① 声卡是什么东西怎样换,怎么区分声卡的好坏
声卡是电脑的一种输入输出设备,它的工作是提供音频信号的输入输出功能并可以对其进行处理。声卡包括集成声卡和独立声卡,现在集成声卡占市场的绝大部分,现在的主板几乎都板载了符合ac97标准的声卡。独立声卡是板卡的一种。集成声卡和独立声卡的基本功能是一样的。现在的集成声卡已经非常成熟,应付一般使用已经是游刃有余而且功能也越来越丰富。现在的独立声卡基本上都是网中高端发展,所以一般音质要比集成的好,价钱相对比较高。如果你用的音箱比较好的话才考虑另外安装独立声卡,个人认为500元以上的音箱才有必要。那些低端的声卡都是那些集成声卡坏了的才买,性能和集成的是同一档次的。你说的cd是指光驱吧。光驱是个输入设备,用来读取光盘中的各种数据。它和声卡是完全不同的两种配件。
看是集成的还是非集成的。一般来说你主机后面接耳机的那个地方就是声卡。把机箱外壳卸下,然后卸掉螺丝,拔下那个插条,换上新的就可以了。 :)
http://www.yesky.com/305/1771805.shtml
目前流行的声卡品种繁多,令人目不暇接,不过若是以其所采用的音效芯片来分类的话,种类就有限了。在决定声卡性能的诸因素之中,音效芯片所占的位置是举足轻重的;因此要想全面了解声卡,首先就要了解不同声卡所采用的不同音效芯片。
主流音效芯片简评
Creative系列音效芯片
Creative 137X系列(ES-137X)
简介:Creative早期的PCI声卡使用的都是ES-137X系列的芯片,其中ES-1370主要应用于Sound Blaster PCI64和Sound Blaster PCI128声卡;ES-1373是前者的简化版,主要应用于主板集成。
评论:这一系列音效芯片本身的信噪比较高,在录制WAV音频时可以得到比较满意的音质,不过由于这款芯片所采用的技术比较简单,因此合成后的MIDI乐曲整体效果不是很好。在三维音效方面,该芯片可以实现硬件加速DS3D、软件模拟A3D 1.0和EAX,可以模拟支持4音箱输出,在四声道模式下可以获得较好的三维定位效果。
EMU10K1
简介:EMU10K1是性能强劲的音效处理芯片,它集成了超过200万的晶体管,拥有超过1000个MIPS的处理能力,而且这款音效芯片本身就是一块可编程的DSP,这就意味着它可以通过软件来改进功能、增强处理能力,因此生命力强劲。
评论:EMU10K1由于率先采用了8点内插运算功能,所以音质极佳,达到了DSP数据转换的高峰,经它处理转换后的音频信号,听起来很逼真,而且EMU10K1更是凭借自己强大的运算能力,足以轻松应付各种复杂的三维音效处理;不过美中不足的一点是MIDI的合成能力,虽然运用了先进的SOUNDFONT技术,可以添加各种风格的音色库,但由于算法较简单,整体效果还是无法与YAMAHA、ROLAND等专业软波表媲美。
ESS系列音效芯片
ESS MAESTRO-2(1968)
简介:ESS MAESTRO-2(1968)系列是ESS公司生产的第二代PCI音效芯片,在性能上比前一代产品有了较大的提升。首先,该芯片采用了32位线程处理技术,大大降低了声卡放音时CPU的占用率;其次,它采用了数据缓存技术,通过把数据存储在系统内存中,从而使PCI总线数据传输速度得到更有力的发挥;同时ESS MAESTRO-2(1968)芯片还支持两路立体声音频输出,可以为用户营造一种模拟的环绕效果。另外在三维音效方面,它采用了Sensaura新一代的技术,在音质效果上显得更加逼真。
评论:总的来看,ESS MAESTRO-2(1968)音效芯片在许多方面的功能在同价位芯片中都是比较优秀的,拥有的良好音质和较低的CPU占用率,值得普通用户选择。
ESS Canyon3D
简介:ESS Canyon3D是ESS公司的新力作,处理能力为500MIPS。Canyon3D拥有两个可以编程的处理单元,其中包括一个64通道流水线的波形处理单元以及一个音频信号处理单元,可以加速超过32个DirectSound3D音频流。Canyon3D最为吸引人的地方在于其对3D音频的支持。它与ESS MAESTRO-2最大的区别,在于真正支持四声道输出,而且与其它的多声道声卡有所不同,它提供了一个可独立控制的低音炮输出接口,同时它还利用Sensaura的MultiDrive技术处理三维音效,以获得包括DS3D、A3D 1.0和EAX在内的多种主流API,在四声道模式下能够提供真正的HRTF回放效果。在立体声模式下,Canyon3D通过三维处理技术加宽的信号频率,可以使用户获得虚拟的环绕声。
评论:ESS Canyon3D音效芯片的CPU占用率很低,而且继承了ESS系列产品兼容性较好的优点,不过美中不足的地方是,它的MIDI合成效果却仍然没有多少改进,连基本的回馈与和声特效也不能表达出来,这一点令人遗憾。
Aureal系列音效芯片
Vortex AU8820
简介:Vortex AU8820拥有48个硬件音频流通道,并具有输出SPDIF的能力,而且Vortex AU8820同时也提供了对DS3D的支持。
评论:在音质方面,Vortex AU8820的表现令人十分满意,基本上都可以达到其所标称的信噪比。在MIDI合成方面,Vortex AU8820芯片提供了兼容DLS的波表合成引擎,硬件复音达32个,另外还可以用软件合成32个复音,但合成后的音质效果一般。在兼容性上,Vortex AU8820的表现还算不错,不过它对CPU的占用率极高。
Vortex2 AU8830
简介:Vortex2 AU8830包含了三百万个晶体管,其硬件处理能力为600MIPS,折算为DSP的话,大约为1200到1800MIPS。Vortex2 AU8830拥有96个硬件音频通道,并可同时渲染76个3D音源。Vortex2 AU8830芯片的内部分为很多个处理单元,通过内部的数流总线(VDB)传送音频流。作为可编程的双总线结构,VDB可以传送多达183个音频流。Vortex AU8830有两个32位复音处理单元,共有64个硬件复音。另外加上256个软件复音,总共可以支持320个复音。
评论:Vortex2 AU8830是Aureal公司所推出的第二款音效芯片,同时也是其绝版的经典之作(此后Aureal便被Creative收购了),可惜Vortex2 AU8830并不是一块DSP,因此主要功能和性能都已固化,无法通过软件升级,这也正是此款芯片的最大不足之处。
声卡流行技术
波表合成技术
波表合成技术,就是指将各种真实乐器所能发出的所有声音录制下来,存储为一个波表文件,在播放时根据MIDI文件所记录的乐曲信息从波表中找出对应的声音信息,进行加工合成后再播放出来。最早出现的波表合成技术都是软波表技术,需要占用较多的系统资源,但发展到了PCI声卡时代之后,硬波表合成技术开始出现。由于PCI总线的传输带宽可达133Mbps,因此可以利用系统主内存代替价格昂贵的专用声音存储器,从而解决了以前ISA声卡中的最大矛盾——音色库存储空间与硬件成本的冲突。与此同时,PCI声卡还采用了一种叫做DLS的技术,靠声卡自己的音频处理芯片对调入内存的音色库进行合成,从而大大降低了CPU的占用率;除此之外,这种音色库还可以随时更新,并利用DLS音色编辑软件进行修改,这是传统波表所无法比拟的。
3D音频技术
3D音频技术是现阶段主流声卡不可或缺的组成部分,对于支持3D音效技术的声卡来说,其声音处理的算法是非常重要的,它往往决定了此款产品的定位和音频效果的好坏。目前不少的音频技术公司和声卡厂商开发出了各种各样的算法和技术,他们一般都有自己专门的编程接口(API)。
Aureal 3D(A3D)
A3D是由Aureal公司开发的一种突破性的互动3D音效技术。A3D是一套基于HRTF算法的3D音效定位技术,基本原理是根据人的头部对不同方位的声音加以频率校正,在虚拟的三维空间中模拟出多个音源,再利用这些音源之间的位置变换,声音强弱来实现音效定位。A3D 1.0技术包含“环绕”和“互动”两部分内容,允许两只普通的音箱或一对耳机,在环绕着听者的三维空间中精确地定位声源。A3D 2.0音效技术支持更多的3D声源、更高的采样率和更大的HRTF过滤器,此外更具有独创的声波追踪技术,其中包括实时声学反射、回音和阻塞渲染。A3D 2.0的声波追踪技术可以分析一个空间的三维几何性状,实时跟踪声波在环境中受到的反射和吸收,这就意味着我们从中可以聆听到更为逼真的音响效果。
DirectSound3D(DS3D)
DirectSound3D也就是人们常说的DS3D技术,它是由Microsoft开发的。DS3D具有强大的扩展能力,同时它还具有多达32个音频文件的指令工具,并且还可以在DS3D API的基础上进行改进和扩充,提供更加丰富的功能,如EAX就是其中一个著名的扩展API。DS3D的作用就在于帮助开发者定义声音在3D空间中的定位和声响,而这一切又是靠与DS3D兼容的声卡用各种算法来实现的。由于Microsoft具有举足轻重的地位,因此DS3D推出后就得到了广泛的应用。
EAX
EAX(环境音效扩展集)是由创新公司开发的,本质上是依附于Direct Sound3D的扩展API,因此要支持EAX就必须支持Direct Sound3D。EAX 1.0的作用很简单,只是为游戏加入3D混响效果,而且用起来很简单,但实时3D混响效果的实现却并不简单,因此除了声卡的处理能力要强之外,还必须有好的算法;EAX 2.0则加入了“声波穿越障碍物”和“声波的衍射现象”等高级环境音效;EAX 3.0在继承前两代产品特性的同时,提还供了更为强大且简单易用的开发工具,包括可以为每一个单独音源做早反射和混响的控制、局限反射群、改进了的距离模型、允许在环境之间动态平滑切换等,并公开了环境的全部参数,使开发和创建特别音效更为容易和直观。
② 独立和集成声卡的问题
一、何谓AC’97
自从威盛(VIA)在其MVP3主板芯片中提出了“AC’97声卡”这个概念,我们便常常在形形色色的主板说明书上见到它,最后也就有了“AC’97软声卡”一说。发展到后来,“AC’97”干脆成了软声卡的代名词。可是如果你去看看某些高档声卡的技术资料,你就会惊讶地发现“该卡采用AC’97标准”,难道高档声卡也是软声卡?要知道这其中的奥妙,还须先认识AC’97规范(或标准)。
1.AC’97的提出
1996年6月,5家PC领域中颇具知名度和权威性的软硬件公司共同提出了一种全新思路的芯片级PC音源结构,也就是我们现在所见的“AC’97”标准(Audio Codec97)。
2.什么是AC’97规范
早期的ISA声卡由于集成度不高,声卡上散布了大量元器件,后来随着技术和工艺水平的发展,出现了单芯片的声卡,只用一块芯片就可以完成声卡所有的功能。但是由于声卡的数字部分和模拟部分集成在一起,很难降低电磁干扰对模拟部分的影响,使得ISA声卡信噪比并不理想。
AC’97标准则提出“双芯片”结构,即将声卡的数字与模拟两部分分开,每个部分单独使用一块芯片。AC’97标准结合了数字处理和模拟处理两方面的优点,一方面减少了由模拟线路转换至数字线路时可能会出现的噪声,营造出了更加纯净的音质;另一方面,将音效处理集成到芯片组后,可以进一步降低成本。
3.AC’97的应用
1997年后,市场上出现的PCI声卡大多数已经开始符合AC’97规范,把模拟部分的电路从声卡芯片中独立出来,成为一块称之为“Audio Codec”(多媒体数字信号编解码器)的小型芯片,而声卡的主芯片即数字部分则成为一块称之为“Digital Control”(数字信号控制器)的大芯片。
由此可见,AC’97并不是某种声卡的代称,而是一种标准。
二、集成声卡中的主流——软声卡
通过上面的介绍,我们知道一块符合AC’97标准的声卡是有“Audio Codec”与“Digital Control”两个芯片的。那么所谓的“AC’97软声卡”是什么意思呢?原来,VIA和INTEL相继在主板芯片组的南桥芯片中加入声卡的功能,通过软件模拟声卡,完成一般声卡上主芯片的功能,音频输出就交给“Audio Codec”芯片完成。所以这类主板上没有那种较大的“Digital Control”芯片,只有一块小小的“Audio Codec”芯片。
下面我们就以一块创新Sound Blaster PCI128 Digital和一款i815E主板为例,来看看普通声卡与AC’97软声卡的区别。
我们很容易在声卡上找到那块比较大的主芯片——“Digital Control”及体积很小的“Audio Codec”,Sound Blaster PCI128 Digital的“Digital Control”芯片型号是“CT5880”。作为声卡上的核心处理芯片,“Digital Control”的作用如同计算机中的CPU,需完成大部分的声卡功能,如WAV回放、MIDI合成、音效处理等,声卡的主要技术参数都取决于它,它是决定声卡档次的重要依据。距离“Digital Control”不远就是“Audio Codec”芯片,别看它小,它比普通DAC(数模转换)芯片能完成更多的功能,包括把模拟信号转换为数字信号的ADC(模数转换),多路模拟信号混合输入及输出等多种功能,跟音响中的数字编码/解码器和前置功放的作用差不多。这里的“Audio Codec”是SigmaTel的STAC9708芯片。
接下来,我们再看i815E主板,在PCI插槽附近有一个“Audio Codec”芯片,此“Audio Codec”采用的是AD1881芯片,最大的特点是兼容性好,使用该芯片的主板非常多)。通过与图3比较,可以看出两块芯片的针脚与封装都是一样的。根据AC’97标准的规定,不同“Audio Codec”芯片之间的引脚兼容,原则上可以互相替换。
由于软声卡没有“Digital Control”芯片,而是采用软件模拟,所以CPU占用率比一般声卡高。如果CPU速度达不到要求或因为驱动软件有问题,就很容易产生爆音,影响音质。
三、集成声卡中的“另类”——硬声卡
由于软声卡有着诸多不足,于是一些主板厂商便想到了另外一个集成声卡的方法——将普通声卡上的“Digital Control”芯片也“搬”到主板上,即把芯片及辅助电路都集成到主板上(这种“集成声卡”其实就是传统意义上的声卡),这样相对于单独的主板和声卡来说,成本降低了很多,而且声音效果在理论上与独立声卡差不多。在这种集成硬声卡主板PCI插槽的附近,你都能找到一块大大的“Digital Control”芯片。
目前集成硬声卡的主板越来越多,常见的芯片有以下几种:
1.CT5880
CT5880是创新公司面向中低端市场的一款主打产品,采用该芯片制成的声卡就是“Sound Blaster PCI128
Digital”。它支持128复音和多音色,16个MIDI通道,并且支持4声道;支持Microsoft DirectSound、DirectSound 3D及其衍生标准。就CT5880的表现而言,能满足绝大部分对声音要求不是很高的用户需求。CT5880是目前使用最多的一款被集成到主板上的音效芯片。
2.CMI8738
CMI8738是****骅讯电子(C-Media)的产品。1999年自行开发出4声道音效芯片CMI8738/4CH,除了具有3D定位功能,同时也提供数字光纤接口,以及支持家庭剧院系统。在CMI8738/4CH的基础上,骅讯又推出了6声道的CMI8738/6CH音效芯片。除具备CMI8738/4CH的所有功能外,该芯片还增加了的6声道的输出功能。它可搭配5.1的6声道或4.1的4声道音箱,配合DVD播放软件构成完整的小型个人家庭剧院系统需昂贵的外部硬件。
注意:CMI8738内置了“Audio Codec”芯片,虽然降低了成本,减少了电路的复杂程度,但不符合AC’97标准,因此信噪比不高,不适合那些注重音质的用户使用。还有,因为CMI8738有多个版本,所以在挑选集成该芯片的主板时,一定要注意芯片的版本号。
3.YAMAHA 744
YAMAHA公司的音效芯片在用户中一直有比较好的口碑,从ISA时代的719到PCI时代的724,都获得了不小的成功。与
YMF724相比,YMF744的功能也得到了较大的改进,其最新版本为YMF744B-V。芯片支持PCI2.2和PC99规范,为128针LQFP封装,支持多声道4扬声器输出,可为用户提供环绕立体声效果。744芯片最大的特点是它的三维音效功能,它完全支持EAX环境音效、Direct
Sound和Direct Sound 3D,并可通过软件运算获得A3D效果。
四、使用集成声卡的注意事项
不管是集成的软声卡,还是硬声卡,由于目前主板在设计上还没有大的突破,所以在实际使用中最容易出现干扰大、有爆音等毛病。因此,要让你的集成声卡有更好的表现,请注意以下几点:
1.驱动程序是关键。驱动程序对于声卡的表现非常重要,特别是软声卡,好的驱动程序往往能使其表现让你刮目相看。对于硬声卡,可以到该芯片的生产商网站下载其最新驱动程序,如CT5880,就可以到创新公司下载“Sound Blaster PCI128 Digital”的驱动程序。
2.关闭某些输入端口。在声卡的音频属性中,将那些用不着的输入端口置于“静音”状态,如“线路输入”、“麦克风输入”等,这样也能减少噪音的干扰(图7图)。
3.尽量不超频。当将系统的外频超到一定程度后,集成声卡就无法正常工作。这是因为机器在非标准外频下工作时,PCI的工作频率也随之提高,而集成声卡是集成在主板上的,其超频性能特别差,所以为了声卡的安全与性能,还是不要超频或者适度超频。
③ 数字处理器2进4出是指什么意思 音箱数字处理器怎么使用,调试
声卡概述
声卡 (Sound Card)也叫音频卡(港台称之为声效卡):声卡是多媒体技术中最基本的组成部分,是实现声波/数字信号相互转换的一种硬件。声卡的基本功能是把来自话筒、磁带、光盘的原始声音信号加以转换,输出到耳机、扬声器、扩音机、录音机等声响设备,或通过音乐设备数字接口(MIDI)使乐器发出美妙的声音。
声卡是计算机进行声音处理的适配器。它有三个基本功能:一是音乐合成发音功能;二是混音器(Mixer)功能和数字声音效果处理器(DSP)功能;三是模拟声音信号的输入和输出功能。声卡处理的声音信息在计算机中以文件的形式存储。声卡工作应有相应的软件支持,包括驱动程序、混频程序(mixer)和CD播放程序等。
多媒体电脑中用来处理声音的接口卡。声卡可以把来自话筒、收录音机、激光唱机等设备的语音、音乐等声音变成数字信号交给电脑处理,并以文件形式存盘,还可以把数字信号还原成为真实的声音输出。声卡尾部的接口从机箱后侧伸出,上面有连接麦克风、音箱、游戏杆和MIDI设备的接口。
[编辑本段]
工作原理
麦克风和喇叭所用的都是模拟信号,而电脑所能处理的都是数字信号,两者不能混用,声卡的作用就是实现两者的转换。从结构上分,声卡可分为模数转换电路和数模转换电路两部分,模数转换电路负责将麦克风等声音输入设备采到的模拟声音信号转换为电脑能处理的数字信号;而数模转换电路负责将电脑使用的数字声音信号转换为喇叭等设备能使用的模拟信号。
[编辑本段]
声卡类型
声卡发展至今,主要分为板卡式、集成式和外置式三种接口类型,以适用不同用户的需求,三种类型的产品各有优缺点。
板卡式:卡式产品是现今市场上的中坚力量,产品涵盖低、中、高各档次,售价从几十元至上千元不等。早期的板卡式产品多为ISA接口,由于此接口总线带宽较低、功能单一、占用系统资源过多,目前已被淘汰;PCI则取代了ISA接口成为目前的主流,它们拥有更好的性能及兼容性,支持即插即用,安装使用都很方便。
集成式:声卡只会影响到电脑的音质,对PC用户较敏感的系统性能并没有什么关系。因此,大多用户对声卡的要求都满足于能用就行,更愿将资金投入到能增强系统性能的部分。虽然板卡式产品的兼容性、易用性及性能都能满足市场需求,但为了追求更为廉价与简便,集成式声卡出现了。
此类产品集成在主板上,具有不占用PCI接口、成本更为低廉、兼容性更好等优势,能够满足普通用户的绝大多数音频需求,自然就受到市场青睐。而且集成声卡的技术也在不断进步,PCI声卡具有的多声道、低CPU占有率等优势也相继出现在集成声卡上,它也由此占据了主导地位,占据了声卡市场的大半壁江山。
外置式声卡:是创新公司独家推出的一个新兴事物,它通过USB接口与PC连接,具有使用方便、便于移动等优势。但这类产品主要应用于特殊环境,如连接笔记本实现更好的音质等。目前市场上的外置声卡并不多,常见的有创新的Extigy、 Digital Music两款,以及MAYA EX、MAYA 5.1 USB等。
三种类型的声卡中,集成式产品价格低廉,技术日趋成熟,占据了较大的市场份额。随着技术进步,这类产品在中低端市场还拥有非常大的前景;PCI声卡将继续成为中高端声卡领域的中坚力量,毕竟独立板卡在设计布线等方面具有优势,更适于音质的发挥;而外置式声卡的优势与成本对于家用PC来说并不明显,仍是一个填补空缺的边缘产品。
集成声卡
集成声卡是指芯片组支持整合的声卡类型,比较常见的是AC'97和HD Audio,使用集成声卡的芯片组的主板就可以在比较低的成本上实现声卡的完整功能。
声卡是一台多媒体电脑的主要设备之一,现在的声卡一般有板载声卡和独立声卡之分。在早期的电脑上并没有板载声卡,电脑要发声必须通过独立声卡来实现。随着主板整合程度的提高以及CPU性能的日益强大,同时主板厂商降低用户采购成本的考虑,板载声卡出现在越来越多的主板中,目前板载声卡几乎成为主板的标准配置了,没有板载声卡的主板反而比较少了。
板载ALC声卡芯片
板载声卡一般有软声卡和硬声卡之分。这里的软硬之分,指的是板载声卡是否具有声卡主处理芯片之分,一般软声卡没有主处理芯片,只有一个解码芯片,通过CPU的运算来代替声卡主处理芯片的作用。而板载硬声卡带有主处理芯片,很多音效处理工作就不再需要CPU参与了。
AC'97
AC'97的全称是Audio CODEC'97,这是一个由英特尔、雅玛哈等多家厂商联合研发并制定的一个音频电路系统标准。它并不是一个实实在在的声卡种类,只是一个标准。目前最新的版本已经达到了2.3。现在市场上能看到的声卡大部分的CODEC都是符合AC'97标准。厂商也习惯用符合CODEC的标准来衡量声卡,因此很多的主板产品,不管采用的何种声卡芯片或声卡类型,都称为AC'97声卡。
HD Audio
HD Audio是High Definition Audio(高保真音频)的缩写,原称Azalia,是Intel与杜比(Dolby)公司合力推出的新一代音频规范。目前主要是Intel 915/925系列芯片组的ICH6系列南桥芯片所采用。
HD Audio的制定是为了取代目前流行的AC’97音频规范,与AC’97有许多共通之处,某种程度上可以说是AC’97的增强版,但并不能向下兼容 AC’97标准。它在AC’97的基础上提供了全新的连接总线,支持更高品质的音频以及更多的功能。与AC’97音频解决方案相类似,HD Audio同样是一种软硬混合的音频规范,集成在ICH6芯片中(除去Codec部分)。与现行的AC’97相比,HD Audio具有数据传输带宽大、音频回放精度高、支持多声道阵列麦克风音频输入、CPU的占用率更低和底层驱动程序可以通用等特点。
特别有意思的是HD Audio有一个非常人性化的设计,HD Audio支持设备感知和接口定义功能,即所有输入输出接口可以自动感应设备接入并给出提示,而且每个接口的功能可以随意设定。该功能不仅能自行判断哪个端口有设备插入,还能为接口定义功能。例如用户将MIC插入音频输出接口,HD Audio便能探测到该接口有设备连接,并且能自动侦测设备类型,将该接口定义为MIC输入接口,改变原接口属性。由此看来,用户连接音箱、耳机和MIC 就像连接USB设备一样简单,在控制面板上点几下鼠标即可完成接口的切换,即便是复杂的多声道音箱,菜鸟级用户也能做到“即插即用”。
[编辑本段]
板载声卡
因为板载软声卡没有声卡主处理芯片,在处理音频数据的时候会占用部分CPU资源,在CPU主频不太高的情况下会略微影响到系统性能。目前CPU主频早已用GHz来进行计算,而音频数据处理量却增加的并不多,相对于以前的CPU而言,CPU资源占用率已经大大降低,对系统性能的影响也微乎其微了,几乎可以忽略。
“音质”问题也是板载软声卡的一大弊病,比较突出的就是信噪比较低,其实这个问题并不是因为板载软声卡对音频处理有缺陷造成的,主要是因为主板制造厂商设计板载声卡时的布线不合理,以及用料做工等方面,过于节约成本造成的。
而对于板载的硬声卡,则基本不存在以上两个问题,其性能基本能接近并达到一般独立声卡,完全可以满足普通家庭用户的需要。
集成声卡最大的优势就是性价比,而且随着声卡驱动程序的不断完善,主板厂商的设计能力的提高,以及板载声卡芯片性能的提高和价格的下降,板载声卡越来越得到用户的认可。
板载声卡的劣势却正是独立声卡的优势,而独立声卡的劣势又正是板载声卡的优势。独立声卡从几十元到几千元有着各种不同的档次,从性能上讲集成声卡完全不输给中低端的独立声卡,在性价比上集成声卡又占尽优势。在中低端市场,在追求性价的用户中,集成声卡是不错的选择。
[编辑本段]
声卡接口
●线性输入接口,标记为“Line In”。Line In端口将品质较好的声音、音乐信号输入,通过计算机的控制将该信号录制成一个 文件。通常该端口用于外接辅助音源,如影碟机、收音机、录像机及VCD回放卡的音频输出。
●线性输出端口,标记为“Line Out”。它用于外接音箱功放或带功放的音箱。
●第二个线性输出端口,一般用于连接四声道以上的后端音箱。
●话筒输入端口,标记为“Mic In”。它用于连接麦克风(话筒),可以将自己的歌声录下来实现基本的“卡拉OK功能”。
●扬声器输出端口,标记为“Speaker”或“SPK”。它用于插外接音箱的音频线插头。
●MIDI及游戏摇杆接口,标记为“MIDI”。几乎所有的声卡上均带有一个游戏摇杆接口来配合模拟飞行、模拟驾驶等游戏软件,这个接口与MIDI乐器接口共用一个15针的D型连接器(高档声卡的MIDI接口可能还有其他形式)。该接口可以配接游戏摇杆、模拟方向盘,也可以连接电子乐器上的MIDI接口,实现MIDI音乐信号的直接传输。
[编辑本段]
声卡厂家
Realtek中国台湾瑞昱,最大的集成声卡厂商
Creative新加坡创新,独立声卡的发明者
Advance Logic:Advance Logic 是一家老资格的音频芯片设计制造商,主攻低端市场,远在ISA世代,就有一款著名的ALS007的音频控制芯片,到了PCI时代,Advance Logic仍旧主攻低端市场,ALS4000便是一款比较著名的芯片,ALS4000功能简单,音质也一般,但价格确很便宜。随着竞争的加剧,Advance Logic在低端市场的份额也遭到AC'97软卡的侵蚀,Advance Logic并没有放弃声卡市场,转而主攻Codec市场,著名的ALC系列Codec就是他们的杰作,Advance Logic扮演了一个很出色的角色,极大的推动了AC'97软卡的音质提升。
傲锐Aureal:在ISA时代,Aureal这个名字并不为人所知,但到了PCI时代,Aureal的名字迅速随着帝盟S90这款声卡传播开来,S90这款声卡获得游戏玩家的广泛赞扬,Aureal也名声大振。S90就是采用的傲锐公司的Vortex AU8820的音频控制芯片。支持A3D 1.0,就是这款S90让很多人接受了3D音效这个概念,虽然最后的果子是创新摘走了,但栽树的是A3D,A3D带来了逼真的3D音效仿真。随后傲锐发布 Vortex-2 AU8830音频控制芯片,支持A3D 2.0,帝盟发布基于这款芯片的MX300声卡,用于和创新Live!系列争夺市场,后来傲锐和帝盟结束了合作关系,不久傲锐被对手创新收购,A3D和傲锐成为历史。
Ensoniq:1997年,Ensoniq可谓出尽风头,Ensoniq是最早开发出 PCI 音频控制芯片的厂商之一,ES1370芯片被众多厂家采用,创新也是Ensoniq的客户之一,ES1370支持32个硬件复音,通过相应的软波表扩充到 64复音,支持2-8M音色库。硬件支持Direct Sound、Direct Sound 3D,以及软件模拟A3D 1.0和EAX,成为当时中档PCI声卡的首选芯片,由于创新需要一个中档次的芯片扩充产品线,Ensoniq不久便被创新收购。Ensoniq发展出的 PCI音频控制芯片一共有三款——ES1370、ES1371、ES1373,音质好,功能少,信噪比出众是Ensoniq系列最大的特点。但是他们也有个显著的缺点,不支持多音频流,好在随着WDM驱动的推出,这些都算不上缺点了。在创新完成收购后,创新也推出了CT5507、CT2518、 CT5880等芯片,著名的中低端声卡PCI128就采用了CT-5880芯片。
E-mu:E-mu是一家实力强劲的音频控制芯片设计商,主要从事音频芯片开发以及合成技术研究,后被创新收购,经典的创新AWE64系列就采用了E-mu的Emu8000芯片,其出色的波表合成能力让听过的人都印象深刻,E-mu的音频控制芯片主要面向高端市场,讲究性能、品质以及功能,开发实力少有对手,是创新最强有力的技术支持。Emu8000有一个衍生版本——Emu8008,是 Emu8000的PCI版本,创新曾经推出过一款AWE64的PCI版本,就是采用的Emu8008,但是市场上非常少见。好在E-mu及时开发出了跨时代的Emu10k1,让创新公司成功推出了SoundBlaster Live!系列。Emu10k1诸多崭新的特征,是一颗可编程的DSP芯片,即时是几年后的今天,也不会觉得这款芯片太落伍,事实上,基于这款芯片的 Live!能够胜任大部分游戏的需求。2001年,Emu再度开发出比Emu10k1更强的芯片,也就是Audigy系列采用的音频控制芯片,这款芯片继承了Emu10k1的所有优点,改善了MIDI等方面的不足,并将运算能力提升4倍,足够满足所有游戏的需求。2002年,创新推出Audigy2。
ESS:在ISA时代,ESS是创新最大的竞争对手,产品线丰富,性价比优秀,当年的 ESS688/1868等都是非常优秀的芯片,良好的兼容性以及低廉的价格受到众多板卡商的青睐,市场占有率极大,是中低端市场的绝对首选。进入PCI时代后,ESS也积极扩展,前后推出了ESS Maestro-I、ESS Maestro-II、ESS Canyon3D等芯片,ESS的兼容性历来口碑甚佳,ESS Maestro-II更是获得了帝盟的青睐,著名的S70声卡就是基于这款芯片,这款芯片有一个简化的版本SOLO-I,主要交给主板商集成用,很少作为独立的声卡芯片使用。Canyon3D是ESS最强的芯片,又被称作Maestro-2e,也是ESS第一款支持多声道的芯片,著名的帝盟MX400声卡正是采用了此款芯片,这款芯片运算能力强大。2001年,ESS 再度发布Canyon3D-2,但是这个时候创新已经垄断市场了,Canyon3D-2没有得到应有的名气和市场,ESS也逐渐在声卡市场消失,这个创新最老的竞争对手,终于也扛不住压力退出竞争了,但ESS这家公司还存在,目前主要扩展消费类电子市场。
骅讯C-Media:台湾骅讯也是一家拥有广泛影响力的厂家,他们推出的CMI- 8338/8738芯片曾经深深的影响了低端市场,CMI系列追求性价比,集成了Codec,降低了成本,还节约了PCB的制造和设计费用,因此这几款芯片往往出现在超低价的独立声卡或者主板上,即便在低廉的价格上,CMI系列还提供了24bit/44.1kHz或48kHz的S/PDIF输入输出的功能,这点做得甚至比某些高端芯片还好。在很多人眼里,CMI是一组非常不值得一提的芯片,事实上并非如此,8338/8738在最基本的功能——输入输出方面做得很好,但是市场上很少有一款像样的8338/8738声卡,但这并不表示8338/8738音质就一定不行,虽然他们的运算能力确实很弱。
雅马哈YAMAHA:雅马哈是日本一家著名的从事交通工具以及电声乐器制造的公司,在ISA时代,雅马哈的719芯片曾经获得极佳口碑。在PCI声卡兴起的时代,他们的产品也曾经大出风头,最著名的有YMF724系列,YMF724系列又有 724B、724C、724E、724F四个版本,724E开始起,YMF芯片兼容性得到很大改善,YMF724系列有着温暖的音色以及非常出色的 MIDI合成能力,性价比也是非常出众,成为当时中端声卡的首选。著名的724声卡有中凌雷公,虽然做工不算优秀,但很多人因此领略了724的魅力。在 724的基础上,雅马哈加入四声道和数字I/O支持以及对3D音效的改良,推出了744系列,可惜的是,744并没有再次刮起724旋风。之后雅马哈发布 YMF754芯片并宣布告别民用声卡领域的竞争。相信很多朋友都记得一个YMF734,雅马哈根本就没有什么YMF734芯片,但当时734声卡多如牛毛,都是用其他芯片,例如前面提到的ALS4000 Remark而来的,这也多少证明了雅马哈家族的口碑是相当好的。
水晶Crystal/Cirrus Logic:Cirrus Logic和Crystal是一家公司,两个名字而已,平时提到的水晶公司就是他们。在这几家芯片商中,技术实力最强大的正是水晶而不是Emu,数一数创新的高档声卡使用了多少水晶的芯片就知道水晶有多强大了。但是这家公司从来就有些吊儿郎当的感觉,做音频控制芯片显得很随意,而且走的是低价路线,很多朋友将水晶芯片和低质低价划等号了,早在ISA时代,水晶的音频控制器被大量用于伪造719声卡,到了PCI时代,也有不少所谓的734声卡是用水晶的音频控制器伪造的。久而久之,水晶的形象受到了很大影响,事实上,那些被用于伪造734的芯片,比雅马哈的芯片还好不少,很有趣的伪造。水晶形象的恢复要多亏傲锐,若不是傲锐希望独家做大,帝盟和Voyetra Turtle Beach就不会离开傲锐,帝盟选择了ESS而Voyetra Turtle Beach选择了水晶,Voyetra Turtle Beach推出了一款让人震撼的Turtle Beach Santa Cruz,在国外评价甚至超过帝盟MX200,而这款芯片是基于水晶CS4630的,后来大力神和德国坦克的加盟,让水晶树立起中端的王者形象,国内的岛谷科技推出基于CS4630的黑金2系列更是推翻了传统的物美价不廉的观念。水晶发布过的音频控制芯片很多,最有影响的是CS46XX系列,硬件SRC让基于这个系列的声卡的音质都相当不错,很轻易的就超过了创新的声卡。DVD方面的优势更是其他芯片厂商望尘莫及的。另外,水晶也是重要的AC‘97 Codec供应商。
Fortemedia:Fortemedia最为著名的是FM801系列,FM801又细分为 FM801AS和FM801AU,在DVD在PC普及的时候,很少有芯片可以支持到6声道系统,创新也没有及时推出6声道的声卡,这给 Fortemedia带来了机遇,也就是这个时候,大量的廉价6声道声卡上市,其中大部分都是基于FM801AU的。FM801AU具备数字I/O功能,号称为DVD音频优化,加上当时的Live!还是面向高端,FM801AU系列获得很大的成功。但好景不长,创新推出了Live!5.1 后,FM801AU逐渐淘汰出市场。
声卡 (Sound Card):声卡是多媒体技术中最基本的组成部分,是实现声波/数字信号相互转换的一种硬件。声卡的基本功能是把来自话筒、磁带、光盘的原始声音信号加以转换,输出到耳机、扬声器、扩音机、录音机等声响设备,或通过音乐设备数字接口(MIDI)使乐器发出美妙的声音。
工作原理:声卡的工作原理其实很简单,我们知道,麦克风和喇叭所用的都是模拟信号,而电脑所能处理的都是数字信号,两者不能混用,声卡的作用就是实现两者的转换。从结构上分,声卡可分为模数转换电路和数模转换电路两部分,模数转换电路负责将麦克风等声音输入设备采到的模拟声音信号转换为电脑能处理的数字信号;而数模转换电路负责将电脑使用的数字声音信号转换为喇叭等设备能使用的模拟信号。
[编辑本段]
声卡发展
世界上第一块声卡——声霸卡,是由新加坡创新公司董事长沈望傅先生发明的。这只声卡在当时引起了一场轰动。有的人认为,这是一个很好的开端,因为PC终于可以“说话”了,并联想到将来多媒体PC的模样。但另有一些人却认为,这只是一场闹剧(因为当时的声卡根本不能够发出很真实的声音)。但是,10年过后,正如前者所预料的,多媒体PC成了现今的标准,每个人都能利用自己的PC来听CD、玩有声游戏、通过Iphone等网络电话来交谈,几乎每一样事情都和PC音频发生关系。现在看起来,PC如果没有了声卡,也就没有了缤纷多彩的多媒体世界。
就在人们对PC音频满怀疑虑的时候,第一张“真正”的声卡出现了,它就是著名的 Soundblaster 16,这块卡之所以名为16,是因为它拥有16位的复音数(是指在回放MIDI时由声卡模拟出所能同时模拟发声的乐器数目),该声卡能较为完美地合成音频效果,具有划时代的意义,我们终于能把烦人的PC喇叭给拆掉了。
第二次重大变革是Soundblaster 64 Gold,这是第一只让人发出惊叹的声卡,采用了EMU8000音频芯片的SB 64 Gold无论是其价格还是性能都让人大吃一惊,原来声卡也可以卖那么贵啊?原来声卡发出的声音也能如此动听!Emu8000芯片破天荒地支持64位复音数(32个是硬件执行,另外32个由Creative开发的软件生成),镀金的接线端子,120db的动态范围,96db的信噪比,相信音质比那时的一些国产CD机还要好!一切都是为了获得最高质量的音响效果而定做的。当然,现在看来,该声卡的缺点还是明显的,一是使用了ISA总线,限制了PC音频系统的发挥,只能实现虚拟的3D音频技术,而且在播放中,由于使用了低带宽的ISA总线,因此在信噪比和保真度方面还有一定的问题;另外就是必须采用板载的“声存”(用来存放音色库的内存),而且这些声卡的内存异常昂贵(其实也不就是普通的DRAM嘛),原来只带了4MB,为了能获得更好的合成效果,许多专业的 MIDI制作人士还是掏钱加上了更多的声存,以存放更好效果的音色库。通过这样的结合,Soundblaster 64 Gold能回放出很悦耳的合成音乐,一度令许多电脑MIDI发烧友为之兴奋。
在这两个发展阶段里,Creative成了老大哥,其他的声卡产品相比起它来就像是绿叶和红花的关系,越发衬托出Soundblaster的伟大。当然,在其他的声卡中也出了几个精品,像Ess logic的ESS688F,Topstar的Als007等,它们都是以极为低廉的价格提供了与Soundblaster 16相近的性能,当年很多兼容机装的都是这两种声卡。在声卡的发展历史上,有代表性的作品几乎都是Creative(创新)公司的产品,由此我们也看出该公司在这方面的领导作用。Creative在声卡界的地位就和CPU界的Intel以及软件业的Microsoft一样,是行业中的标准。
对3D音效的渴求促使了第三次声卡大变革,Soundblaster 64 Gold率先支持了模拟3D音效,但同时由于ISA总线带宽太窄了,限制了声卡的再度发展,因此PCI声卡是注定要诞生的。第一只PCI声卡是S3的 Sonics Vibes,它拥有一个32位复音的波表生成器,支持Microsoft DirectSound和DirectMusic加速。并且附带了SRS 3D音效和Infinipatch downloadable音色库下载标准。同时,它也带来了与DOS环境的极不兼容(那时还有相当一部分人使用DOS操作系统),音频回放时的爆音,回放 MIDI时的噪音和相对拙劣的回放效果,这使得PCI声卡产品成为了一种让人们产生争议的产品。
但随着Soundblaster推出了另一个划时代的巨作Soundblaster Live! 之后(在此之前发布的PCI64、128等声卡是收购了Ensoniq公司后采用它们开发的芯片制作的),人们对PCI声卡的优越性也深信不疑了(看看那个价钱,你当然要相信它是好东西了)。由于采用了PCI总线结构,声卡与系统的连接有了更大的带宽,一些在ISA声卡上没有能力实现的效果,如使用 Downloadable(能够下载)的音色库,更为逼真的3D音效,更好的音质和信噪比等,都把PC音频推向了另一个高峰。在这里,我们要留意,PC音频更新的周期没有CPU和显示卡那么快,它只是一个循序渐进的过程,真的不够用了,才会出现和研发它的改进或替代产品,所以说,投资一个好的PC音频系统是非常值得的,起码不会迅速地被淘汰。
当今PC音频的进一步发展变化将主要体现在以下4个方面:
· ISA声卡向PCI声卡过渡
· 更为逼真的回放效果
· 高质量的3D音效
· 转向USB音频设备
④ AUDIO有关知识
DEFRAGMENT: 整理碎片.整理硬盘上的文件,使它们尽可能连续存放,腾出尽可能多的连续空间.
DETENT: 定位点.一些控制器如声像,均衡旋钮的中心点备有感觉得到的定位点.
DI: Direct Inject的简写,直接注入.信号不经过麦克风直接注入音频链.
DI BOX: DI盒.匹配信号源与磁带录音机或调音台输入之间电平阻抗的设备.
DIGITAL: 数字的.用0和1表示信号数据的电子系统.
DIGITAL DELAY: 数字延迟.发生延迟和回声效果的数字处理器.
DIGITAL REVERB: 数字混响.模仿环境混响的数字处理器.
DIN CONNECTOR: DIN(德国工业标准)接插连接.用于消费市场的多针连接形式,MIDI电缆也使用它.除了MIDI的180度布局,DIN还有多种针脚分布规格.
DIRECT COUPLING: 直接耦合.两个连在一起的电路,交流和直流信号都能够通过.
DITHER: 抖动.一个为数字化音频信号加上低电平噪声的系统,能够扩展低电平的分解度.
DISC: 对塑胶唱片,CD唱片和MiniDiscs的统称.
DISK: Diskette的简写,现在称呼电脑软盘,硬盘和可移动磁盘(光盘)等
DMA: Direct Memory Access(存储器直接访问)的缩写.一部分电脑操作系统允许外围设备不经过CPU直接访问计算机存储器.
DOLBY: 杜比.一种商业应用的编/解码磁带噪声消除系统.录音时扩大低电平的高频信号,放音时还原.杜比有用于半专业机器的B, C和S和用于专业机器的A与SR几种类型,互相不兼容.用一种系统录音必须同一系统回放.
DOS: Disk Operating System(磁盘操作系统)PC电脑或兼容机使用的一种操作系统.
DSP: Digital Signal Processor数字信号处理器.一种强有力的微芯片,用来处理数字信号.
DRIVER: 驱动器.处理主程序和硬件外围如声卡,打印机,扫描仪等之间通讯的软件.
DRUM PAD: 鼓垫.合成的演奏表面,通过鼓槌击打产生电子触发信号.
DRY: 乾.没有加效果的声音.
DUBBING: 配音.在已有的录音上增加更多的材料.
DUCKING: 闪避.用一种音频信号控制另一种音频信号电平的系统.例如一个声音出现时,背景音乐闪避.
DUMP: 倾倒.数字信号从一个设备到另一个设备.系统专用信息的
Sysex mp或Bulk Dump是通过MIDI传输一件乐器或模块的内部的音色,设置等信息,以便存储或编辑.
DYNAMIC MICROPHONE: 动圈话筒.一类靠振膜带动线圈在磁场中运动产生电信号的麦克风
DYNAMIC RANGE: 动态范围.表述的一件设备能处理的最高电平与噪声地板之上最小信号之间的分贝值.
DYNAMICS: 力度.表述乐曲强弱的方法.
EARLY REFLECTIONS: 早期反射.最初从墙面,地面和天花板反射回来,紧跟原声的声音,建立起混响环境.
EFFECT: 效果.处理音频信号的设备,可以创造性的改变声音,经常包括造成混响和回声的延迟电路.
EFFECTS LOOP: 效果环路.允许外部信号处理器接入音频链路的连接系统.
EFFECTS RETURN: 效果返回.调音台额外的输入,连接到效果器的输出.
ELECTRET MICROPHONE: 驻极体麦克凤.一类使用永久充电振膜(不需要极化电压)的电容麦克风.
ENCODE/DECODE: 编码/解码.
ENHANCER: 增强器.利用动态均衡,相位变换和谐波发生等技术使声音变得明亮的设备.
ENVELOPE: 包络.声音的电平随时间而变化的情形.
ENVELOPE GENERATOR: 包络发生器.一个能够发生控制信号描绘出你所希望创建的声音包络的电路,它也能用于控制滤波器或调制设定.最常见的例子是ADSR发生器.
EQUALISER: 均衡器.有选择性的削弱或提升频谱中某些成分的设备.
ERASE: 抹去.从模拟磁带中移去录音素材,或从数字存储媒介中移去记录数据.
EVENT: 事件.在MIDI中用以表述单独的MIDI数据,例如一个音符的开或关,一个控制信息,一个程序变换等.
EXCITER: 激励器.完成合成新高频谐波的工作.
EXPANDER: 扩展器.用来减少低电平信号和增加高电平信号的设备,由此扩大信号的动态范围.
EXPANDER MODULE: 扩展模块.没有键盘的合成器,经常放在机架上.
FADER: 推子.滑动电位器,常用于调音台和其他处理器.
FERRIC: 铁的.一类磁带,使用氧化铁涂复.
FET: Field Effect Transistor的简写,场效应晶体管.
FIGURE-OF-EIGHT: 8字型.描述麦克风前后方向具有相同灵敏度的极性响应,忽略来自侧面的信号.
FILE: 用数字形式存储的一组数据.标准MIDI文件是允许在不同的音序器之间交换信息的统一规格文件.
FILTER: 滤波器.用来强调或削弱规定范围频率的电路.
FLANGING: 凸缘.使用反馈调制的延迟效果,建立一种戏剧性的扫频声音.
FLOPPY DISK: 软盘.使用柔性磁介质制作的计算机磁盘,装在一个塑料保护套中.常见的3.5寸软盘最大容量1.44Mbytes,更早的软盘只有一半容量.
FLUTTER ECHO: 飘动回声.共鸣的回声,声音在两个平行的反射表面之间多次反射造成的效果.
FOLDBACK: 折回.重叠录音中为演奏者送回全部或部分混合信号,又称为提示混合(Cue mix).
FORMANT: 共振峰.一件乐器或人声当中并不随着音高而改变的频率成分或共鸣.例如一把木吉他琴身的共鸣特性并不因为演奏的音符而改变.
FORMAT: 格式化.磁盘给计算机使用前必须进行的准备工作,在磁盘表面做上表示位置的电子记号,以便与数据的读,写.不同的计算机经常有不同的格式化系统.
FRAGMENTATION: 碎片.由于多次存储和删除操作使磁盘上的文件变成不连贯的片断,导致多占用空间和延缓读写操作的不良后果.
FREQUENCY: 频率.1秒钟之间波形重复出现的次数,例如1秒钟出现1次的波形,频率就是1赫(1Hz).
FREQUENCY RESPONSE: 频率响应.一个电气设备或扬声器能够处理的频率范围.
FSK: Frequency Shift Keying频移键控.用2个不同频率的声音构成可以录在磁带上的同步时钟信号.
FUNDAMENTAL: 基频.任何声音由基频加上若干更高的谐波组成.
FX: 效果的简称.
GAIN: 增益.电路对于信号的放大量.
GATE: 门.电子键盘上某个键被按下时发出的电信号,可以用来触发包络发生器和其他需要和键的动作同步的事件.
噪声门.一种电子设备,使很低电平的信号静音,这样来改善被处理信号停顿期间的噪声性能.
GENERAL MIDI: 简称GM.基本MIDI规定的添加部分,确保按照GM格式写作的乐曲有一个最起码的播放环境.规定明确了音色的分类和编号,最少声部和复音数,控制器响应等内容.
GLITCH: 小故障.描述信号短时间的意外中断,或者设备短时间的意外故障.例如DAT磁带突然出现的卡答声.
GM RESET: GM复位.一条通用系统专用信息命令,激活一件设备的GM状态,将全部控制器设置到缺省值,以All Notes Off命令的方式关闭所有正在发音的音符.
GRAPHIC EQUALISER: 图形均衡器.把音频频谱划分成若干较窄的部分,每一段可以用推子控制衰减/提升.推子的位置描绘出均衡曲线,故得名.
GROUND: 地.电气接地或0伏电压.在电源配线中,地线是通过长金属棒与大地作物理连接.
GROUND LOOP: 接地回路.音频电路中由于多重接地点的电位不尽相同(为0),造成可以听见的交流哼声干扰问题.
GROUP: 编组.调音台上被混合的一组信号,分别的推子一同得到控制.在多轨机调音台上各编组可能对应于不同的输入端.
GS: Roland公司自己制定的General MIDI标准.
HARD DISK: 硬盘.大容量计算机存储设备,使用旋转的刚性盘片,外面复有磁性材料.
HARMONIC: 谐波(泛音).复杂波形中的高频成分.
HARMONIC DISTORTION: 谐波失真.增加的谐波并不属于原来的信号.
HEAD: 磁头.磁带机的部件,完成对存储媒介的读/写数据工作.
HEADROOM: 动态余量.信号的最高峰值与一件设备能够处理的绝对最大值之间的分贝数.
HIGH PASS FILTER (HPF): 高通滤波器.一种削弱截止频率以下频率的滤波器.
HISS: "咝"声.由随机的电气波动造成的噪声.
HUM: "嗡"声.信号被增加的低频噪声污染,通常与交流电源所用的频率有关.
Hz: Hertz的简写,赫兹.频率单位.
IC: Integrated Circuit,集成电路.
IMPEDANCE: 阻抗.可以看作"对交流电的电阻",电路中同时包含电阻和电抗成分.
INDUCTOR: 电感.随着频率升高而阻抗变大的元件.
INITIALISE: 初始化.自动恢复一件设备出厂时的默认设置.
INSERT POINT: 插入点.连接器允许外部处理器进入信号通道,对信号进行处理.
INSULATOR: 绝缘体.不导电的材料.
INTERFACE:接口.两件以上设备之间的媒介设备.例如MIDI接口连接计算机和乐器,使它们可以通讯
INTERMITTENT: 间歇.描述偶然出现的故障.
INTERMODULATION DISTORTION: 互调失真.指由放大器所引入的一种输入信号的和及差的失真.例如,在给放大器输入频率为1kHz和5kHz的混合信号后,便会产生6kHz(1kHz和5kHz之和)及4kHz(1kHz和5kHz之差)的互调失真成份.
I/O: 输入/输出,通常用于数字领域.
IPS: Inches Per Second,英寸/每秒,描述带速.
IRQ: Interrupt Request,中断请求.计算机操作系统的一部分,允许连接的设备要求引起处理器的注意,以便传输数据.
ISOPROPYL ALCOHOL: 异丙基酒精.一类酒精,常用于清洁磁头和引导轮.
JACK: 插座.可以是立体声或单声道的.
JARGON: 行话.
k: 1000 (kilo)的简写.例如kHz: 1000Hz ,kOhm: 1000 ohms
LED: Light Emitting Diode的简写,发光二极管.
LCD: Liquid Crystal Display的简写,液晶显示器.
MACHINE HEAD: 吉他调弦机械的另一种称呼.
MEMORY: 记忆.计算机的RAM,用来存放程序和数据.这些数据在关机的时候会丢失,必须另存到磁盘或其他媒介.
MENU: 菜单.计算机或设备显示在窗口供用户选择的目录.
MIC LEVEL: 麦克风电平.麦克风产生的低电平信号,需要放大许多倍才达到线路电平.
MICROPROCESSOR: 微处理器.计算机的心脏.
NON REGISTERED PARAMETER NUMBER: 非注册参数号.MIDI控制器98和99号,可以发送特定合成器的非标准参数,代替一部分系统专用信息.
NON-LINEAR RECORDING: 非线性录音.描述数字录音系统允许录音的任何部分以任意的顺序回放,没有缝隙.相对而言传统的磁带录音是线性录音,因为只能按照录音的次序回放.
NORMALISE: 同Normalize,正常化,标准化.音频编辑时让一段波形的幅度达到最大.在调音台上指插销未插入之前的电路保持原始信号路径.
NYQUIST THEOREM: 奈奎斯特定理.表示数字音频系统的采样频率和可以存贮的最高音频信号之间的关系.认为采样频率必须比所录入的最高音频频率至少高出一倍,否则会产生锯齿状的混淆.
NUT: 弦枕.弦乐器的琴弦从轴箱出来到达指板前经过一个高于指板的木,竹,塑料等制作的小条.
OCTAVE: 八度.频率或音高升高一个八度,它的频率加一倍.
OFF-LINE: 离线,不在回放过程中进行的处理.例如电脑中的一些复杂的编辑,如果实时处理,将对电脑提出过高的要求.
OHM: 欧姆.电阻的单位.
OMNI: 全部.用于麦克风指全部方向具有相同的灵敏度.在MIDI中指全部通道认可的模式.
OPEN CIRCUIT: 开路.电路中断,阻止电流的流动.
OPEN REEL: 开盘.磁带卷绕在轴心而不是盒子内的磁带机.
OPERATING SYSTEM: 操作系统.
OPTO ELECTRONIC DEVICE: 光学电子设备.把电参数变成光强度变化的设备,经常使用各种光敏器件.
OSCILLATOR: 振荡器.发生周期性电波的电路.
OVERDUB: 重叠,配音.为多轨录音增加另外一部分或取代现有部分.
OVERLOAD: 超载.超过了电气或电子电路的操作能力.
PAD: 减少信号电平的阻抗电路.
PAN POT: 声像电位器.调音台上能够改变信号在立体声场左右位置的控制器.
PARALLEL: 并联.2个以上的电路连接,它们的输入端连在一起,输出端也联在一起.
PARAMETER: 参数.对一件设备的某些性能起作用的变量.
PARAMETRIC EQ: 参数均衡.可以分别控制频率,带宽和衰减/提升的均衡器.
PASSIVE: 无源.没有推动成分的电路.
PATCH: 程序的另一种称呼,在合成器中指一个可以用程序变换命令调用的编程声音.效果器中可能是一种效果,采样器中可能是一个采样音色.
PATCH BAY: 配线板.控制台上用于改变输入和输出路径的系统.
PATCH CORD: 配线.配线板使用的短电缆.
PEAK: 峰值.信号电平的最大瞬间.
PHASE: 相位.2个电波之间在时间上的差距
PHASER: 法兹器.联合一个信号与它带有相位差异的拷贝产生的过滤效果,经常用LFO做控制.
PFL: Pre Fade Listen的简写,推子前监听.监听信号与推子位置无关.
PPM: Peak Programme Meter的简写,能够短时间保留信号峰值的电平表
PHANTOM POWER: 幻像电源.通过平衡电缆向电容麦克风提供48V直流电.
PHONO PLUG: 唱机插头,俗称莲花头.RCA开发的Hi-Fi接插件,常用于半专业的不平衡录音设备.
PICKUP: 拾音器.吉他部件,把弦的振动转变为电信号.
PITCH: 音高.音乐界称呼音频频率.
PITCH BEND: 弯音.由弯音轮或弯音杆的运动产生一种变化音高的特定控制信息,可以象其他MIDI控制信息一样记录和编辑.
PITCH SHIFTER: 音高移动.改变音频信号的音高而不改变其长度的设备或软件.
POLYPHONY: 复音.乐器能同时演奏2个或更多音符的能力,一次只能演奏一个音符的称为单音(monophonic).
POLY MODE: 复音模式.当前最常用的MIDI模式,允许一件乐器在一条MIDI通道内同时响应多个音符信息.
PORT: 端口.数据输入或输出连接点.
PORTAMENTO: 滑音.一个琴键按下或一个MIDI音符事件送出时,声音逐渐而不是突然改变音高.
POST PRODUCTION: 后期制作.立体声录音完成后的其他工作.
POWER SUPPLY: 电源.将市电转变到设备使用电压的设备或电路.
POST-FADE: 推子后.辅助信号在推子后面发送,电平受推子控制.
PPQN: Pulsed Per Quarter Note每个四分音符脉冲数,用于MIDI时钟同步信号.
PRE-EMPHASIS: 预加重.利用在处理前提升声音中高频达到减小噪声的效果的系统,在回放端需要有相应的去加重处理恢复信号的原貌.
PRE-FADE: 辅助发送信号在推子之前送出,通道推子对发送电平没有影响,常用于返送和选听混合.
PRESET: 预置.效果器或合成器中用户不能改变的程序.
PRESSURE: 压力.触后的另一种称呼.
PRINT THROUGH: 透印.模拟录音磁带的磁迹转印到临近的磁带上,造成低电平的提前或错后回声.
PROCESSOR: 处理器.处理音频信号改变它的动态或频率内容,常见的处理包括压缩,门电路和均衡等.
PROGRAM CHANGE: 程序变换.MIDI信息,改变合成器音色或效果器效果的命令.
PULSE WAVE: 脉冲波.有点像方波但是不对称,声音比方波明亮而稍薄,常在簧片乐器合成时使用,音色随脉冲和空间的宽度而改变.
PULSE WIDTH MODULATION: 脉冲宽度调制.改变脉冲波信号和空间的比率,能够改变基本音色.脉宽的LFO调制经常用于产生伪合唱效果.
PUNCH IN: 穿入.已经录音的音轨在回放中于准确的时间转入录音状态,以扩展或取代现有的素材.
PUNCH OUT: 穿出.磁带录音机或其他录音设备上的一种转变活动,退出穿孔录音状态.许多多轨机可以在磁带运转过程中执行穿孔录音.
PQ CODING: 为准备制作CD唱片的母带加上停顿,提示等附加信息的处理.
PZM: 压力场麦克风,可以消除录音环境中来自各种表面的多相位反射声.
Q: 滤波器谐振特性的标准.Q值越高,谐振强而通频带窄.
QUANTIZE: 量化.在MIDI音序器中将音符和其他事件排列到用户规定的小拍子上,例如16分音符.量化可以校正时间上的误差,但是过分的量化会使演奏失去人性感觉.
RAM: Random Access Memory的简写.计算机用来临时储存程序和数据的记忆,关断电源的时候记忆将消失.
R-DAT: 使用旋转磁头的DAT录音机.
REAL TIME: 实时.在录/放音过程中进行的音频处理.与实时相对的是"离线",非实时处理.
RELEASE: 释放.电平或增益回复到正常状态的时间.经常用于描述合成器的声音在琴键被放开后声音的消失阶段.
RESISTANCE: 电阻,单位欧姆.
RESOLUTION: 分解度.用数字表现模拟信号时使用的精度,比特数越多对于幅度的描述精度越高.另外还有一些影响精度的因素,高转换精度和高分解度是同样的意思.
RESONANCE: 共鸣,谐振.参见Q.
REVERB: 混响.在有限的空间里声音多次反射产生的声学环境.
RF: Radio Frequency的简写.无线电频率,射频.
RF Interference: 射频干扰.射频虽然不能被人类直接听到,但是射频干扰进入电路被检波后即生成可以听见的杂音.
RIBBON MICROPHONE: 带状麦克风.捕获声音的主要部件是一条悬浮在磁场中的薄金属带,它随声音振动的时候可以发生微小的电流.
ROLL-OFF: 滚降.信号在滤波器截止点以外的减弱比率.
ROM: Read Only Memory的简写.只读存储器.包含永久性非挥发数据的存储器,用户不能改写.操作系统使用的许多数据经常存放在ROM中,断电也不会影响到数据.
E-PROM: (Erasable Programmable Read Only Memory)与ROM相似, 但是芯片中的数据可以通过特别的设备抹去或改写.
RING MODULATOR: 环形调制器.一特别方法接受和处理2个输入信号的设备,输出信号不包含任何原来的信号而代之以2个输入频率之和与差基础上的新频率,可以是悦耳的乐音,也可以是极为刺耳的噪声.用环形调制产生的钟,铃声音非常有名,实际上Ring也暗示了这一点.
RMS: (Root Mean Square) 均方根值.一件电气设备在连续正弦波条件下的性能测试方法.
SAFETY COPY: 安全拷贝.原始录音磁带的拷贝或克隆,防备原始磁带丢失或损坏.
SAMPLE: 采样.使用A/D转换器每秒若干次(CD唱片为44.1kHz)对信号幅度瞬间测量.
样本:数字化的声音,在采样器或一些合成器中用作音乐声源
SAMPLE RATE: 采样率.A/D转换器每秒转换次数.
SAMPLE AND HOLD: 采样和保持.定期对一个随机值进行监测并用来控制其它功能,在老的模拟合成器中用来记忆弹奏过的音符.
SCSI: (发音如SKUZZY) Small Computer Systems Interface(小型机系统接口)的简写.一个用于硬盘,扫描仪,CD-ROM驱动器等计算机外围的接口系统,每个设备有自己的识别号(ID),同一个链路中不能出现2个相同的识别号.SCSI链路的最后一个设备是终端器,无论内置或外部,不可缺少.
SESSION TAPE: 录音棚收录的原始录音磁带.
SEQUENCER: 音序器.记录和回放数据的MIDI设备,通常为多轨格式,可以逐轨构成复杂的作品.
SHORT CIRCUIT: 短路.电流的低阻抗通路,一般形容电路发生故障引起的电流剧增.
SIBILANCE: 声乐录音中的高频哨声或齿音,也可能由于劣质麦克风或过分的均衡引起.
SIDE CHAIN: 旁链.按比例从主电路分出一部分信号另行处理.压缩器用旁链信号驱动它的控制信号.
SIGNAL: 信号.声音等输入的电子描述.
SIGNAL CHAIN: 信号链.一个系统中信号从输入到输出的路径.
SIGNAL-TO-NOISE RATIO: 信噪比.最大信号电平与剩余的噪声之比率,用dB表示.
SINE WAVE: 正弦波.没有谐波的纯净波形.
SINGLE ENDED NOISE REDUCTION: 信号末端噪声降低.一种不需要像Dolby或dbx一样预先编码的降噪设备.
SLAVE: 从属的.在主设备控制下的设备.
SMPTE: 电影工业开发的时间码,现在广泛用于音乐和录音.SMPTE为建立在时,分,秒,帧基础之上的实时编码,与音乐的速度,小节不同.
SOUND ON SOUND: 声上声.早期录音界使用的伪多轨技术.同时又是欧洲最有名的音乐录音杂志的名字.
S/PDIF:"Sony/Philips Digital InterFace"的简写.也被称为IEC958 (type-2),EIAJ CP-340 (type-2)现在又称CP-1201.S/PDIF与专业标准AES-EBU非常相像,通
常使用16或20-bit数据,除了音频数据,其他信息如音轨开始标记,资料辨认信息和时间数据也可以同时传输.电气接口使用不平衡RCA式,源阻抗75欧,信号频率在0.1 to 6MHz,要求使用高质量75-Ohm同轴电缆,信号幅度0.5V peak-to-peak决定了传输距离不大于10米.另有光学版本的S/PDIF,称为"TOSLink",传输与IEC958同样的信号,可以避免电磁干扰,但低质量的光纤同样能使传输不稳定和数据出错.
SPL: Sound Pressure Level声压电平,以dB为单位.
SPP: Song Position Pointer (MIDI)乐曲位置指针
STANDARD MIDI FILE: 标准MIDI文件.标准文件格式,允许文件在不同的音序器和MIDI文件播放器之间传送.
STEP TIME: 步长.非实时编写音序每一步的时值.
STEREO: 立体声.2通道系统分送左,右扬声器.
STRIPE: 条纹.称呼在多轨机上录时间码的操作.
SQUARE WAVE: 方波.对称的矩形波,包含大量奇次谐波.
SAWTOOTH WAVE: 锯齿波.波形类似锯齿而得名,包含奇次和偶次谐波.
SUB BASS: 超低音.低频率的监听扬声器.有人定义超低音是身体比耳朵感受更多的频率.
SUBCODE: CD和DAT中隐藏的数据,包括绝对时间位置,轨数,总运行时间等.
SUBTRACTIVE SYNTHESIS: 减法合成.一种处理,用过滤和成型技术处理复杂的波形得到新的声音.
SURGE: 浪涌.市电电压突然升高.
SUSTAIN: 保持.ADSR包络的一部分,在此阶段声音保持稳定直到琴键被放开 进入释放部分.踏板使声音慢慢衰退.
SWEET SPOT: 最佳听音点.对于麦克风或音箱前听音者的最佳位置.
SWITCHING POWER SUPPLY: 开关电源.高频振荡后变压,变压器可以做得很小很轻.计算机和一些合成器使用这样的电源.
SYNC: 同步.使2件或更多设备同步运行的系统.
SYNTHESIZER: 合成器.电子乐器,用来创造范围宽广从模仿到抽象的声音.
TAPE HEAD: 录放磁头.磁带录音机的部件,在录/放过程中做电-磁或磁-电变换.
TEMPO: 速度.每分钟的拍子数.
TEST TONE: 测试音.多轨机或立体录音机使用的具有稳定电平的参考信号.
THD: Total Harmonic Distortion总谐波失真
THRU: MIDI插座,传递MIDI in接受到的信号.
TIMBRE: 音色.
TOSLINK: 参见 "S/PDIF".
TRACK: 轨.多轨机上"轨"的概念是录音材料上沿着磁带方向具体的一条.
TRACKING: 跟踪.在MIDI领域经常指吉他拾音器的MIDI输出紧跟琴弦音高变化.
TRANSPARENCY: 透明.对音质的主观评价,指高频细节清晰,分别的声音容易区分.
TREMOLO: 振音.使用LFO对声音进行幅度调制.
TRANSDUCER: 变换器.使能量从一种形式转变到另一种形式.麦克风就是把机械能转变成电能的例子.
TRANSPOSE: 移调.把音乐信号以半音为单位上下移动.
TRIANGLE WAVE: 三角波.对称的三角形波,只包含奇次波,但是比方波多一些低的谐波.
TRS JACK: Tip, Ring,Sleeve俗称"大三芯",立体声接插件.
TRUSS ROD: 吉他琴颈内的金属棒,能抵消琴弦的张力.
UNBALANCED: 不平衡.用2条导线的信号连接,经常是热端(或+极)在内;冷端(或-极)围绕在外层形成屏蔽.
UNISON: 齐奏.2件或更多不同的乐器演奏同样的旋律.
USB: (Universal Serial Buss) 高速串行通讯规定,理论上可以用菊花链连接127个外围,允许热插拔设备并且不需要再启动计算机.当前已经有许多打印机,扫描仪等使USB用连接.
⑤ 雅马哈电子琴310内部电路名称
多谐振荡器电路。以时基电路为核心,通过改变两组琴键开关的通断,来改变音调和音符。音调主要由声音的频率决定,乐音(复音)的音调更复杂些,一般可认为主要由基音的频率来决定。
⑥ 用单片机做电子琴,复音(合音)怎么实现
解析MIDI电子琴的设计用单片机是如何实现的
摘要:用单片机控制通用MIDI音源模块制作制作出的电子琴,结构简单,可靠性高,并且价格低廉,具有实用的价值。这种电子琴能够支持单音和复音弹奏,如果与高品质的音源芯片连接,音质更可与高档电子琴相媲美。我们在实验过程中,也曾采用手机中通用的音乐芯片构成音源模块,效果不错,价格更低廉,如韩国产的QS6400 等,这些芯片的驱动要复杂一些,需要对芯片进行初始化设置,详细内容可参看国防工业出版社出版的《MIDI原理与开发应用》一书中的相关章节。
关键字:电子琴,单片机,音源板,MD2064
1、电子琴的硬件设计方案
本电子琴包含48个按键键盘,即具有4个8度的音域,单片机AT89C51通过对所弹按键的识别,产生相应的MIDI消息。它支持单音弹奏和最多16个复音弹奏。电子琴结构示意图和电路原理图分别如图1和图2所示。AT89C51作为主控芯片,它使得键盘矩阵模块、通道和音色选择以及串口发送等各功能模块协调工作。48按键行列式键盘矩阵构成MIDI电子琴的键盘扫描输入端,由于89C51的P0口内部没有上拉电阻,故这里采用电阻R14——R21将列线拉至高电平,与六条行线组合完成48个琴键的扫描识别,在图1中,单片机与键盘矩阵间的双箭头线表示单片机在扫描键盘矩阵时,P0口和P2口分别作为输入/输出口使用。人机接口电路则利用了单片机P1口的大部分口线,并通过或门向INT0发出中断请求,该部分电路主要完成MIDI电子琴的通道设置和音色选择等人机交互功能。键盘的弹奏信息以及通道、音色信息经CPU处理后,由串口将标准的MIDI数据发送给MIDI音源及放大器,推动扬声器发声。
图1:MIDI电子琴结构示意图
图2:MIDI电子琴电路图
音源模块采用MD2064 套板,如图3所示。它是一种模块化的MIDI音源产品,由得理电子公司开发,具有标准MIDI接口,该板能接受标准GM MIDI命令进行音乐播放,自带3D, REVERB, CHORUS等效果处理。由于该套板的MIDI 接口采用了光耦合器,电流驱动,故设计了由Q1、Q2等器件组成的驱动电路,使单片机串口数据得以正常传输。在模块的耳机输出端取得信号后,经小功率放大即可推动扬声器发声。
2、电子琴的软件设计特点
该电子琴软件采用模块化设计方法,程序也较简单。软件中各功能模块都由相应的子程序完成,主要包含通道选择模块,音色选择模块,48按键键盘扫描模块,串口发送模块等,其中为了及时完成用户命令,音色选择模块采用了中断服务子程序,可以在演奏中快速响应使用者的请求。
主程序在完成串口初始化、相关变量的初始化以及设置通道后,即进入键盘扫描、发送音符消息流程,为了使按键识别准确可靠,还设置了两个缓冲区BUFF1和BUFF2保存键盘扫描值。主程序流程图如图3。
图3:MIDI电子琴程序的流程图
以下是部分功能模块的程序设计介绍。
2.1 音色选择模块的设计
该模块的功能是使MIDI电子琴能按要求快速改变音色,所以采用了中断服务子程序。当某个音色选择按键压下时,通过或门向单片机的INT0发出中断请求,CPU响应后进入该中断服务子程序。MIDI技术规范规定,标准MIDI含有128种音色,它们的编号范围是0~127,为了能够快速找到所需音色,硬件中设置3个按键,其中2个用于音色编号的单步增加和减小,每次增加或减小1个音色编号,另外一个键用于音色快进,当快进键有效时,每次增加8个音色编号,选择增加8个音色的原因是:标准MIDI的128种音色是按每8个音色一组编排的,共包含16个乐器组。电子琴开机时默认的音色编号是0,即大钢琴音色。
单片机的P1.2口线连接着音色增加按键,P1.3则连接音色减小按键,P1.4连接音色快进键。低电平时按键有效,这三个按键通过与门连接外部中断INT0,以便实时响应音色设置。该外部中断0的中断服务子程序流程图见图4,(图中省去了按键延时去抖动部分):
图4:音色改变子程序流程图
在该子程序中,变量TAMBER中存放当前音色,其值可在0~127间循环,当TAMBER是最大值127时,加1后又变为0;而当TAMBER为0时,减1则变为127;在边界范围加8取模后,刚好为其对应的音色值。
2.2 串口发送模块
串口发送模块主要用于发送产生的MIDI消息,串口采用的模式1,发送的波特率是31.25KBPS。串口通过驱动电路连接MIDI音源,发送MIDI消息。通道号存放在变量CHANNEL中,通过与90H相与,所得值就是当前所设置的通道号。
2.3 键盘扫描模块
本电子琴提供了48个MIDI按键,即4个8度音的音域范围,当按下单个键时,产生一条MIDI消息,当按下多个键值时产生对应键值的多条MIDI音符开消息,当某个键值被释放时,发送对应的音符关消息。这些MIDI消息通过串口发送给MIDI音源,产生MIDI音乐。音乐的时值由按键的时间长度控制,当按键被释放,实时产生MIDI消息,关闭被释放的键值音。
由P0口和P2口的P2.0~P2.5构成行列式键盘,也可继续扩展键盘,例如改为常用的49键或64键。因为支持复音按键,键盘扫描程序必须扫描到行列式键盘的每个键值,扫描所得的键值存放在缓冲区BUFF1或BUFF2中。键盘扫描程序获得的键盘编号范围是0~47,还需将这个键盘编号值转换为MIDI设备能够识别的钢琴键盘编号,这个功能由一个子程序来完成,限于篇幅本文不再详述。键盘扫描子程序流程如图5。
图5:键盘扫描子程序
⑦ S/PDIF声卡好不好 和不是S/PDIF的声卡从音质上有什么变化
因素:
1、音乐文件的质量——倘若你播放的是一段老式收音机的录音,再好的设备和软件也不可能将它播放成优美的声音。
====================================================================
2、声卡的好坏——声卡是整个电脑发声系统的音源,它的质量好坏直接影响。声卡的主要技术指标有:
1、S/PDIF
S/PDIF是SONY、PHILIPS家用数字音频接口的简称,可以传输PCM流和Dolby Digital、dts这类环绕声压缩音频信号,所以在声卡上添加S/PDIF功能的最重大意义就在于让电脑声卡具备更加强大的设备扩展能力。S/PDIF技术应用在声卡上的表现即是声卡提供了S/PDIF In、S/PDIF Out接口,如果有数字解码器或者带有数字音频解码的音箱,你就可以使用S/PDIF接口作为数码音频输出,使用外置的DAC(Digital-Analog Converter:数字→模拟转换器,简称数模转换器)进行解码,以达到更好的音质。
S/PDIF接口一般有两种,一种是RCA同轴接口,另一种是TOSLINK光缆接口。其中RCA接口(是非标准的,它的优点是阻抗恒定、有较宽的传输带宽。在国际标准中,S/PDIF需要BNC接口75欧姆电缆传输,然而很多厂商由于各种原因频频使用RCA接口甚至使用3.5mm的小型立体声接口进行S/PDIF传输。
在多媒体声卡上,S/PDIF分为输出和输入两种形式,也就是通常所说的S/PDIF OUT和S/PDIF IN。声卡的S/PDIF OUT主要功能是将来自电脑的数字音频信号传输到各种外接设备。在目前的主流产品中,S/PDIF OUT功能已经非常普及,通常以同轴或者光纤接口的方式做在声卡主卡或者数字子卡上。而S/PDIF IN在声卡中主要功能则是接收来自其它设备的PCM信号,最典型的应用就是CD唱片的数字播放。虽然所有CD-ROM都具有CD播放能力,但效果有优劣之分。主要原因在于CD-ROM所采用的DAC品质不同,从而造成了效果上的差异。但如果你的声卡上拥有一个两针的S/PDIF IN插口,那么就可以通过一条两芯的数字CD信号传输线连接到CD-ROM的Audio Digital Out接口。这样当播放CD唱片的时候,CD上的PCM信号就不经过DAC,而直接被输出到声卡上,随后再由声卡进行D/A转换或者通过S/PDIF OUT输出。一般声卡CODEC芯片的D/A转换品质总是好过CD-ROM上的DAC,因此通过S/PDIF技术,CD播放质量就被有效提高了。
2、采样位数与采样频率
音频信号是连续的模拟信号,而电脑处理的却只能是数字信号。因此,电脑要对音频信号进行处理,首先必须进行模/数(A/D)的转换。这个转换过程实际上就是对音频信号的采样和量化过程,即把时间上连续的模拟信号转变为时间上不连续的数字信号,只要在连续量上等间隔的取足够多的点,就能逼真地模拟出原来的连续量。这个“取点”的过程我们称为采样(sampling),采样精度越高(“取点”越多)数字声音越逼真。其中信号幅度(电压值)方向采样精度,我们称之为采样位数(sampling resolution),时间方向的采样精度称为采样频率(sampling frequency)。
采样位数指的是每个采样点所代表音频信号的幅度。8bit的位数可以描述256种状态,而16bit则可以表示65536种状态。对于同一信号幅度而言,使用16bit的量化级来描述自然要比使用8bit来描述精确得多。其情形就尤如使用毫米为单位进行度量要比使用厘米为单位要精确一样。一般来说采样位数越高,声音就越清析。
采样频率是指每秒钟对音频信号的采样次数。单位时间内采样次数越多,即采样频率越高,数字信号就越接近原声。采样频率只要达到信号最高频率的两倍,就能精确描述被采样的信号。一般来说,人耳的听力范围在20hz到20Khz之间,因此,只要采样频率达到20Khz×2=40Khz时,就可以满足人们的要求。现时大多数声卡的采样频率都已达到44.1或48Khz,即达到所谓的CD音质水平了。
3、复音数
在各类声卡的命名中,我们经常会发现诸如64、128之类的数字。有些用户乃至商家将它们误认为是64位、128位声卡,是代表采样位数。其实64、128代表的只是此卡在MIDI合成时可以达到的最大复音数。所谓"复音"是指MIDI乐曲在一秒钟内发出的最大声音数目。波表支持的复音值如果太小,一些比较复杂的MIDI乐曲在合成时就会出现某些声部被丢失的情况,直接影响到播放效果。复音越多,音效越逼真,但这与采样位数无关,如今的波表声卡可以提供128以上的复音值。
另外需要注意的是"硬件支持复音"和"软件支持复音"之间的区别。所谓"硬件支持复音"是指其所有的复音数都由声卡芯片所生成,而"软件支持复音"则是在"硬件复音"的基础上以软件合成的方法,加大复音数,但这是需要CPU来带动的。眼下主流声卡所支持的最大硬件复音为64,而软件复音则可高达1024。
4、动态范围
动态范围指当声音的增益发生瞬间态突变,也就是当音量骤然或突然毫米波时,设备所有名承受的最大变化范围。这个数值越大,则表示声卡的动态范围越广,就越能表现出作品的情绪和起伏。一般声卡的动态范围在85dB左右,能够做到90dB以上动态范围的声卡是非常好的声卡了。
5、Wave音效与MIDI音乐
WAVE音效合成与MIDI音乐的合成是声卡最主要的功能。其中WAVE音效合成是由声卡的ADC模数转换器和DAC数模转换器来完成的。模拟音频信号经ADC转换后为数字音频后,以文件形式存放在磁盘等介质上,就成为声音文件。这类文件我们称之为wave form文件,通常以.wav为扩展名,因此也称为wav文件。WAVE音效可以逼真地模拟出自然界的各种声音效果。可惜的是wav文件需要占用很大的贮存空间,也正是这个缺点,造就了MP3的成长。
MIDI,即乐器数字化接口,是一种用于电脑与电子乐器之间进行数据交换的通信标准。MIDI文件(通常以.mid为文件扩展名)记录了用于合成MIDI音乐的各种控制指令,包括发声乐器、所用通道、音量大小等。由于MIDI文件本身不包含任何数字音频信号,因而所占的贮存空间比wav文件要小得多。MIDI文件回放需要通过声卡的MIDI合成器合成为不同的声音,而合成的方式有FM(调频)与Wave table(波表)两种。 大多数廉价的声卡都采用的FM合成方式,FM合成是通过振荡器产生正弦波,然后再叠加成各种乐器的波形。由于振荡器成本较高,即使是OPL3这类高档的FM合成器也只提供了4个振荡器,仅能产生20种复音,所以发出音乐听起来生硬呆板,带有明显的人工合成色彩。与FM合成不同,波表合成是采用真实的声音样本进行回放。声音样本记录了各种真实乐器的波形采样,并保存在声卡上的ROM或RAM中(要分辨一块声卡是否波表声卡,只需看卡上有没有ROM或RAM存储器即可)。目前中高档声卡大都采用了波表合成技术。
6、输出信噪比
“输出信噪比”是衡量声卡音质的一个重要因素,其概念为——输出信号电压与同时输出的噪音电压的比例,单位是分贝。这个数值越大,代表输出时信号中被掺入的噪音越小,音质就越纯净。声卡作为电脑的主要输出音源,对信噪比要求是相对较高的。由于声音通过声卡输出,需要通过一系列复杂的处理,所以决定一块声卡信噪比大小的因素也有很多。由于计算机内部的电磁辐射干扰很严重,所以集成声卡的信噪比很难做到很高,一般其的信噪比在80dB左右。PCI声卡一般拥有较高的信噪比(大多数可以轻易达到90dB),有的高达195dB以上。较高的信噪比保证了声音输出时的音色更纯,可以将杂音减少到最低限度。而音色的好坏则取决于产品所选用的音效芯片和卡的做工。如果可能的话,购买声卡前最好先进行试听,如果实在没有得试听的话,可以多留意周围媒体对它的评价,或许对你的选购有一些帮助。
7、API接口
API就是是编程接口的意思,其中包含了许多关于声音定位与处理的指令与规范。它的性能将直接影响三维音效的表现力,主要有下面几种:
(1)Direct Sound 3D
Direct Sound 3D,是微软公司提出的3D效果定位技术,它最大特点就是硬件无关性,在声卡出现初期,许多声卡芯片没有自己的硬件3D音效处理能力,都是使用这种Direct Sound 3D来模拟出立体声。它所产生的效果均由CPU通过即时运算产生,比较耗费CPU资源,所以,此后推出的声卡都拥有了一个所谓的“硬件支持DS3D”能力。如果你在选购声卡时听销售商说声卡支持D3D多么好的话,千万不要就轻信这是一块好声卡,其实际听觉效果要看声卡自身采用的HRTF算法能力的强弱而定。
(2)A3D
A3D是Aureal公司开发的一项专利技术。它是在Direct Sound 3D的API接口基础上发展起来的。A3D最大特点是能以精确定位(Positional)的3D音效增加新一代游戏软件交互的真实感,这就是通常所说的3D定位技术。A3D目前有1.0、2.0和A3D3.0三个版本。1.0版包括A3D Surround和A3D Interactive两大应用领域,特别强调在立体声硬件环境下就可以得到真实的声场模拟,A3D 1.0中同时间内只能处理8个音源,取样频率是22kHz,AUREAL声卡中的AU8820芯片使用的就是这种技术。2.0则是在1.0基础上加入了声波追踪技术,进一步加强了性能,A3D 2.0同时则可以处理16个音源,取样频率已达48kHz,它是当今定位效果最好的3D音频技术之一,AU8830芯片就支持这种技术。至于3.0版本早就被提出了,不过由于Aureal公司已经被创新收购,A3D3.0的前途还是个未知数。由于Aureal的A3D技术在3D定位及交互性声音处理(这是两大关键部分)方面具有优势,加之支持Direct Sound 3D硬件加速,因而很多游戏开发商都是基于A3D进行3D游戏开发的。不过由于实现起来成本颇高,因而并不是每块PCI声卡都支持该技术。
(3)A3D Surround A3D Surround吸收了A3D技术和环绕声解码技术(如Dolby的 ProLogic和AC-3)之精华,突出特点是只使用两只普通音箱(或一副耳机)在环绕三维空间中,进行声音的精确定位(也就是说可产生与五个“虚拟音箱”相同的效果)。当然,这五组音频流并不像传统的“家庭影院”那样需要用5个实际的音箱进行回放,它实际上只是经过A3D Surround处理后用两个音箱播放出来的。这一技术被杜比实验室授予“Virtual Dolby”认证。
(4)EAX
EAX是由创新公司在其SB LIVE!系列声卡中提出的标准,全名为Environmental Audio Extension,即环境音效。EAX是建立在DS3D上的,只是在后者的基础上增加了几种独有的声音效果命令。EAX的特点是着重对各种声音在不同环境条件下的变化和表现进行渲染,但对声音的定位能力不如A3D,EAX建议用户配备4声道环绕音箱系统。现在支持EAX2的主要就是EMU10K1和MU10K2芯片,它们分别为创新著名的SB Live!和Audigy系列声卡所采用,该芯片同时还支持A3D1、HRTF等技术,是目前流行兼容声卡中的精品。 注:目前,A3D和EAX是API接口中的两大流派,你在购买的时候,最好弄清楚选择的声卡支持哪些音效,所支持的版本是多少,是软件模拟还是硬件支持,这些都是十分关键的。
8、HRTF HRTF是Head Related Transfer Function的缩写,中文意思是“头部对应传输功能”,它也是实现三维音效比较重要的一个因素。简单讲,HRTF是一种音效定位算法,它的实际作用在于用数字和算法欺骗我们的耳朵,使我们认为自己处了一个真实的声音环境中。3D定位是通过声卡芯片采用的HRTF算法实现的,定位效果也是由HRTF算法决定的。象Aureal和Creative这样的大公司,他们既能够开发出强大指令集规范,同时也可以开发出先进的HRTF算法并集成在自己的芯片中。当然也有一些厂商专门出售或者为声卡订定各种各样的HRTF算法,比较有名的就要算Sensaura 3D和Qsound。Sensaura 3D是由CRT公司提供的。Sensaura,支持包括A3D 1.0和EAX、DS3D在内的大部分主流3D音频API,此技术主要运用于ESS、YAMAHA和CMI的声卡芯片上。而QSound开发的Q3D,主要包括三个部分,第一部分是3D音效和听觉环境模型,第二部分是立体音乐加强,第三个部分是虚拟的环境音效,可以提供一个与EAX相仿的环境模拟功能,但效果还比较单一,与Sensaura大而全的性能指标相比稍逊一筹。此外C-MEDIA在CMI8738上则使用自己的HRTF算法,称为C3DX,支持EAX和DS3D,实际效果很一般。
9、IAS IAS是Interactive Around-Sound的缩写,它是 EAR(Extreme Audio Reality)公司在开发者和硬件厂商的协助下开发出来的专利音频技术,该技术可以满足测试系统硬件、管理所有的音效平台的需求。开发者只需写一套音效代码,所有基于Windows 95/98/2000的音频硬件将通过同样的编程接口来获得支持。IAS为音效设计者管理所有的音效资源,提供了DS3D(Direct Sound 3D)支持。此外,它的音效输出引擎会自动配置最佳的3D音频解决方案,其中有四信道模式的声卡将是首要的目标。而DS3D 可以在现有的双喇叭平台上获得支持。
10、ASIO
ASIO是Audio Stream Input Output的缩写,可翻译为“音频流输入/输出”的意思。通常这是专业声卡或高档音频工作站才会具备的性能。采用ASIO技术可以减少系统对音频流信号的延迟,增强声卡硬件的音频处理能力。同样一块声卡,假设使用 MME 驱动时的延迟时间为750毫秒,那么当换成ASIO驱动后延迟量就有可能会降低到40毫秒以下。但是并非所有的声卡都能够支持ASIO。ASIO不仅定义驱动标准,还必须要求声卡主芯片的硬件支持才能够得以实现。只有那些价格高贵的专业声卡,在设计中才会考虑到对ASIO的支持。我们常所用的声卡,包括创新过去的SB Live!系列都属于民用卡的范畴,没有配备了ASIO驱动的。不过创新SoundBlaster Audigy已经开始全面支持ASIO技术。
注:SB Live!的主芯片EMU10K1本身支持ASIO,只是这一性能并未在创新自带的LiveWare! 3.0驱动中体现出来。因此,当你将SB Live!的驱动程序换成采用同样规格设计的E_mu APS录音卡的驱动后,音频处理软件就会报告说找到ASIO!另外CMI8738本身也是具备ASIO的潜质,只不过至今还没有合适的驱动将其发挥出来。
11、AC-3
AC-3是完全数字式的编码信号,所以正式英文名为“Dolby Digital”,是由著名的美国杜比实验室(Dolby Laboratories)。Dolby的一个环绕声标准。AC-3规定了6个相互独立的声轨,分别是——前置两声道,后置环绕两声道,一个中置声道和一个低音增强声道。其中前置、环绕和中置五个声道建议为全频带扬声器,低音炮负责传送低与80Hz的超重低音。早期的AC-3最高只能支持5.1声道,在经过不断的升级改进,目前AC-3的6.1 EX系统增加了后部环绕中置的设计,让用户可以体验到更加精准的定位。
对于AC-3,目前通过硬件解码和软件解码这两种方式实现。硬件解码是通过支持AC-3信号传输声卡中的解码器,将声间进行5.1声道分离后通过5.1音箱输出。软件解码就是通过软件来进行解码的,(如DVD播放软件WinDVD、PowerDVD都可以支持AC-3解码,当然声卡也必须支持模拟六声道输出。),不过这种工作方式比较大的缺陷在于解码运算需要通过CPU来完成,会增加了系统负担,而且软解码的定位能力依然较逊色,声场相对较散。
虽然软件模拟AC-3存在着缺陷,其成本相对低廉,目前中低档的声卡大都是使用这种方式。
12、DLS技术
DLS全称为"Down Loadable Sample",意为“可供下载的采样音色库”。其原理与软波表颇有异曲同工之处,也是将音色库存贮在硬盘中,待播放时调入系统内存。但不同点在于运用DLS技术后,合成MIDI时并不利用CPU来运算,而依靠声卡自己的音频处理芯片进行合成。其中原因在于PCI声卡的数据宽带达到133Mb/秒,大大加宽了系统内存与声卡之间的传输通道,PCI声卡就可使用先进的DLS技术,将波表音色储存于硬盘中,通过声卡芯片处理,在播放MIDI时调入内存。从而既免去了传统ISA波表声卡所要配备的音色库内存,又大大降低了播放MIDI时的CPU占用率。这样不但提供了良好的MIDI合成效果又可免去ISA波表声卡上必须配备的音色库内存,而且这种波表库可以随时更新,并利用DLS音色编辑软件进行修改,这都是传统波表所无法比拟的优势。
13、SB1394标准
SB1394是创新公司为达到高速数字音频传送(约400Mbps)所提出的IEEE1394兼容标准。创新的SB1394标准保证通过SB1394连接的1394接口设备可发挥最大效能,传输速度高达400Mbps,使主机与外设之间大文件的高速传送成为可能。Sound Blaster Audigy2声卡就内置SB1394,可通过IEEE 1394标准接口外接设备如DV摄象机等,并可连接63台电脑进行低延迟的联网游戏。
====================================================================
3、音响系统的质量,包括功率放大器、音响等等。
音响系统整体技术指标性能的优劣,取决于每一个单元自身性能的好坏,如果系统中的每一个单元的技术指标都较高,那么系统整体的技术指标则很好。其技术指标主要有六项:频率响应、信噪比、动态范围、失真度、瞬态响应、立体声分离度、立体声平衡度。
一、频率响应:所谓频率响应是指音响设备重放时的频率范围以及声波的幅度随频率的变化关系。一般检测此项指标以1000Hz的频率幅度为参考,并用对数以分贝(dB)为单位表示频率的幅度。 音响系统的总体频率响应理论上要求为20~20000Hz。在实际使用中由于电路结构、元件的质量等原因,往往不能够达到该要求,但一般至少要达到32~18000Hz。
二、信噪比:
所谓信噪比是指音响系统对音源软件的重放声与整个系统产生的新的噪声的比值,其噪声主要有热噪声、交流噪声、机械噪声等等。一般检测此项指标以重放信号的额定输出功率与无信号输入时系统噪声输出功率的对数比值分贝(dB)来表示。一般音响系统的信噪比需在85dB以上。
====================================================================
4、听音的环境。同样的设备、同样的文件、同样的人在不同的地点、时间、温度、空气湿度等条件下,听到声音的感觉也不一样。
====================================================================
总之,这些都跟播放软件关系不太大。
⑧ 电子琴合成器128复音和64复音有多大区别
简单来讲,电子琴音源是由电子振荡器产生,根据音节的高低而选用不同的振荡频率,一个振荡器定为一个复音数,也就是说复音数越大,它所具备同时发音数越多,而人耳感觉就比较舒服,复杂来讲,音频振荡器还要经过后续分频电路、选频、滤波器等电路处理后,经放大电路放大后由喇叭发出声音。随着电子技术的不断发展,制造音源集成电路以及处理电路的密度越来越高,所以说目前的电子乐器的音色比几年前电子乐器的音色和功能都好得多。