離子的溶液作為太陽能電池的電解質,它主要用於還原和再生染料。如圖所示,在二氧化鈦膜表面上滴加一到兩滴電解質即可。 5.組裝電池 把著色後的二氧化鈦膜面朝上放在桌上,在膜上面滴一到兩滴含碘和碘離子的電解質,然後把正電極的導電面朝下壓在二氧化鈦膜上。把兩片玻璃稍微錯開,用兩個夾子把電池夾住,兩片玻璃暴露在外面的部分用以連接導線。這樣,你的太陽能電池就做成了。 6.電池的測試 在室外太陽光下,檢測你的太陽能電池是否可以產生電流。
編輯本段結構
正電荷表示硅原子,負電荷表示圍繞在硅原子旁邊的四個電子。 PN結
當硅晶體中摻入其他的雜質,如硼、磷等,當摻入硼時,硅晶體中就會存在著一個空穴,它的形成可以參照下圖: 正電荷表示硅原子,負電荷表示圍繞在硅原子旁邊的四個電子。而黃色的表示摻入的硼原子,因為硼原子周圍只有3個電子,所以就會產生藍色的空穴,這個空穴因為沒有電子而變得很不穩定,容易吸收電子而中和,形成P(positive)型半導體。 同樣,摻入磷原子以後,因為磷原子有五個電子,所以就會有一個電子變得非常活躍,形成N(negative)型半導體。黃色的為磷原子核,紅色的為多餘的電子。 N型半導體中含有較多的空穴,而P型半導體中含有較多的電子,這樣,當P型和N型半導體結合在一起時,就會在接觸面形成電勢差,這就是PN結。 當P型和N型半導體結合在一起時,在兩種半導體的交界面區域里會形成一個特殊的薄層),界面的P型一側帶負電,N型一側帶正電。這是由於P型半導體多空穴,N型半導體多自由電子,出現了濃度差。N區的電子會擴散到P區,P區的空穴會擴散到N區,一旦擴散就形成了一個由N指向P的「內電場」,從而阻止擴散進行。達到平衡後,就形成了這樣一個特殊的薄層形成電勢差,這就是PN結。 當晶片受光後,PN結中,N型半導體的空穴往P型區移動,而P型區中的電子往N型區移動,從而形成從N型區到P型區的電流。然後在PN結中形成電勢差,這就形成了電源 由於半導體不是電的良導體,電子在通過p-n結後如果在半導體中流動,電阻非常大,損耗也就非常大。但如果在上層全部塗上金屬,陽光就不能通過,電流就不能產生,因此一般用金屬網格覆蓋p-n結(如圖 梳狀電極),以增加入射光的面積。 原理圖
另外硅表面非常光亮,會反射掉大量的太陽光,不能被電池利用。為此,科學家們給它塗上了一層反射系數非常小的保護膜(如圖),將反射損失減小到5%甚至更小。一個電池所能提供的電流和電壓畢竟有限,於是人們又將很多電池(通常是36個)並聯或串聯起來使用,形成太陽能光電板。
編輯本段發電原理
太陽電池是一種對光有響應並能將光能轉換成電力的器件。能產生光伏效應的材料有許多種,如:單晶硅,多晶硅, 非晶硅,砷化鎵,硒銦銅等。它們的發電原理基本相同,現已晶體硅為例描述光發電過程。 P型晶體硅經過摻雜磷可得N型硅,形成P-N結。 當光線照射太陽電池表面時,一部分光子被硅材料吸收;光子的能量傳遞給了硅原子,使電子發生了越遷,成為自由電子在P-N結兩側集聚形成了電位差,當外部接通電路時,在該電壓的作用下,將會有電流流過外部電路產生一定的輸出功率。這個過程的的實質是:光子能量轉換成電能的過程。
編輯本段生產流程
通常的晶體硅太陽能電池是在厚度350~450μm的高質量矽片上製成的,這種矽片從提拉或澆鑄的硅錠上鋸割而成。 上述方法實際消耗的硅材料更多。為了節省材料,目前制備多晶硅薄膜電池多採用化學氣相沉積法,包括低壓化學氣相沉積(LPCVD)和等離子增強化學氣相沉積(PECVD)工藝。此外,液相外延法(LPPE) 生產線
化學氣相沉積主要是以SiH2Cl2、SiHCl3、SiCl4或SiH4,為反應氣體,在一定的保護氣氛下反應生成硅原子並沉積在加熱的襯底上,襯底材料一般選用Si、SiO2、Si3N4等。但研究發現,在非硅襯底上很難形成較大的晶粒,並且容易在晶粒間形成空隙。解決這一問題辦法是先用 LPCVD在襯底上沉積一層較薄的非晶硅層,再將這層非晶硅層退火,得到較大的晶粒,然後再在這層籽晶上沉積厚的多晶硅薄膜,因此,再結晶技術無疑是很重要的一個環節,目前採用的技術主要有固相結晶法和中區熔再結晶法。多晶硅薄膜電池除採用了再結晶工藝外,另外採用了幾乎所有制備單晶硅太陽能電池的技術,這樣製得的太陽能電池轉換效率明顯提高。

8. 晶體硅太陽能電池的電池種類

硅系列太陽能電池中,單晶硅太陽能電池轉換效率最高,技術也最為成熟。高性能單晶硅電池是建立在高質量單晶硅材料和相關的成熱的加工處理工藝基礎上的。單晶硅的電池工藝己近成熟,在電池製作中,一般都採用表面織構化、發射區鈍化、分區摻雜等技術,開發的電池主要有平面單晶硅電池和刻槽埋柵電極單晶硅電池。提高轉化效率主要是靠單晶硅表面微結構處理和分區摻雜工藝。在此方面,德國夫朗霍費費萊堡太陽能系統研究所保持著世界領先水平。該研究所採用光刻照相技術將電池表面織構化,製成倒金字塔結構。並在表面把一13nm。厚的氧化物鈍化層與兩層減反射塗層相結合.通過改進了的電鍍過程增加柵極的寬度和高度的比率:通過以上製得的電池轉化效率超過23%,最大值可達23.3%。Kyocera公司制備的大面積(225cm2)單電晶太陽能電池轉換效率為19.44%,國內北京太陽能研究所也積極進行高效晶體硅太陽能電池的研究和開發,研製的平面高效單晶硅電池(2cm X 2cm)轉換效率達到19.79%,刻槽埋柵電極晶體硅電池(5cm X 5cm)轉換效率達8.6%。
單晶硅太陽能電池轉換效率無疑是最高的,在大規模應用和工業生產中仍占據主導地位,但由於受單晶硅材料價格及相應的繁瑣的電池工藝影響,致使單晶硅成本價格居高不下,要想大幅度降低其成本是非常困難的。為了節省高質量材料,尋找單晶硅電池的替代產品,發展了薄膜太陽能電池,其中多晶硅薄膜太陽能電池和非晶硅薄膜太陽能電池就是典型代表。 通常的晶體硅太陽能電池是在厚度350-450μm的高質量矽片上製成的,這種矽片從提拉或澆鑄的硅錠上鋸割而成。因此實際消耗的硅材料更多。為了節省材料,人們從70年代中期就開始在廉價襯底上沉積多晶硅薄膜,但由於生長的硅膜晶粒大小,未能製成有價值的太陽能電池。為了獲得大尺寸晶粒的薄膜,人們一直沒有停止過研究,並提出了很多方法。制備多晶硅薄膜電池多採用化學氣相沉積法,包括低壓化學氣相沉積(LPCVD)和等離子增強化學氣相沉積(PECVD)工藝。此外,液相外延法(LPPE)和濺射沉積法也可用來制備多晶硅薄膜電池。
化學氣相沉積主要是以SiH2Cl2、SiHCl3、Sicl4或SiH4,為反應氣體,在一定的保護氣氛下反應生成硅原子並沉積在加熱的襯底上,襯底材料一般選用Si、SiO2、Si3N4等。但研究發現,在非硅襯底上很難形成較大的晶粒,並且容易在晶粒間形成空隙。解決這一問題辦法是先用 LPCVD在襯底上沉熾一層較薄的非晶硅層,再將這層非晶硅層退火,得到較大的晶粒,然後再在這層籽晶上沉積厚的多晶硅薄膜,因此,再結晶技術無疑是很重要的一個環節,採用的技術主要有固相結晶法和中區熔再結晶法。多晶硅薄膜電池除採用了再結晶工藝外,另外採用了幾乎所有制備單晶硅太陽能電池的技術,這樣製得的太陽能電池轉換效率明顯提高。德國弗萊堡太陽能研究所採用區館再結晶技術在FZ Si襯底上製得的多晶硅電池轉換效率為19%,日本三菱公司用該法制備電池,效率達16.42%。
液相外延(LPE)法的原理是通過將硅熔融在母體里,降低溫度析出硅膜。美國Astropower公司採用LPE制備的電池效率達12.2%。中國光電發展技術中心的陳哲良採用液相外延法在冶金級矽片上生長出硅晶粒,並設計了一種類似於晶體硅薄膜太陽能電池的新型太陽能電池,稱之為「硅粒」太陽能電池,但有關性能方面的報道還未見到。
多晶硅薄膜電池由於所使用的硅遠較單晶硅少,又無效率衰退問題,並且有可能在廉價襯底材料上制備,其成本遠低於單晶硅電池,而效率高於非晶硅薄膜電池,因此,多晶硅薄膜電池不久將會在太陽能電地市場上占據主導地位。 開發太陽能電池的兩個關鍵問題就是:提高轉換效率和降低成本。由於非晶硅薄膜太陽能電池的成本低,便於大規模生產,普遍受到人們的重視並得到迅速發展,其實早在70年代初,Carlson等就已經開始了對非晶硅電池的研製工作,近幾年它的研製工作得到了迅速發展,世界上己有許多家公司在生產該種電池產品。
非晶硅作為太陽能材料盡管是一種很好的電池材料,但由於其光學帶隙為1.7eV, 使得材料本身對太陽輻射光譜的長波區域不敏感,這樣一來就限制了非晶硅太陽能電池的轉換效率。此外,其光電效率會隨著光照時間的延續而衰減,即所謂的光致衰退S一W效應,使得電池性能不穩定。解決這些問題的這徑就是制備疊層太陽能電池,疊層太陽能電池是由在制備的p、i、n層單結太陽能電池上再沉積一個或多個P-i-n子電池製得的。疊層太陽能電池提高轉換效率、解決單結電池不穩定性的關鍵問題在於:①它把不同禁帶寬度的材料組合在一起,提高了光譜的響應范圍;②頂電池的i層較薄,光照產生的電場強度變化不大,保證i層中的光生載流子抽出;③底電池產生的載流子約為單電池的一半,光致衰退效應減小;④疊層太陽能電池各子電池是串聯在一起的。
非晶硅薄膜太陽能電池的制備方法有很多,其中包括反應濺射法、PECVD法、LPCVD法等,反應原料氣體為H2稀釋的SiH4,襯底主要為玻璃及不銹鋼片,製成的非晶硅薄膜經過不同的電池工藝過程可分別製得單結電池和疊層太陽能電池。非晶硅太陽能電池的研究取得兩大進展:第一、三疊層結構非晶硅太陽能電池轉換效率達到13%,創下新的記錄;第二.三疊層太陽能電池年生產能力達5MW。美國聯合太陽能公司(VSSC)製得的單結太陽能電池最高轉換效率為9.3%,三帶隙三疊層電池最高轉換效率為13%,見表1
上述最高轉換效率是在小面積(0.25cm2)電池上取得的。曾有文獻報道單結非晶硅太陽能電池轉換效率超過12.5%,日本中央研究院採用一系列新措施,製得的非晶硅電池的轉換效率為13.2%。國內關於非晶硅薄膜電池特別是疊層太陽能電池的研究並不多,南開大學的耿新華等採用工業用材料,以鋁背電極制備出面積為20X20cm2、轉換效率為8.28%的a-Si/a-Si疊層太陽能電池。
非晶硅太陽能電池由於具有較高的轉換效率和較低的成本及重量輕等特點,有著極大的潛力。但同時由於它的穩定性不高,直接影響了它的實際應用。如果能進一步解決穩定性問題及提高轉換率問題,那麼,非晶硅大陽能電池無疑是太陽能電池的主要發展產品之一。 為了尋找單晶硅電池的替代品,人們除開發了多晶硅、非晶硅薄膜太陽能電池外,又不斷研製其它材料的太陽能電池。其中主要包括砷化鎵III-V族化合物、硫化鎘、硫化鎘及銅錮硒薄膜電池等。上述電池中,盡管硫化鎘、碲化鎘多晶薄膜電池的效率較非晶硅薄膜太陽能電池效率高,成本較單晶硅電池低,並且也易於大規模生產,但由於鎘有劇毒,會對環境造成嚴重的污染,因此,並不是晶體硅太陽能電池最理想的替代。
砷化鎵III-V化合物及銅銦硒薄膜電池由於具有較高的轉換效率受到人們的普遍重視。GaAs屬於III-V族化合物半導體材料,其能隙為1.4eV,正好為高吸收率太陽光的值,因此,是很理想的電池材料。GaAs等III-V化合物薄膜電池的制備主要採用MOVPE和LPE技術,其中MOVPE方法制備GaAs薄膜電池受襯底位錯、反應壓力、III-V比率、總流量等諸多參數的影響。
除GaAs外,其它III-V化合物如Gasb、GaInP等電池材料也得到了開發。1998年德國弗萊堡太陽能研究所製得的GaAs太陽能電池轉換效率為24.2%,為歐洲記錄。首次制備的GaInP電池轉換效率為14.7%.見表2。另外,該研究所還採用堆疊結構制備GaAs,Gasb電池,該電池是將兩個獨立的電池堆疊在一起,GaAs作為上電池,下電池用的是Gasb,所得到的電池效率達到31.1%。
銅銦硒CuInSe2簡稱CIC。CIS材料的能降為1.leV,適於太陽光的光電轉換,另外,CIS薄膜太陽電池不存在光致衰退問題。因此,CIS用作高轉換效率薄膜太陽能電池材料也引起了人們的注目。
CIS電池薄膜的制備主要有真空蒸鍍法和硒化法。真空蒸鍍法是採用各自的蒸發源蒸鍍銅、銦和硒,硒化法是使用H2Se疊層膜硒化,但該法難以得到組成均勻的CIS。CIS薄膜電池從80年代最初8%的轉換效率發展到15%左右。日本松下電氣工業公司開發的摻鎵的CIS電池,其光電轉換效率為15.3%(面積1cm2)。1995年美國可再生能源研究室研製出轉換效率為17.l%的CIS太陽能電池,這是迄今為止世界上該電池的最高轉換效率。預計到2000年CIS電池的轉換效率將達到20%,相當於多晶硅太陽能電池。
CIS作為太陽能電池的半導體材料,具有價格低廉、性能良好和工藝簡單等優點,將成為今後發展太陽能電池的一個重要方向。唯一的問題是材料的來源,由於銦和硒都是比較稀有的元素,因此,這類電池的發展又必然受到限制。 在太陽能電池中以聚合物代替無機材料是剛剛開始的一個太陽能電池制備的研究方向。其原理是利用不同氧化還原型聚合物的不同氧化還原電勢,在導電材料(電極)表面進行多層復合,製成類似無機P-N結的單向導電裝置。其中一個電極的內層由還原電位較低的聚合物修飾,外層聚合物的還原電位較高,電子轉移方向只能由內層向外層轉移;另一個電極的修飾正好相反,並且第一個電極上兩種聚合物的還原電位均高於後者的兩種聚合物的還原電位。當兩個修飾電極放入含有光敏化劑的電解波中時.光敏化劑吸光後產生的電子轉移到還原電位較低的電極上,還原電位較低電極上積累的電子不能向外層聚合物轉移,只能通過外電路通過還原電位較高的電極回到電解液,因此外電路中有光電流產生。
由於有機材料柔性好,製作容易,材料來源廣泛,成本底等優勢,從而對大規模利用太陽能,提供廉價電能具有重要意義。但以有機材料制備太陽能電池的研究僅僅剛開始,不論是使用壽命,還是電池效率都不能和無機材料特別是硅電池相比。能否發展成為具有實用意義的產品,還有待於進一步研究探索。 在太陽能電池中硅系太陽能電池無疑是發展最成熟的,但由於成本居高不下,遠不能滿足大規模推廣應用的要求。為此,人們一直不斷在工藝、新材料、電池薄膜化等方面進行探索,而這當中新近發展的納米TiO2晶體化學能太陽能電池受到國內外科學家的重視。
自瑞士Gratzel教授研製成功納米TiO2化學大陽能電池以來,國內一些單位也正在進行這方面的研究。納米晶化學太陽能電池(簡稱NPC電池)是由一種在禁帶半導體材料修飾、組裝到另一種大能隙半導體材料上形成的,窄禁帶半導體材料採用過渡金屬Ru以及Os等的有機化合物敏化染料,大能隙半導體材料為納米多晶TiO2並製成電極,此外NPC電池還選用適當的氧化一還原電解質。納米晶TiO2工作原理:染料分子吸收太陽光能躍遷到激發態,激發態不穩定,電子快速注入到緊鄰的TiO2導帶,染料中失去的電子則很快從電解質中得到補償,進入TiO2導帶中的電於最終進入導電膜,然後通過外迴路產生光電流。
納米晶TiO2太陽能電池的優點在於它廉價的成本和簡單的工藝及穩定的性能。其光電效率穩定在10%以上,製作成本僅為硅太陽電池的1/5-1/10.壽命能達到2O年以上。但由於此類電池的研究和開發剛剛起步,估計不久的將來會逐步走上市場。

9. 晶體硅電池的工作原理是什麼

光線照射到硅原子增加了其外層電子的動能,促使其溢出。其溢出的多少是陽光電池輸出電流的函數。硅材料的本質是單位面積輸出電壓的函數。

10. 怎麼測晶硅太陽電池的電路溫度系數

晶硅太陽能電池: Temperature Coefficient of Pmax -0.4%/°C~ -0.45 %/°C 薄膜硅太陽能電池: Temperature Coefficient of Pmax -0.2%/°C~ -0.3 %/°C

閱讀全文

與晶硅電池電路相關的資料

熱點內容
boost電路原理 瀏覽:225
飛塗外牆防水膠怎麼樣 瀏覽:8
如何查詢百邦維修進度 瀏覽:742
廣東gf防水材料多少錢一公斤 瀏覽:348
膠州仿古傢具市場在哪裡 瀏覽:249
汽車水泵保修期限 瀏覽:101
贛州市哪裡回收舊家電 瀏覽:293
深圳市邸高家居 瀏覽:539
房屋漏水物業如何維修 瀏覽:54
前鋒熱水器瀘州維修點 瀏覽:768
電動車維修技巧免費視頻教程全集 瀏覽:449
電影里的智能家居 瀏覽:277
塔吊維修怎麼寫 瀏覽:373
成都家居用品公司 瀏覽:927
多久壓電路 瀏覽:328
濟南歷城區家電維修地址 瀏覽:429
買華為平板如何注意買到翻新機 瀏覽:162
switch如何驗證是不是翻新 瀏覽:275
濟南lg空調售後維修電話 瀏覽:286
小米虹口維修點 瀏覽:199