⑴ 龙门铣床横梁升降用哪个开关控制
具有门式框架和卧式长床身的铣床.龙门铣床加工精度和生产率均较高,适合在成批和大量生产中加工大型工件的平面和斜面.数控龙门铣 世界最大龙门铣床(XKA28105×300)的龙门
床还可加工空间曲面和一些特型零件.龙门铣床(见图)由立柱和顶梁构成门式框架.横梁可沿两立柱导轨(见[[机床导轨]])作升降运动.横梁上有1~2个带垂直主轴的铣头,可沿横梁导轨作横向运动.两立柱上还可分别安装一个带有水平主轴的铣头,它可沿立柱导轨作升降运动.这些铣头可同时加工几个表面.每个铣头都具有单独的电动机(功率最大可达 150千瓦)、变速机构、操纵机构和主轴部件(见机床主轴)等.加工时,工件安装在工作台上并随之作纵向进给运动(见机床).大型龙门铣床(工作台6×22米)的总重量达850吨.龙门铣床还有一些变型以适应不同的加工对象.①龙门铣镗床:横梁上装有可铣可镗的铣镗头,其主轴(套筒或滑枕)能作轴向机动进给并有运动微调装置,微调速度可低至5毫米/分.②桥式龙门铣床:加工时工作台和工件不动,而由龙门架移动.其特点是占地面积小,承载能力大,龙门架行程可达20米,便于加工特长或特重的工件 外形与龙门刨床相似,区别在于它的横梁和立柱上装的不是刨刀刀架而是带有主轴箱的铣刀架,并且龙门铣床的纵向工作台的往复运动不是主运动,而是进给运动,而铣刀的旋转运动是主运动.在龙门铣床上可以用多把铣刀同时加工表面,所以生产效率比较高,适用与成批和单件生产,用以加工中型和大型工件.
⑵ 卫华起重机双粱电路图视频讲解
你好,
卫华双梁桥式起重机是多少吨的。
20T以下大钩通常都有主令控制器配合控专制磁力属控制屏进行操作。
大车小车小钩为转子回路串电阻直接启动调速。
主钩控制屏型号常用为PQR2控制屏和QR2S控制屏。
主钩控制器控制档位数为3-0-3档。QR2S控制屏,采用下降一二档为反接制动下降,下降三档为反馈制动下降。
PQR2控制屏为下降一档不工作,下降二档为单相制动下降,下降三档为反馈制动下降,下降三档和下降二档回一档,为反接制动下降。
如果看不懂原理图,可以把原理图上传。
参考资料,我的原创。
http://tieba..com/p/1230643753?pid=14565393586&cid=0#14565393586
⑶ 设计一个小型吊车的控制线路。小型吊车有3台电动机,横梁电动机M1带动株加在车间前后移动,小车电
需要提供电机功率,电磁制动是掉电自动制动方式,不需要特别电路跟电机同时通断电即可。行走电机最好采用两级保护方式,行程开关设工作位置和极限位置双开关。
⑷ 龙门铣床的横梁无法升降是怎么回事
龙门铣床的横梁无法升降的大致原因:首先检查横梁的传动电机是否在转,在检查丝杆和螺母是否出现磨损和脱落,以及是否缺少机油润滑,最后检查横梁导轨的镶条是否松动或调节过紧等。以上大致原因都能造成龙门铣床的横梁无法升降现象。
⑸ 怎么样设计电路图呢
方法如下:来
首先一定要先把源分立元器件学好,学透。比如:电阻、电容、二极管、稳压管、三极管、比较器、运放、MOSFET等。分立元器件在模拟电路中是最基本也是最小的组成部分。这好比人的组织细胞,要想研究人就要先研究组织细胞。
其次,需要懂得利用这些分立器件的工作特性和条件来组成一个小的单元电路,学会让这个单元电路正常工作。这就好比各个组织细胞组成了人体的各个器官,模拟电路的各个单元电路正常高效工作就好比人体器官的正常健康;
再次,学会将各个单元电路有机地协调运转,联调可靠运行,这就好比各个器官的协调运动组成了一个健康充满活力的有生命的人。
最后,学会设计和调试电路,借助示波器等测量仪器让电路的参数调整合理并最优化。这就好比利用仪器对人体进行体检,并根据体检报告进行调理,使人精神饱满,健康充满活力。
⑹ 电气设计要领
电气原理图设计
为满足生产机械及工艺要求进行的电气控制电路的设计
电气工艺设计
为电气控制装置的制造,使用,运行,维修的需要进行的生产施工设计
第一节 电气控制设计的原则和内容
一,电气控制设计的原则
1)最大限度满足生产机械和生产工艺对电气控制的要求
2)在满足要求的前提下,使控制系统简单,经济,合理,便于操作,维修方便,安全可靠
3)电器元件选用合理,正确,使系统能正常工作
4)为适应工艺的改进,设备能力应留有裕量
二,电气控制设计的基本内容
1.电气原理图设计内容
1) 拟定电气设计任务书
2)选择电力拖动方案和控制方式
3)确定电动机的类型,型号,容量,转速
4)设计电气控制原理图
5)选择电器元件及清单
6)编写设计计算说明书
2. 电气工艺设计内容
1)设计电气设备的总体配置,绘制总装配图和总接线图
2)绘制各组件电器元件布置图与安装接线图,标明安装方式,接线方式
3)编写使用维护说明书
第二节 电力拖动方案的确定和电动机的选择
一,电力拖动方案的确定
1,拖动方式的选择
2,调速方案的选择
3,电动机调速性质应与负载特性相适应
二,拖动电动机的选择
(一)电动机选择的基本原则
1)电动机的机械特性应满足生产机械的要求,与负载的特性相适应
2)电动机的容量要得到充分的利用
3)电动机的结构形式要满足机械设计的安装要求,适合工作环境
4)在满足设计要求前提下,优先采用三相异步电动机
(二)根据生产机械调速要求选择电动机
一般---三相笼型异步电动机,双速电机
调速,起动转矩大---三相笼型异步电动机
调速高---直流电动机,变频调速交流电动机
(三)电动机结构形式的选择
根据工作性质,安装方式,工作环境选择
(四)电动机额定电压的选择
(五)电动机额定转速的选择
(六)电动机容量的选择
1,分析计算法:
此外,还可通过对长期运行的同类生产机械的电动机容量进行调查,并对机械主要参数,工作条件进行类比,然后再确定电动机的容量.
第三节 电气控制电路设计的一股要求
一,电气控制应最大限度地满足生产机械加工工艺的要求
设计前,应对生产机械工作性能,结构特点,运动情况,加工工艺过程及加工情况有充
分的了解,并在此基础上设计控制方案,考虑控制方式,起动,制动,反向和调速的要求,
安置必要的联锁与保护,确保满足生产机械加工工艺的要求.
二,对控制电路电流,电压的要求
应尽量减少控制电路中的电流,电压种类,控制电压应选择标准电压等级.电气控制电
各常用的电压等级如表10-2所示.
三,控制电路力求简单,经济
1.尽量缩短连接导线的长度和导线数量 设计控制电路时,应考虑各电器元件的安装
立置,尽可能地减少连接导线的数量,缩短连接导线的长度.如图10-l.
2.尽量减少电器元件的品种,数量和规格 同一用途的器件尽可能选用同品牌,型号的产品,并且电器数量减少到最低限度.
3.尽量减少电器元件触头的数目.在控制电路中,尽量减少触头是为了提高电路运行
的可靠性.例如图10-2a所示.
4.尽量减少通电电器的数目,以利节能与延长电器元件寿命,减少故障.如图10-3a所示.
四,确保控制电路工作的安全性和可靠性
1.正确连接电器的线圈 在交流控制电路中,同时动作的两个电器线圈不能串联,两个电磁线圈需要同时吸合时其线圈应并联连接,如图10-4b所示.
在直流控制电路中,两电感值相差悬殊的直流电压线圈不能并联连接.
2正确连接电器元件的触头 设计时,应使分布在电路中不同位置的同一电器触头接到电源的同一相上,以避免在电器触头上引起短路故障.
3防止寄生电路 在控制电路的动作过程中.意外接通的电路叫寄生电路.
4.在控制电路中控制触头应合理布置.
5.在设计控制电路中应考虑继电器触头的接通与分断能力.
6,避免发生触头"竞争","冒险"现象
竞争:当控制电路状态发生变换时,常伴随电路中的电器元件的触头状态发生变换.由于电器元件总有一定的固有动作时间,对于一个时序电路来说,往往发生不按时序动作的情况,触头争先吸合,就会得到几个不同的输出状态,这种现象称为电路的"竞争".
冒险:对于开关电路,由于电器元件的释放延时作用,也会出现开关元件不按要求的逻辑功能输出,这种现象称为"冒险".
7.采用电气联锁与机械联锁的双重联锁.
五,具有完善的保护环节
电气控制电路应具有完善的保护环节,常用的有漏电保护,短路,过载,过电流,过电压,欠电压与零电压,弱磁,联锁与限位保护等.
六,要考虑操作,维修与调试的方便
第四节 电气控制电路设计的方法与步骤
一,电气控制电路设计方法简介
设计电气控制电路的方法有两种,一种是分析设计法,另一种是逻辑设计法.
分析设计法(经验设计法):根据生产工艺的要求选择一些成熟的典型基本环节来实现这些基本要求,而后再逐步完善其功能,并适当配 置联锁和保护等环节,使其组合成一个整体,成为满足控制要求的完整电路.
逻辑设计法:利用逻辑代数这一数学工具设计电气控制电路.
在继电接触器控制电路中,把表示触头状态的逻辑变量称为输人逻辑变量,把表示继电
器接触器线圈等受控元件的逻辑变量称为输出逻辑变量.输人,输出逻辑变量之间的相互关
系称为逻辑函数关系,这种相互关系表明了电气控制电路的结构.所以,根据控制要求,将
这些逻辑变量关系写出其逻辑函数关系式,再运用逻辑函数基本公式和运算规律对逻辑函数
式进行化简,然后根据化简了的逻辑关系式画出相应的电路结构图,最后再作进一步的检查
和优化,以期获得较为完善的设计方案.
二,分析设计法的基本步骤
分析设计法设计电气控制电路的基本步骤是:
l)按工艺要求提出的起动,制动,反向和调速等要求设计主电路.
2)根据所设计出的主电路,设计控制电路的基本环节,即满足设计要求的起动,制动,
反向和调速等的基本控制环节.
3)根据各部分运动要求的配合关系及联锁关系,确定控制参量并设计控制电路的特殊
环节.
4)分析电路工作中可能出现的故障,加入必要的保护环节.
5)综合审查,仔细检查电气控制电路动作是否正确 关键环节可做必要实验,进一步
完善和简化电路a
三,分析设计法设计举例
下面以横梁升降机构的电气控制设计为例来说明分析设计法设计电气控制电路的方法与
步骤.
在龙门刨床上装有横梁升降机构,加工工件时,横梁应夹紧在立柱上,当加工工件高低
不同时,则横梁应先松开立柱然后沿立柱上下移动,移动到位后,横梁应夹紧在立柱上.所
以,横梁的升降由横梁升降电动机拖动,横梁的放松,夹紧动作由夹紧电动机,传动装置与
夹紧装置配合来完成.
(一)横梁升降机构的工艺要求:
(1)横梁上升时,自动按照先放松横梁一横梁上升一夹紧横梁的顺序进行.
(2)横梁下降时,自动按照放松横梁一横梁下降一横梁回升一夹紧横梁的顺序进行.
(3)横梁夹紧后,夹紧电动机自动停止转动.
(4)横梁升降应设有上下行程的限位保护,夹紧电动机应设有夹紧力保护.
(二)电气控制电路设计过程
1.主电路设计: 横梁升降机构分别由横梁升降电动机MI与横梁夹紧放松电动机W拖
动.巴两台电动机均为三相笼型异步电动机,均要求实现正反转.因此采用KM1I,KM2.
KM3,KM4四个接触器分别控制M1和M2的正反转,如图10-9所示.
2.控制电路基本环节的设计:由于横梁升降为调整运动,故对M1采用点动控制,一个
点动按钮只能控制一种运动,故用上升点动按钮犯 与下降点动按钮明 来控制横梁的升降,但在移动前要求先松开横梁,移动到位松开点动按钮时又要求横梁夹紧,也就是说点动按钮要控制KMI-KM4四个接触器,所以引入上升中间继电器KA1与下降中间继电器KA2,再由中间继电器去控制四个接触器.于是设计出横梁升降电气控制电路草图之一,如图10-9所示.
3.设计控制电路的特殊环节
1)横梁上升时,必须使夹紧电动机MZ先工作,将横梁放松后,发出信号,使MZ停止
工作,同时使升降电动机MI工作,带动横梁上升.按下上升点动按钮,中间继电器KAI线圈通电吸合,其常开触头闭合,使接触器KM4通电吸合,MZ反转起动旋转,横梁开始放松;横梁放松的程度采用行程开关地 控制,当横梁放松到一定程度,撞块压下你用地 的常闭触头断开来控制接触器KM4线圈的断电,常开触头闭合控制接触器KMI线圈的通电,KMI的主触头闭合使MI正转,横梁开始作上升运动.
2)升降电动机拖动横梁上升至所需位置时,松开上升点动按钮犯,中间继电器KAI
接触器KMI线圈相继断电释放,接触器KM3线圈通电吸合,使升降电动机停止工作,同时
使夹紧电动机开始正转,使横梁夹紧.在夹紧过程中.行程开关 SQI复位,因此 KM3应加
自锁触头,当夹紧到一定程度时,发出信号切断夹紧电动机电源.这里采用过电流继电器控
制夹紧的程度,即将过电流继电器KA3线圈串接在夹紧电动机主电路任一相中.当横梁夹
紧时,相当于电动机工作在堵转状态,电动机定子电流增大,将过电流继电器的动作电流整
定在两倍额定电流左右;当横梁夹紧后电流继电器动作,其常闭触头将接触器KM3线圈电
路切断.
3)横梁的下降仍按先放松再下降的方式控制,但下降结束后需有短时间的回升运动,该回升运动可采用断电延时型时间继电器进行控制.时间继电器KT的线圈由下降接触器 KMZ常开触头控制,其断电延时断开的常开触头与夹紧接触器KM3常开触头串联后并接于上升电路中间继电器KAI常开触头两端.这样,当横梁下降时,时间继电器KT线圈通电吸合,其断电延时断开的常开触头立即闭合,为回升电路工作作好准备.当横梁下降至所需位置时,松开下降点动按钮田.KMZ线圈断电释放,时间继电器KT线圈断电,夹紧接触器.
3.设计控制电路的特殊环节
1)横梁上升时,必须使夹紧电动机MZ先工作,将横梁放松后,发出信号,使MZ停止
IW,同时使升降电动机 MI工作,带动横梁上升.按下上升点动按钮犯,中间继电器
KAI线圈通电吸合,其常开触头闭合,使接触器KM4通电吸合,MZ反转起动旋转,横梁开
始放松;横梁放松的程度采用行程开关地 控制,当横梁放松到一定程度,撞块压下 SQI,
用明 的常闭触头断开来控制接触器KM4线圈的断电,常开触头闭合控制接触器KMI线圈
的通电,KMI的主触头闭合使MI正转,横梁开始作上升运动.
2)升降电动机拖动横梁上升至所需位置时,松开上升点动按钮肥,中间继电器KAI
接触器KMI线圈相继断电释放,接触器KM3线圈通电吸合,使升降电动机停止工作,同时
使夹紧电动机开始正转,使横梁夹紧.在夹紧过程中,行程开关地 复位,因此 KM应加
自锁触头,当夹紧到一定程度时,发出信号切断夹紧电动机电源.这里采用过电流继电器控
制夹紧的程度,即将过电流继电器KA3线圈串接在夹紧电动机主电路任一相中.当横梁夹
紧时,相当于电动机工作在堵转状态,电动机定子电流增大,将过电流继电器的动作电流整
定在两倍额定电流左右;当横梁夹紧后电流继电器动作,其常闭触头将接触器KM3线圈电
路切断.KM3线圈通电吸合,横梁开始夹紧.此时,上升接触器KMI线圈通过闭合的时间断电器KT常开触头及KM3常开触头而通电吸合,横梁开始回升,经一段时间延时,延时断开的常开触头KT断开,KMI线圈断电释放,回升运动结束,而横梁还在继续夹紧,夹紧到一定程度,过电流继电器动作,夹紧运动停止.此时的横梁升降电气控制电路设计草图如图10-10
所示.
4.设计联锁保护环节
横梁上升限位保护由行程开关SQZ来实现;下降限位保护由行程开关SQ3来实现;上
升与下降的互锁,夹紧与放松的互锁均由中间继电器KAI和KAZ的常闭触头来实现;升降
电动机短路保护由熔断器FUI来实现;夹紧电动机短路保护由熔断器FUZ实现;控制电路
的短路保护由熔断器F[J3来实现.
综合以上保护,就使横梁升降电气控制电路比较完善了,从而得到图10-11所示完整的
横梁升降机构控制电路.
第五节 常用控制电器的选择
一,接触器的选择
一般按下列步骤进行:
1.接触器种类的选择:根据接触器控制的负载性质来相应选择直流接触器还是交流接触器;一般场合选用电磁式接触器,对频繁操作的带交流负载的场合,可选用带直流电磁线圈的交流按触器.
2.接触器使用类别的选择:根据接触器所控制负载的工作任务来选择相应使用类别的接触器.如负载是一般任务则选用AC—3使用类别;负载为重任务则应选用AC-4类别,如果负载为一般任务与重任务混合时,则可根据实际情况选用AC—3或AC-4类接触器,如选用AC—3类时,应降级使用.
3.接触器额定电压的确定: 接触器主触头的额定电压应根据主触头所控制负载电路的额定电压来确定.
4.接触器额定电流的选择 一般情况下,接触器主触头的额定电流应大于等于负载或电动机的额定电流,计算公式为
式中I.——接触器主触头额定电流(A);
H ——经验系数,一般取l~1.4;
P.——被控电动机额定功率(kw);
U.——被控电动机额定线电压(V).
当接触器用于电动机频繁起动,制动或正反转的场合,一般可将其额定电流降一个等级来选用.
5.接触器线圈额定电压的确定: 接触器线圈的额定电压应等于控制电路的电源电压.为保证安全,一般接触器线圈选用110V,127V,并由控制变压器供电.但如果控制电路比较简单,所用接触器的数量较少时,为省去控制变压器,可选用380V,220V电压.
6.接触器触头数目: 在三相交流系统中一般选用三极接触器,即三对常开主触头,当需要同时控制中胜线时,则选用四极交流接触器.在单相交流和直流系统中则常用两极或三极并联接触器.交流接触器通常有三对常开主触头和四至六对辅助触头,直流接触器通常有两对常开主触头和四对辅助触头.
7.接触器额定操作频率 交,直流接触器额定操作频率一般有600次/h,1200次/h等几种,一般说来,额定电流越大,则操作频率越低,可根据实际需要选择.
二,电磁式继电器的选择
应根据继电器的功能特点,适用性,使用环境,工作制,额定工作电压及额定工作电流来选择.
1.电磁式电压继电器的选择
根据在控制电路中的作用,电压继电器有过电压继电器和欠电压继电器两种类型.
表10-3列出了电磁式继电器的类型与用途.
交流过电压继电器选择的主要参数是额定电压和动作电压,其动作电压按系统额定电压的1.l-1.2倍整定.
交流欠电压继电器常用一般交流电磁式电压继电器,其选用只要满足一般要求即可,对释放电压值无特殊要求.而直流欠电压继电器吸合电压按其额定电压的0.3-0.5倍整定,释放电压按其额定电压的0.07-0.2倍整定.
2.电磁式电流继电器的选择
根据负载所要求的保护作用,分为过电流继电器和欠电流继电器两种类型.
过电流继电器:交流过电流继电器,直流过电流继电器.
欠电流继电器:只有直流欠电流继电器,用于直流电动机及电磁吸盘的弱磁保护.
过电流继电器的主要参数是额定电流和动作电流,其额定电流应大于或等于被保护电动机的额定电流;动作电流应根据电动机工作情况按其起动电流的1.回一1.3倍整定.一般绕线型转子异步电动机的起动电流按2.5倍额定电流考虑,笼型异步电动机的起动电流按4-7倍额定电流考虑.直流过电流继电器动作电流接直流电动机额定电流的1.1-3.0倍整定.
欠电流继电器选择的主要参数是额定电流和释放电流,其额定电流应大于或等于直流电动机及电磁吸盘的额定励磁电流;释放电流整定值应低于励磁电路正常工作范围内可能出现的最小励磁电流,一般释放电流按最小励磁电流的0.85倍整定.
3.电磁式中间继电器的选择
应使线圈的电流种类和电压等级与控制电路一致,同时,触头数量,种类及容量应满足控制电路要求.
三,热继电器的选择
热继电器主要用于电动机的过载保护,因此应根据电动机的形式,工作环境,起动情况,负载情况,工作制及电动机允许过载能力等综合考虑.
1.热继电器结构形式的选择
对于星形联结的电动机,使用一般不带断相保护的三相热继电器能反映一相断线后的过载,对电动机断相运行能起保护作用.
对于三角形联结的电动机,则应选用带断相保护的三相结构热继电器.
2.热继电器额定电流的选择
原则上按被保护电动机的额定电流选取热继电器.对于长期正常工作的电动机,热继电器中热元件的整定电流值为电动机额定电流的0.95-1.05倍;对于过载能力较差的电动机,热继电器热元件整定电流值为电动机额定电流的0.6一0.8倍.
对于不频繁起动的电动机,应保证热继电器在电动机起动过程中不产生误动作,若电动机起动电流不超过其额定电流的6倍,并且起动时间不超过6S,可按电动机的额定电流来选择热继电器.
对于重复短时工作制的电动机,首先要确定热继电器的允许操作频率,然后再根据电动机的起动时间,起动电流和通电持续率来选择.
四,时间继电器的选择
1)电流种类和电压等级:电磁阻尼式和空气阻尼式时间继电器,其线圈的电流种类和电压等级应与控制电路的相同;电动机或与晶体管式时间继电器,其电源的电流种类和电压等级应与控制电路的相同.
2)延时方式:根据控制电路的要求来选择延时方式,即通电延时型和断电延时型.
3)触头形式和数量:根据控制电路要求来选择触头形式(延时闭合型或延时断开型)及触头数量.
4)延时精度:电磁阻尼式时间继电器适用于延时精度要求不高的场合,电动机式或晶体管式时间继电器适用于延时精度要求高的场合.
5)延时时间:应满足电气控制电路的要求.
6)操作频率:时间继电器的操作频率不宜过高,否则会影响其使用寿命,甚至会导致延时动作失调.
五,熔断器的选择
1.一般熔断器的选择:根据熔断器类型,额定电压,额定电流及熔体的额定电流来选择.
(1)熔断器类型:熔断器类型应根据电路要求,使用场合及安装条件来选择,其保护特性应与被保护对象的过载能力相匹配.对于容量较小的照明和电动机,一般是考虑它们的过载保护,可选用熔体熔化系数小的熔断器,对于容量较大的照明和电动机,除过载保护外,还应考虑短路时的分断短路电流能力,若短路电流较小时,可选用低分断能力的熔断器,若短路电流较大时,可选用高分断能力的RLI系列熔断器,若短路电流相当大时,可选用有限流作用的Rh及RT12系列熔断器.
(2)熔断器额定电压和额定电流:熔断器的额定电压应大于或等于线路的工作电压,额定电流应大于或等于所装熔体的额定电流.
(3)熔断器熔体额定电流
1)对于照明线路或电热设备等没有冲击电流的负载,应选择熔体的额定电流等于或稍
大于负载的额定电流,即 IRN≥IN
式中IRN——熔体额定电流(A);
IN——负载额定电流(A).
2)对于长期工作的单台电动机,要考虑电动机起动时不应熔断,即
IRN≥(1.5~2.5)IN
轻载时系数取1.5,重载时系数取2.5.
3)对于频繁起动的单台电动机,在频繁起动时,熔体不应熔断,即
IRN≥(3~3.5)IN
4)对于多台电动机长期共用一个熔断器,熔体额定电流为
IRN≥(1.5~2.5)INMmax+∑INM
式中INMmax——容量最大电动机的额定电流(A);
∑INM——除容量最大电动机外,其余电动机额定电流之和(A).
(4)适用于配电系统的熔断器:在配电系统多级熔断器保护中,为防止越级熔断,使上,下级熔断器间有良好的配合,选用熔断器时应使上一级(干线)熔断器的熔体额定电流比下一级(支线)的熔体额定电流大1-2个级差.
2.快速熔断器的选择
(l)快速熔断器的额定电压:快速熔断器额定电压应大于电源电压,且小于晶闸管的反向峰值电压U.,因为快速熔断器分断电流的瞬间,最高电弧电压可达电源电压的1.5-2倍.因此,整流二极管或晶闸管的反向峰值电压必须大于此电压值才能安全工作.即
UF≥KI URE
式中UF-一硅整流元件或晶闸管的反向峰值电压(V);
URE——快速熔断器额定电压(V);
KI——安全系数,一般取1,5-2.
(2)快速熔断器的额定电流:快速熔断器的额定电流是以有效值表示的,而整流M极管和晶闸管的额定电流是用平均值表示的.当快速熔断器接人交流侧,熔体的额定电流为
IRN≥KI IZmax
式中IZmax——可能使用的最大整流电流(A);
KI——与整流电路形式及导电情况有关的系数,若保护整流M极管时,KI按表10-4
取值,若保护晶闸管时,KI按表10-5取值.
当快速熔断器接入整流桥臂时,熔体额定电流为
IRN≥1.5IGN
式中IGN——硅整流元件或晶闸管的额定电流(A).
六,开关电器的选择
(一)刀开关的选择
刀开关主要根据使用的场合,电源种类,电压等级,负载容量及所需极数来选择.
(1)根据刀开关在线路中的作用和安装位置选择其结构形式.若用于隔断电源时,选用无灭弧罩的产品;若用于分断负载时,则应选用有灭弧罩,且用杠杆来操作的产品.
(2)根据线路电压和电流来选择.刀开关的额定电压应大于或等于所在线路的额定电压;刀开关额定电流应大于负载的额定电流,当负载为异步电动机时,其额定电流应取为电动机额定电流的1.5倍以上.
(3)刀开关的极数应与所在电路的极数相同.
(二)组合开关的选择
组合开关主要根据电源种类,电压等级,所需触头数及电动机容量来选择.选择时应掌握以下原则:
(1)组合开关的通断能力并不是很高,因此不能用它来分断故障电流.对用于控制电动机可逆运行的组合开关,必须在电动机完全停止转动后才允许反方向接通.
(2)组合开关接线方式多种,使用时应根据需要正确选择相应产品.
(3)组合开关的操作频率不宜太高,一般不宜超过300次/h,所控制负载的功率因数也不能低于规定值,否则组合开关要降低容量使用.
(4)组合开关本身不具备过载,短路和欠电压保护,如需这些保护,必须另设其他保护电器.
(三)低压断路器的选择
低压断路器主要根据保护特性要求,分断能力,电网电压类型及等级,负载电流,操作频率等方面进行选择.
(1)额定电压和额定电流:低压断路器的额定电压和额定电流应大于或等于线路的额定电压和额定电流.
(2)热脱扣器:热脱扣器整定电流应与被控制电动机或负载的额定电流一致.
(3)过电流脱扣器:过电流脱扣器瞬时动作整定电流由下式确定
IZ≥KIS
式中IZ——瞬时动作整定电流(A);
Is——线路中的尖峰电流.若负载是电动机,则Is为起动电流(A);
K考虑整定误差和起动电流允许变化的安全系数.当动作时间大于20ms时,取
K=1.35;当动作时间小于 20ms时,取 K=1.7.
(4)欠电压脱扣器:欠电压脱扣器的额定电压应等于线路的额定电压.
(四)电源开关联锁机构
电源开关联锁机构与相应的断路器和组合开关配套使用,用于接通电源,断开电源和柜
门开关联锁,以达到在切断电源后才能打开门,将门关闭好后才能接通电源的效果,实现安
全保护.
七,控制变压器的选择
控制变压器用于降低控制电路或辅助电路的电压,以保证控制电路的安全可靠.控制变压器主要根据一次和二次电压等级及所需要的变压器容量来选择.
(1)控制变压器一,二次电压应与交流电源电压,控制电路电压与辅助电路电压相符合.
(2)控制变压器容量按下列两种情况计算,依计算容量大者决定控制变压器的容量.
l)变压器长期运行时,最大工作负载时变压器的容量应大于或等于最大工作负载所需要的功率,计算公式为
ST≥KT ∑PXC
式中ST——控制变压器所需容量(VA);
∑PXC——控制电路最大负载时工作的电器所需的总功率,其中PXC为电磁器件的吸持功
率(W);
KT一一一控制变压器容量储备系数,一般取1.1-1.25.
2)控制变压器容量应使已吸合的电器在起动其他电器时仍能保持吸会状态,而起动电器也能可靠地吸合,其计算公式为
ST≥0.6 ∑PXC +1.5∑Pst
式中 ∑Pst_同时起动的电器总吸持功率(W).
第六节 电气控制的施工设计与施工
一,电气设备总体配置设计
组件的划分原则是:
l)将功能类似的元件组成在一起,构成控制面板组件,电气控制盘组件,电源组件等.
2)将接线关系密切的电器元件置于在同一组件中,以减少组件之间的连线数量.
3)强电与弱电控制相分离,以减少干扰.
4)为求整齐美观,将外形尺寸相同,重量相近的电器元件组合在一起.
5)为便于检查与调试,将需经常调节,维护和易损元件组合在一起.
电气设备的各部分及组件之间的接线方式通常有:
l)电器控制盘,机床电器的进出线一般采用接线端子.
2)被控制设备与电气箱之间为便于拆装,搬运,尽可能采用多孔接插件.
3)印刷电路板与弱电控制组件之间宜采用各种类型接插件.
总体配置设计是以电气控制的总装配图与总接线图的形式表达出来的,图中是用示意方式反映各部分主要组件的位置和各部分的接线关系,走线方式及使用管线要求.总体设计要使整个系统集中,紧凑;要考虑发热量高和噪声振动大的电气部件,使其离开操作者一定距离;电源紧急控制开关应安放在方便且明显的位置.
二,电气元器件布置图的设计
电气元器件布置图是指将电气元器件按一定原则组合的安装位置图.电气元器件布置的依据是各部件的原理图,同一组件中的电器元件的布置应按国家标准执行.
电柜内的电器可按下述原则布置:
l)体积大或较重的电器应置于控制柜下方.
2)发热元件安装在柜的上方,并将发热元件与感温元件隔开.
3)强电弱电应分开,弱电部分应加屏蔽隔离,以防强电及外界的干扰.
4)电器的布置应考虑整齐,美观,对称.
5)电器元器件间应留有一定间距,以利布线,接线,维修和调整操作.
6)接线座的布置:用于相邻柜间连接用的接线座应布置在柜的两侧;用于与柜外电气
元件连接的接线座应布置在柜的下部,且不得低于200mrn.
一般通过实物排列来确定各电器元件的位置,进而绘制出控制柜的电器布置图.布置图
是根据电器元件的外形尺寸按比例绘制,并标明各元件间距尺寸,同时还要标明进出线的数
量和导线规格,选择适当的接线端子板和接插件并在其上标明接线号.
⑺ 继电接触器控制系统设计的一般原则是什么,设计内容主要包括哪些
电气原理图设计
满足产机械及工艺要求进行电气控制电路设计
电气工艺设计
电气控制装置制造,使用,运行,维修需要进行产施工设计
第节 电气控制设计原则内容
,电气控制设计原则
1)限度满足产机械产工艺电气控制要求
2)满足要求前提,使控制系统简单,经济,合理,便于操作,维修便,安全靠
3)电器元件选用合理,确,使系统能工作
4)适应工艺改进,设备能力应留裕量
二,电气控制设计基本内容
1.电气原理图设计内容
1) 拟定电气设计任务书
2)选择电力拖案控制式
3)确定电机类型,型号,容量,转速
4)设计电气控制原理图
5)选择电器元件及清单
6)编写设计计算说明书
2. 电气工艺设计内容
1)设计电气设备总体配置,绘制总装配图总接线图
2)绘制各组件电器元件布置图与安装接线图,标明安装式,接线式
3)编写使用维护说明书
第二节 电力拖案确定电机选择
,电力拖案确定
1,拖式选择
2,调速案选择
3,电机调速性质应与负载特性相适应
二,拖电机选择
()电机选择基本原则
1)电机机械特性应满足产机械要求,与负载特性相适应
2)电机容量要充利用
3)电机结构形式要满足机械设计安装要求,适合工作环境
4)满足设计要求前提,优先采用三相异步电机
(二)根据产机械调速要求选择电机
般---三相笼型异步电机,双速电机
调速,起转矩---三相笼型异步电机
调速高---直流电机,变频调速交流电机
(三)电机结构形式选择
根据工作性质,安装式,工作环境选择
(四)电机额定电压选择
(五)电机额定转速选择
(六)电机容量选择
1,析计算:
外,通期运行同类产机械电机容量进行调查,并机械主要参数,工作条件进行类比,再确定电机容量.
第三节 电气控制电路设计股要求
,电气控制应限度满足产机械加工工艺要求
设计前,应产机械工作性能,结构特点,运情况,加工工艺程及加工情况充
解,并基础设计控制案,考虑控制式,起,制,反向调速要求,
安置必要联锁与保护,确保满足产机械加工工艺要求.
二,控制电路电流,电压要求
应尽量减少控制电路电流,电压种类,控制电压应选择标准电压等级.电气控制电
各用电压等级表10-2所示.
三,控制电路力求简单,经济
1.尽量缩短连接导线度导线数量 设计控制电路,应考虑各电器元件安装
立置,尽能减少连接导线数量,缩短连接导线度.图10-l.
2.尽量减少电器元件品种,数量规格 同用途器件尽能选用同品牌,型号产品,并且电器数量减少低限度.
3.尽量减少电器元件触数目.控制电路,尽量减少触提高电路运行
靠性.例图10-2a所示.
4.尽量减少通电电器数目,利节能与延电器元件寿命,减少故障.图10-3a所示.
四,确保控制电路工作安全性靠性
1.确连接电器线圈 交流控制电路,同作两电器线圈能串联,两电磁线圈需要同吸合其线圈应并联连接,图10-4b所示.
直流控制电路,两电值相差悬殊直流电压线圈能并联连接.
2确连接电器元件触 设计,应使布电路同位置同电器触接电源同相,避免电器触引起短路故障.
3防止寄电路 控制电路作程.意外接通电路叫寄电路.
4.控制电路控制触应合理布置.
5.设计控制电路应考虑继电器触接通与断能力.
6,避免发触"竞争","冒险"现象
竞争:控制电路状态发变换,伴随电路电器元件触状态发变换.由于电器元件总定固作间,于序电路说,往往发按序作情况,触争先吸合,几同输状态,种现象称电路"竞争".
冒险:于关电路,由于电器元件释放延作用,现关元件按要求逻辑功能输,种现象称"冒险".
7.采用电气联锁与机械联锁双重联锁.
五,具完善保护环节
电气控制电路应具完善保护环节,用漏电保护,短路,载,电流,电压,欠电压与零电压,弱磁,联锁与限位保护等.
六,要考虑操作,维修与调试便
第四节 电气控制电路设计与步骤
,电气控制电路设计简介
设计电气控制电路两种,种析设计,另种逻辑设计.
析设计(经验设计):根据产工艺要求选择些熟典型基本环节实现些基本要求,再逐步完善其功能,并适配 置联锁保护等环节,使其组合整体,满足控制要求完整电路.
逻辑设计:利用逻辑代数数工具设计电气控制电路.
继电接触器控制电路,表示触状态逻辑变量称输逻辑变量,表示继电
器接触器线圈等受控元件逻辑变量称输逻辑变量.输,输逻辑变量间相互关
系称逻辑函数关系,种相互关系表明电气控制电路结构.所,根据控制要求,
些逻辑变量关系写其逻辑函数关系式,再运用逻辑函数基本公式运算规律逻辑函数
式进行化简,根据化简逻辑关系式画相应电路结构图,再作进步检查
优化,期获较完善设计案.
二,析设计基本步骤
析设计设计电气控制电路基本步骤:
l)按工艺要求提起,制,反向调速等要求设计主电路.
2)根据所设计主电路,设计控制电路基本环节,即满足设计要求起,制,
反向调速等基本控制环节.
3)根据各部运要求配合关系及联锁关系,确定控制参量并设计控制电路特殊
环节.
4)析电路工作能现故障,加入必要保护环节.
5)综合审查,仔细检查电气控制电路作否确 关键环节做必要实验,进步
完善简化电路a
三,析设计设计举例
面横梁升降机构电气控制设计例说明析设计设计电气控制电路与
步骤.
龙门刨床装横梁升降机构,加工工件,横梁应夹紧立柱,加工工件高低
同,则横梁应先松立柱沿立柱移,移位,横梁应夹紧立柱.所
,横梁升降由横梁升降电机拖,横梁放松,夹紧作由夹紧电机,传装置与
夹紧装置配合完.
()横梁升降机构工艺要求:
(1)横梁升,自按照先放松横梁横梁升夹紧横梁顺序进行.
(2)横梁降,自按照放松横梁横梁降横梁升夹紧横梁顺序进行.
(3)横梁夹紧,夹紧电机自停止转.
(4)横梁升降应设行程限位保护,夹紧电机应设夹紧力保护.
(二)电气控制电路设计程
1.主电路设计: 横梁升降机构别由横梁升降电机MI与横梁夹紧放松电机W拖
.巴两台电机均三相笼型异步电机,均要求实现反转.采用KM1I,KM2.
KM3,KM4四接触器别控制M1M2反转,图10-9所示.
2.控制电路基本环节设计:由于横梁升降调整运,故M1采用点控制,
点按钮能控制种运,故用升点按钮犯 与降点按钮明 控制横梁升降,移前要求先松横梁,移位松点按钮要求横梁夹紧,说点按钮要控制KMI-KM4四接触器,所引入升间继电器KA1与降间继电器KA2,再由间继电器控制四接触器.于设计横梁升降电气控制电路草图,图10-9所示.
3.设计控制电路特殊环节
1)横梁升,必须使夹紧电机MZ先工作,横梁放松,发信号,使MZ停止
工作,同使升降电机MI工作,带横梁升.按升点按钮,间继电器KAI线圈通电吸合,其触闭合,使接触器KM4通电吸合,MZ反转起旋转,横梁始放松;横梁放松程度采用行程关 控制,横梁放松定程度,撞块压用 闭触断控制接触器KM4线圈断电,触闭合控制接触器KMI线圈通电,KMI主触闭合使MI转,横梁始作升运.
2)升降电机拖横梁升至所需位置,松升点按钮犯,间继电器KAI
接触器KMI线圈相继断电释放,接触器KM3线圈通电吸合,使升降电机停止工作,同
使夹紧电机始转,使横梁夹紧.夹紧程.行程关 SQI复位, KM3应加
自锁触,夹紧定程度,发信号切断夹紧电机电源.采用电流继电器控
制夹紧程度,即电流继电器KA3线圈串接夹紧电机主电路任相.横梁夹
紧,相于电机工作堵转状态,电机定电流增,电流继电器作电流整
定两倍额定电流左右;横梁夹紧电流继电器作,其闭触接触器KM3线圈电
路切断.
3)横梁降仍按先放松再降式控制,降结束需短间升运,该升运采用断电延型间继电器进行控制.间继电器KT线圈由降接触器 KMZ触控制,其断电延断触与夹紧接触器KM3触串联并接于升电路间继电器KAI触两端.,横梁降,间继电器KT线圈通电吸合,其断电延断触立即闭合,升电路工作作准备.横梁降至所需位置,松降点按钮田.KMZ线圈断电释放,间继电器KT线圈断电,夹紧接触器.
3.设计控制电路特殊环节
1)横梁升,必须使夹紧电机MZ先工作,横梁放松,发信号,使MZ停止
IW,同使升降电机 MI工作,带横梁升.按升点按钮犯,间继电器
KAI线圈通电吸合,其触闭合,使接触器KM4通电吸合,MZ反转起旋转,横梁
始放松;横梁放松程度采用行程关 控制,横梁放松定程度,撞块压 SQI,
用明 闭触断控制接触器KM4线圈断电,触闭合控制接触器KMI线圈
通电,KMI主触闭合使MI转,横梁始作升运.
2)升降电机拖横梁升至所需位置,松升点按钮肥,间继电器KAI
接触器KMI线圈相继断电释放,接触器KM3线圈通电吸合,使升降电机停止工作,同
使夹紧电机始转,使横梁夹紧.夹紧程,行程关 复位, KM应加
自锁触,夹紧定程度,发信号切断夹紧电机电源.采用电流继电器控
制夹紧程度,即电流继电器KA3线圈串接夹紧电机主电路任相.横梁夹
紧,相于电机工作堵转状态,电机定电流增,电流继电器作电流整
定两倍额定电流左右;横梁夹紧电流继电器作,其闭触接触器KM3线圈电
路切断.KM3线圈通电吸合,横梁始夹紧.,升接触器KMI线圈通闭合间断电器KT触及KM3触通电吸合,横梁始升,经段间延,延断触KT断,KMI线圈断电释放,升运结束,横梁继续夹紧,夹紧定程度,电流继电器作,夹紧运停止.横梁升降电气控制电路设计草图图10-10
所示.
4.设计联锁保护环节
横梁升限位保护由行程关SQZ实现;降限位保护由行程关SQ3实现;
升与降互锁,夹紧与放松互锁均由间继电器KAIKAZ闭触实现;升降
电机短路保护由熔断器FUI实现;夹紧电机短路保护由熔断器FUZ实现;控制电路
短路保护由熔断器F[J3实现.
综合保护,使横梁升降电气控制电路比较完善,图10-11所示完整
横梁升降机构控制电路.
第五节 用控制电器选择
,接触器选择
般按列步骤进行:
1.接触器种类选择:根据接触器控制负载性质相应选择直流接触器交流接触器;般场合选用电磁式接触器,频繁操作带交流负载场合,选用带直流电磁线圈交流按触器.
2.接触器使用类别选择:根据接触器所控制负载工作任务选择相应使用类别接触器.负载般任务则选用AC—3使用类别;负载重任务则应选用AC-4类别,负载般任务与重任务混合,则根据实际情况选用AC—3或AC-4类接触器,选用AC—3类,应降级使用.
3.接触器额定电压确定: 接触器主触额定电压应根据主触所控制负载电路额定电压确定.
4.接触器额定电流选择 般情况,接触器主触额定电流应于等于负载或电机额定电流,计算公式
式I.——接触器主触额定电流(A);
H ——经验系数,般取l~1.4;
P.——控电机额定功率(kw);
U.——控电机额定线电压(V).
接触器用于电机频繁起,制或反转场合,般其额定电流降等级选用.
5.接触器线圈额定电压确定: 接触器线圈额定电压应等于控制电路电源电压.保证安全,般接触器线圈选用110V,127V,并由控制变压器供电.控制电路比较简单,所用接触器数量较少,省控制变压器,选用380V,220V电压.
6.接触器触数目: 三相交流系统般选用三极接触器,即三主触,需要同控制胜线,则选用四极交流接触器.单相交流直流系统则用两极或三极并联接触器.交流接触器通三主触四至六辅助触,直流接触器通两主触四辅助触.
7.接触器额定操作频率 交,直流接触器额定操作频率般600/h,1200/h等几种,般说,额定电流越,则操作频率越低,根据实际需要选择.
二,电磁式继电器选择
应根据继电器功能特点,适用性,使用环境,工作制,额定工作电压及额定工作电流选择.
1.电磁式电压继电器选择
根据控制电路作用,电压继电器电压继电器欠电压继电器两种类型.
表10-3列电磁式继电器类型与用途.
交流电压继电器选择主要参数额定电压作电压,其作电压按系统额定电压1.l-1.2倍整定.
交流欠电压继电器用般交流电磁式电压继电器,其选用要满足般要求即,释放电压值特殊要求.直流欠电压继电器吸合电压按其额定电压0.3-0.5倍整定,释放电压按其额定电压0.07-0.2倍整定.
2.电磁式电流继电器选择
根据负载所要求保护作用,电流继电器欠电流继电器两种类型.
电流继电器:交流电流继电器,直流电流继电器.
欠电流继电器:直流欠电流继电器,用于直流电机及电磁吸盘弱磁保护.
电流继电器主要参数额定电流作电流,其额定电流应于或等于保护电机额定电流;作电流应根据电机工作情况按其起电流1.1.3倍整定.般绕线型转异步电机起电流按2.5倍额定电流考虑,笼型异步电机起电流按4-7倍额定电流考虑.直流电流继电器作电流接直流电机额定电流1.1-3.0倍整定.
欠电流继电器选择主要参数额定电流释放电流,其额定电流应于或等于直流电机及电磁吸盘额定励磁电流;释放电流整定值应低于励磁电路工作范围内能现励磁电流,般释放电流按励磁电流0.85倍整定.
3.电磁式间继电器选择
应使线圈电流种类电压等级与控制电路致,同,触数量,种类及容量应满足控制电路要求.
三,热继电器选择
热继电器主要用于电机载保护,应根据电机形式,工作环境,起情况,负载情况,工作制及电机允许载能力等综合考虑.
1.热继电器结构形式选择
于星形联结电机,使用般带断相保护三相热继电器能反映相断线载,电机断相运行能起保护作用.
于三角形联结电机,则应选用带断相保护三相结构热继电器.
2.热继电器额定电流选择
原则按保护电机额定电流选取热继电器.于期工作电机,热继电器热元件整定电流值电机额定电流0.95-1.05倍;于载能力较差电机,热继电器热元件整定电流值电机额定电流0.60.8倍.
于频繁起电机,应保证热继电器电机起程产误作,若电机起电流超其额定电流6倍,并且起间超6S,按电机额定电流选择热继电器.
于重复短工作制电机,首先要确定热继电器允许操作频率,再根据电机起间,起电流通电持续率选择.
四,间继电器选择
1)电流种类电压等级:电磁阻尼式空气阻尼式间继电器,其线圈电流种类电压等级应与控制电路相同;电机或与晶体管式间继电器,其电源电流种类电压等级应与控制电路相同.
2)延式:根据控制电路要求选择延式,即通电延型断电延型.
3)触形式数量:根据控制电路要求选择触形式(延闭合型或延断型)及触数量.
4)延精度:电磁阻尼式间继电器适用于延精度要求高场合,电机式或晶体管式间继电器适用于延精度要求高场合.
5)延间:应满足电气控制电路要求.
6)操作频率:间继电器操作频率宜高,否则影响其使用寿命,甚至导致延作失调.
五,熔断器选择
1.般熔断器选择:根据熔断器类型,额定电压,额定电流及熔体额定电流选择.
(1)熔断器类型:熔断器类型应根据电路要求,使用场合及安装条件选择,其保护特性应与保护象载能力相匹配.于容量较照明电机,般考虑载保护,选用熔体熔化系数熔断器,于容量较照明电机,除载保护外,应考虑短路断短路电流能力,若短路电流较,选用低断能力熔断器,若短路电流较,选用高断能力RLI系列熔断器,若短路电流相,选用限流作用Rh及RT12系列熔断器.
(2)熔断器额定电压额定电流:熔断器额定电压应于或等于线路工作电压,额定电流应于或等于所装熔体额定电流.
(3)熔断器熔体额定电流
1)于照明线路或电热设备等没冲击电流负载,应选择熔体额定电流等于或稍
于负载额定电流,即 IRN≥IN
式IRN——熔体额定电流(A);
IN——负载额定电流(A).
2)于期工作单台电机,要考虑电机起应熔断,即
IRN≥(1.5~2.5)IN
轻载系数取1.5,重载系数取2.5.
3)于频繁起单台电机,频繁起,熔体应熔断,即
IRN≥(3~3.5)IN
4)于台电机期共用熔断器,熔体额定电流
IRN≥(1.5~2.5)INMmax+∑INM
式INMmax——容量电机额定电流(A);
∑INM——除容量电机外,其余电机额定电流(A).
(4)适用于配电系统熔断器:配电系统级熔断器保护,防止越级熔断,使,级熔断器间良配合,选用熔断器应使级(干线)熔断器熔体额定电流比级(支线)熔体额定电流1-2级差.
2.快速熔断器选择
(l)快速熔断器额定电压:快速熔断器额定电压应于电源电压,且于晶闸管反向峰值电压U.,快速熔断器断电流瞬间,高电弧电压达电源电压1.5-2倍.,整流二极管或晶闸管反向峰值电压必须于电压值才能安全工作.即
UF≥KI URE
式UF-硅整流元件或晶闸管反向峰值电压(V);
URE——快速熔断器额定电压(V);
KI——安全系数,般取1,5-2.
(2)快速熔断器额定电流:快速熔断器额定电流效值表示,整流M极管晶闸管额定电流用平均值表示.快速熔断器接交流侧,熔体额定电流
IRN≥KI IZmax
式IZmax——能使用整流电流(A);
KI——与整流电路形式及导电情况关系数,若保护整流M极管,KI按表10-4
取值,若保护晶闸管,KI按表10-5取值.
快速熔断器接入整流桥臂,熔体额定电流
IRN≥1.5IGN
式IGN——硅整流元件或晶闸管额定电流(A).
六,关电器选择
()刀关选择
刀关主要根据使用场合,电源种类,电压等级,负载容量及所需极数选择.
(1)根据刀关线路作用安装位置选择其结构形式.若用于隔断电源,选用灭弧罩产品;若用于断负载,则应选用灭弧罩,且用杠杆操作产品.
(2)根据线路电压电流选择.刀关额定电压应于或等于所线路额定电压;刀关额定电流应于负载额定电流,负载异步电机,其额定电流应取电机额定电流1.5倍.
(3)刀关极数应与所电路极数相同.
(二)组合关选择
组合关主要根据电源种类,电压等级,所需触数及电机容量选择.选择应掌握原则:
(1)组合关通断能力并高,能用断故障电流.用于控制电机逆运行组合关,必须电机完全停止转才允许反向接通.
(2)组合关接线式种,使用应根据需要确选择相应产品.
(3)组合关操作频率宜太高,般宜超300/h,所控制负载功率数能低于规定值,否则组合关要降低容量使用.
(4)组合关本身具备载,短路欠电压保护,需些保护,必须另设其保护电器.
(三)低压断路器选择
低压断路器主要根据保护特性要求,断能力,电网电压类型及等级,负载电流,操作频率等面进行选择.
(1)额定电压额定电流:低压断路器额定电压额定电流应于或等于线路额定电压额定电流.
(2)热脱扣器:热脱扣器整定电流应与控制电机或负载额定电流致.
(3)电流脱扣器:电流脱扣器瞬作整定电流由式确定
IZ≥KIS
式IZ——瞬作整定电流(A);
Is——线路尖峰电流.若负载电机,则Is起电流(A);
K考虑整定误差起电流允许变化安全系数.作间于20ms,取
K=1.35;作间于 20ms,取 K=1.7.
(4)欠电压脱扣器:欠电压脱扣器额定电压应等于线路额定电压.
(四)电源关联锁机构
电源关联锁机构与相应断路器组合关配套使用,用于接通电源,断电源柜
门关联锁,达切断电源才能打门,门关闭才能接通电源效,实现安
全保护.
七,控制变压器选择
控制变压器用于降低控制电路或辅助电路电压,保证控制电路安全靠.控制变压器主要根据二电压等级及所需要变压器容量选择.
(1)控制变压器,二电压应与交流电源电压,控制电路电压与辅助电路电压相符合.
(2)控制变压器容量按列两种情况计算,依计算容量者决定控制变压器容量.
l)变压器期运行,工作负载变压器容量应于或等于工作负载所需要功率,计算公式
ST≥KT ∑PXC
式ST——控制变压器所需容量(VA);
∑PXC——控制电路负载工作电器所需总功率,其PXC电磁器件吸持功
率(W);
KT控制变压器容量储备系数,般取1.1-1.25.
2)控制变压器容量应使已吸合电器起其电器仍能保持吸状态,起电器能靠吸合,其计算公式
ST≥0.6 ∑PXC +1.5∑Pst
式 ∑Pst_同起电器总吸持功率(W).
第六节 电气控制施工设计与施工
,电气设备总体配置设计
组件划原则:
l)功能类似元件组起,构控制面板组件,电气控制盘组件,电源组件等.
2)接线关系密切电器元件置于同组件,减少组件间连线数量.
3)强电与弱电控制相离,减少干扰.
4)求整齐美观,外形尺寸相同,重量相近电器元件组合起.
5)便于检查与调试,需经调节,维护易损元件组合起.
电气设备各部及组件间接线式通:
l)电器控制盘,机床电器进线般采用接线端.
2)控制设备与电气箱间便于拆装,搬运,尽能采用孔接插件.
3)印刷电路板与弱电控制组件间宜采用各种类型接插件.
总体配置设计电气控制总装配图与总接线图形式表达,图用示意式反映各部主要组件位置各部接线关系,走线式及使用管线要求.总体设计要使整系统集,紧凑;要考虑发热量高噪声振电气部件,使其离操作者定距离;电源紧急控制关应安放便且明显位置.
不要多想 这样的提问没有意义
很多烦恼都是我们自己找的
⑻ 单梁桥式起重机的电路及修理办法
1 吊钩
(1)拆卸检查吊钩、轴、横梁、滑轮、轴承并清洗润滑
(2)检查危险断面磨损状况
(3)吊钩的试验
(4)板钩检修(1)吊钩、横梁、滑轮轴、不准有裂纹,螺纹部分不应松脱,轴承完好,转动滑轮,螺纹退刀槽处有刀痕或裂纹者应更换。
(2)危险断面磨损超过原高度的10%的应作更换。
(3)大修后,吊钩应做试验检查,以1.25倍的额定负荷悬吊10分钟,钩口弹性张开量不应超过钩口尺寸的0.25%,卸载后不应有永久变形和裂纹;
(4)板钩铆接后,板与板的间隙,不应大于0.3mm
2 钢丝绳
(1)断丝检查
(2)径向磨损量
(3)变形检查
(4)钢丝绳润滑 (1)1个捻距内断丝数超过钢丝总数10%的应按标准报废
(2)钢丝径向磨损超过原直径40%的,整根钢丝绳应报废
(3)钢丝绳直径缩细量至绳径70%的扭结,绳芯处露,断股者应报废换新钢丝绳
(4)润滑前先用钢丝刷,煤油等清洗,用钢丝绳麻脂(Q/SY1152-65)或合成石墨钙基润滑指(SYA1405-65)浸涂饱和为宜
3 滑轮组
(1)拆洗检修滑轮组,检查裂纹
(2)滑轮槽的检修
(3)轴孔的检查
(4)装配 (1)滑轮轴不得有裂纹,轴颈不得磨损原直径30%,圆锥度不大于5%,超过此值即应更换
(2)用样板检查滑轮槽形,径向磨损不应超过壁厚的30%,否则应报废。不得超过标准者可补修,大修后用样板检查,其底部与侧向间隙均不应大于0.5mm,轮槽中心线与滑轮中心线的偏差不应大于0.2mm,绳槽中心对轮廓端面的偏差不应大于1mm
(3)大修后,轴孔允许有不超过0.25CM2 的缺陷,深度不应该超过4mm
(4)装配后,应能用手灵活转动,侧向摆动不得超过D/1000。D-滑轮的名义直径
4 卷筒
(1)卷筒绳槽
(2)卷筒表面
(3)卷筒轴
(4)装配与安装 (1)绳槽磨损超过2mm应重新车制,大修后绳槽应达到图纸要求,但卷筒壁厚不应小于原厚度的81%
(2)卷筒表面不应有裂纹,不应有明显的失圆度,压板螺钉不应该松动
(3)卷筒轴上不得有裂纹,大修理后应达到图纸要求,磨损超过名义直径的5%时,应更换新件
(4)卷筒轴中心线与小车架支承面要平行,其偏差不应大1mm/m,卷筒安装后两轴端中心线偏差应不大于0.15mm
5 车轮
(1)车轮踏面磨损
(2)两个相互匹配车轮的直径偏差
(3)轮缘磨损与折断,变形
(4)车轮裂纹
(5)踏面椭圆度
(6)车轮组装配(1)车轮踏面磨损量超过原厚度的15%时应更换新件,没超过此值,可重新车制、热处理修复。车轮直径应在公差范围内,表面淬火硬度HB300~500,对车轮直径大于Φ400mm的淬火层厚度应大于20mm;小于Φ400mm时,淬火层厚不应小于15mm。
(2)主动车轮直径偏差不应超过名义直径的0.1%,从动车轮则不应超过0.2%,电动葫芦车轮直径偏差不应超过名义直径的1%,从动车轮不应超过0.2%;电动葫芦车轮直径偏差不应超过名义直径的1%
(3)轮缘磨损量达原厚的50%或折断面积超过30mm2应报废,轮缘厚度弯曲变形达原厚度20%应报废。
(4)车轮发现裂纹则应报废
(5)车轮踏面椭圆度达1mm应报废
(6)安装好的车轮组件,应能手转动灵活,安装在同一平衡架上的几个车轮就在同一垂直平面内,允许偏差为1mm
6 车轮轴与轴承
(1)轴颈的检修
(2)裂纹的检修
(3)滚动轴承的检修
(4)滑轮轴承间隙的检查
(5)轴键间隙检查 (1)轴颈在大修后的椭圆度、圆锥度不应大于0.03mm
(2)用磁力或超声波探伤器检查轴,轴上不得有裂纹,划伤深度不得超过0.03mm
(3)圆锥滚子轴承内外圈之间允许有0.03~0.18mm范围内的轴向间隙。轴承压盖调整间隙应在0.5~1.5mm的范围之内
(4)轴与轴瓦的允许间隙(mm)如表a
轴颈 主动轴间隙 从动轴间隙
20~40 0.6 1.2
40~90 0.8 1.6
(5)轴与键的径向允许间隙(mm)如表b
轴径 20~40 径向允许间隙0.1~0.3
41~90 0.1~0.4
键槽与键侧向允许间隙(mm)如表c
轴径 20~40 径向允许间隙0.1~0.2
41~80 0.2~0.3
>80 0.3~0.5
7 齿轮与减速器
(1)拆解减速器清洗检查齿轮磨状况
(2)齿面的检查
(3)轴的检修
(4)轴承的检修
(5)装配检查
①中心距:用千分尺或专用的游标卡尺测量齿轮的中心距离
②齿侧齿顶间隙,可用压铅丝法测量
③啮合面积的检修
(6)运转试验(1)起升机构减速器第一轴上的齿轮磨损量不应超过齿厚的10%,其余则应小于20%;大小车运行机构减速器第一轴上齿轮磨损不应超过15%,其余则应小于25%。
(2)齿面点蚀损坏啮合面的30%,且深度达原齿厚的10%时应报废齿轮,轮齿不应有裂纹或齿轮不能有断齿。否则更换。
(3)轴上不得有裂纹,轴的弯曲度全长不应超过0.03mm/m,超标则校直。
(4)大修后轴承的径向间隙允许偏差(单位:mm)
轴径内径 允许间隙
17~30 0.02
35~50 0.03
55~90 0.04
(5)装配时检查以下3项:中心距、齿侧间隙、啮合面积的偏差(mm)
①中心距允许偏差
中心距 <100 100~200 250~400 >500
允许偏差 ±0.07 ±0.09 ±0.12 ±0.15
②齿侧间隙允许偏差齿顶间隙允许值为0.25m,m-模数
中心距 80~120 120~200 200~300 320~500 500~800
齿侧间隙 0.13~0.26 0.17~0.34 0.21~0.4 026~0.53 0.34~0.67
中心距 80~120 120~200 200~300 320~500 500~800
③用涂红丹的方法检查。啮合面积不低于齿高的45%,齿宽的60%
(6)减速器箱体接合面(剖分面)在任何部位不允许有砸、碰及严重划伤,边缘高点、翻边等,并且剖分面贴合后间隙都不应超过0.03mm,并保证不漏油。平行度在1m以上不得大于0.5mm;在空载情况下,以1000r/min拖动运转,正反转各不小于10分钟,启动时电动机不应有振动,撞击和剧烈或断续的异常声响;箱体内温升不得超过70℃,且绝对温度不高于80℃;轴承温升不应超过40℃,其绝对值不应超过80℃
8 联轴器
(1)齿形联轴器齿面检修
(2)内、外齿圈端面对中心线的摆动量的检验
(3)当轴的中心线无倾斜时,检查联轴器安装径向位移
(4)无径向位移时,因两联轴器的不同心所引起的外圈车线的歪斜角检查
(5)用中间轴联接的齿形式联轴器径向位移 (1)可参考部分
(2)内外圈端面允许摆动量(mm)
直径D
允许摆动量 40~100 100~200 200~400 400~800 80~120000
±0.01 ±0.02 ±0.0 ±0.08 ±0.120
(3)两根轴的允许径向移量,根据模数不同,其值为0.4~3.2mm
模数(m) 2.5 2.5 3 3 3 4 4 4
齿数(Z) 30 38 40 48 56 48 56 62
径向位移(mm) 0.4 0.65 0.8 1 1.25 1.35 1.6 1.8
(4)内齿圈轴线歪斜角允许在0°30'范围内
(5)径向位移最大值Ymax=0.00873A,A-两外齿中心量起的中间轴长度
9 制动器
(1)制动摩擦片检修
(2)制动轮检修
①制动轮表面
②制动轮与摩擦片的接触面积及其中心线的偏差
③制动轮安装后,轮缘摆幅检查
④制动轮与联轴器的安装
(3)小轴、心轴、轴孔的检修
(4)制动臂与工作弹簧
(5)制动器杠杆系统 (1)其磨损量不应超过原厚度的50%,铆钉应下沉≥2mm
(2)包括制动轮工作表面、制动轮与摩擦片接触的面积等项标准
①制动轮工作表面糙度不低于Ra=16μm,HRC不低于50,深度2mm处不低于HRC40;工作表面凹痕或单边径向磨损量达1.5mm时应重新车制及热处理。加工后的制动轮厚度:对起升机构不应小于原厚度的70%,对运行机构不应小于原厚度的50%制动轮大修后,D≤200mm的径向跳动不应大于0.05m,D>200mm的径向跳动不应大于0.1m
②接触面积不小于摩擦片总面积的80%;二者中心线的偏差值为:当D≤200mm时,不应超过2mm,D>300mm,不应超过3mm
③制动轮安装后允许的摆幅(mm)
制动轮直径D ≤200 >200~300 >300~600
允许摆动 径向 0.10 0.12 0.18
端面 0.15 0.20 0.25
④与联轴器相连接的制动轮,应把制动轮安装在靠近电动机(或减速器)的一侧
(3)小轴、心轴磨损量达名义直径的20%时应修复,超过此值应更换
(4)制动臂和工作弹簧不能有裂纹和断裂
(5)空行程不得超过衔铁冲程的10%,试车时应反映灵敏可靠
10 起升机构及小车部分
(1)起升机构的轴
(2)电动机与减速器的位移检查
(3)卷筒和减速器轴线偏差
(4)小车轮距偏差
(5)小车轨道标高偏差
(6)轨道中心线离承轨梁设计中心线的偏差
(7)小车轨道接头偏差
(8)小车轮端面水平偏差
(9)小车轮端面偏差
(10)小车轮踏面偏差
(11)小车轮距偏差 (1)探伤检查起升机构的主轴和传动轴,不允许有裂纹
(2)应符合联轴器的安装要求
(3)在轴承座处的允许偏差不应大于3mm/m
(4)由于小车轮测量的小车轨距偏差:当轨距≤2.5m,允许偏差为±2mm,且主从动轮相对差不大于2mm,当轨距>2.5m,允许其偏差不大于±3mm,且主动轮相对差不大于3mm
(5)当小车轨距≤2.5mm,允许偏差为3mm;轨距>2.5m,允许偏差为5mm
(6)箱形单梁允许偏差为:不得大于1/2δ,δ-腹板厚度(mm),单腹板梁允许偏差为:不小于10mm,箱形双主梁允许偏差为:2~3mm
(7)轨道接头处标高偏差及中心线偏差≤1mm
(8)水平偏差不应大于1/1000,且两主动轮偏斜主向相反,1-测量长度
(9)不得大于D/400
(10)所有车轮踏面都必须在1个平面内,偏差不应大于0.5mm
(11)允许相对偏差为4mm
11 大车运行机构
(1)车轮偏差
(2)同一平衡梁上的车轮检查
(3)轨道外观检查①轨道外观检查
②纵向倾斜度
③轨距偏差
④两根轨道相对高差
(4)夹轨器检修
(5)由车轮测量出的起重机跨度偏差
(6)由车轮量出的对角线偏差 (1)大车车轮的水平,垂直偏差与小车轮相同
(2)同一平衡梁上的两个车轮的对称平面应在同一垂直平面内,允许偏差不应大于1mm
(3)包括外观、倾斜度,轨距等项的技术标准
①轨道不应有裂纹、轨顶、轨道头侧面等磨损量不应超过3mm
②起重机轨道纵向倾斜度不应大于5/1000
③其值≤10mm
④同一断面内的两根轨道相对标高偏差≤10mm
(4)钳口磨损量超过原厚40%的应更换,电动夹轨器要经常注意调节安全尺,使其指针在规定的位置
(5)当跨度L≤30m,跨距偏差不应大于5mm,当L>30m,跨距偏差不应大于8mm
(6)当跨度≤30m,偏差不应大于5mm,当L<30m,其偏差不应大于10mm
1 主梁几何形状
(1)主梁上拱度检验
(2)主梁下挠度检验
(3)水平旁弯检验
(4)腹板波浪形变形 (1)跨中拱度为L/1000,允许偏差为上拱度的20%
(2)满载跨中弹性下挠量≤L/700,空载跨中下挠变形不应超过0.6/1000L。超过此规定值,应修复并加固
(3)跨中水平旁不应大于L/2000
(4)受压区波峰不应大于0.7δ,受拉区波峰不应大于1.2δ,δ-腹板厚度
2 桥架组装
(1)水平方向两对角线检验
(2)垂直方向两对角线检验
(3)小车轨道至桥架纵向中心距离偏差 (1)箱形梁允许偏差为5mm;杵架梁允许偏差为10mm
(2)允许偏差10mm
(3)允许偏差应小于3mm
3 箱形架
(1)裂纹的检验(2)金属结构涂装及防腐 (1)金属结构不应有裂纹和焊缝开裂处
(2)应保持涂装的完好,防止腐蚀,其腐蚀量不得超过原厚的10%,修后涂漆
4 桁架杆件桁架节点间主要受力杆件的弯曲度桁架主要受力件(压杆)的弯曲不应超过1/1000,但最大不应大于2mm 1-杆件计算长度
桥式起重机大修理项目及技术标准(电器设备部分)
序号 元器件 大修理项目 技术标准
1 电动机 (1)拆开电动机,清洗轴承并换新润滑油,测量定子、转子绝缘电阻
(2)电动机轴的检修
(3)绕组的检修
(4)端盖止口配合间隙的检验
(5)滑环与电刷的检修(1)对于新安装的电动机定子绝缘电阻应大于2MΩ,转子绝缘电阻应大于0.8MΩ;对使用中的电动机,定子绝缘电阻应大于0.5MΩ,转子绝缘电阻大于0.5MΩ;如达不到一标准,应拆下来干燥;在烘干情况下(50~70)定子绝缘电阻达1MΩ,转子绝缘电阻应大于0.5MΩ
(2)大修理后电动机轴不得有裂纹,弯曲度不得超过0.2mm,轴颈应达到图纸要求
(3)绕组不允许有损伤,保证涂漆完好,在修理时,不准用汽油、机油、煤油等液体擦洗绕组
(4)端盖止口配合间隙如表(mm)
端盖轴承孔的间隙,不应大于0.05mm
端盖止口外径 300 500 800 1000
最大间隙 0.05 0.10 0.15 0.20
(5)刷架弹簧压力不应低于0.05~2.00NCM2,1台电动机上所有电刷压力应一致,电刷与刷握的间隙不应大于0.2mm,滑环表面不允许有灼许和深沟;电刷与滑环必须接触良好,滑环椭圆度不应超过0.02~0.05m_
2 控制器与接触器 (1)拆卸清洗
(2)调整压力、检修触头 (1)手柄应转动灵活,无卡住现象。
(2)触头正常压力为10~17N,触头磨损大于3mm,触片不应大于1.5mm
3 电阻器 (1)拆开清理
(2)电阻片 (1)锉掉氧化层,拧紧螺钉,用石棉纸校正各电阻片的间距
(2)发现裂纹可以补焊,整片断裂应更换新件
4 限位开关 (1)清理检修磨损件
(2)调整 (1)更换磨损件,拧紧螺钉,要求限位器动作灵敏可靠
(2)当吊钩滑轮组上升至起重机主梁下盖板300mm时,其上升限位开关应动作,起重机运行至距轨道端200mm或两台起重机相近约300mm,行程开关动作
5 集电器 (1)磨损、变形的检修
(2)检查瓷瓶 (1)钢铝磨损不应大于原直径的25%,如有变形应校正
(2)拧紧螺钉;瓷瓶绝缘电阻不得少于1MΩ
6 导线 (1)更换老化、绝缘不良的导线、套管
(2)检查绝缘 (1)按需要更换导线和套管,弯管曲率半径不应小于管径的5倍,管子弯曲度不应小于90°
(2)导线与地面之间的绝缘电阻不应小于0.5MΩ
7 避雷与接地测量绝缘电阻,检查接地与避雷装置接地电阻应小于4Ω,接地线应采用截面不小于150mm2的镀锌扁铁,10mm2裸铜线。30mm2的镀锌圆钢;司机室和起重机本体的接地连接采用4×10mm镀锌扁铁,连接线装置不应少于两处
8 照明 更换导线检查灯具和低压变压器 更换损坏件,保证安全
9 电缆卷筒 调节电缆卷筒卷绕力矩,使电缆和起升机构或大车运行机构保持平衡 调整卷绕力矩
九、负荷试验与交工验收
1、负荷试验前的准备
(1)关闭电源检查所有连接部位的坚固情况。
(2)检查钢丝绳在卷筒、滑轮组中的缠绕状况是否正常。
(3)用兆欧表检查电路系统和所有电气设备的绝缘电阻是否符合技术要求。
(4)对各润滑点注油脂,检查各减速器、制动器、液压罐等按规定加油。
(5)清除大车运行轨道上,起重机上及试验区域内妨碍负荷试验的一切物品。
(6)准备好负荷试验用的重物,最好能组合成额定负荷50%、75%、100%、125%的重物。
(7)指定人员:如司机上检验人员、地面指挥人员、栓挂钩起重人员、与试验无关人员必须离开起重机试验现场。
2、空负荷试验:
分别开动各机构,先以低速挡试运行,再以额定速度运行。同时观察各个机构的驱动装置、传动装置、支撑装置、工作装置应能平稳地工作,不得振动与冲击现象。
3、静负荷试验:
小车在桥架中间位置,事先准备好的重物按额定起重量的50%、75%、100%、125%加戴,将1.25倍额定负荷的重物起升至地面约100mm,悬停10分钟,并用水平仪测量法,测量桥架变形量,然后放下重物,按此法重复试验三次,桥架应无永久变形。
4、动负荷试验:
以额定负荷的1.1倍,进行试验。各机构每次连续运转时不可太长,但累计时间不应小于1h。在试验中检查各机构运行是否平稳,各制动器安全装置限位装置的工作是否平稳,各制动器安全装置限位装置的工作是否灵活,准确可靠。各轴承处及电动、液动等元件是否正常,动负荷试验后,应检查金属结构的焊接质量和机械连接的质量,并检查各部位连接螺栓的坚固情况。
5、交工验收:
起重机负荷试验后,修理单位与使用单位应办理交工验收手续。认真填写验收报告,通知甲方,组织有关部门验收,合格后交付使用。
电动单梁桥式起重机维修
施 工 方 案
为了保证起重机安装工作顺利进行,使起重机在安装过程中,贯穿过程在安全有序的工作状态下,就必须有计划、有组织、有步骤地进行施工,让每个作业人员做到心中有数、得心应手,特制定以下施工方案:
一、起重机的安装概况
本机起重量Q=3吨,跨度L=13.5米,起重高度H=9米,大车运行速度 20米/分。
二、安装前的准备
(1)安装现场的选择
安装现场应有足够的面积以满足安装翻转起吊的需要,场地应有电源以备接通焊机和其它电动工具。
(2)设备和工具的准备
本工期需焊机2台,氧气乙炔2套,手拉葫芦2台,垫木梯子以及吊具和吊车,甲方提供。
(3)材料的准备
本工程所用的钢轨、压板、夹板、螺栓、制作车档所用的板材以及滑线用的材料和焊条,根据实际需要量要备足。
(4)人员安排
参加本期工程的人员:电工2名、钳工2名、焊工2名、起重工2名、安全负责人1名。
三、安装过程中的基本安全要求
参加本期工程的施工人员严格遵守各工种的安全操作规程进行施工,严禁违章作业。
四、安装的工艺过程
(1)轨道的安装:首先清理现场,行车水泥承受轨梁基础进行验收。找平、放线。钢轨的检查和调直、轨道上位、钢轨接头的联接、找正加固、测量检查、找平、调直。车档制做安装,轨道的安装标准要符合TJ231-78《机械设备安装工程施工验收规范》的规定标准,全行程最高点和最低点之差不大于10mm,接头的左、右、上三面的偏移均不大于1mm,接头间隙不大于2mm,跨度偏差不应大于5mm,同跨两平行轨道的标高相对差,在柱子处不应大于10mm,其它处不应大于15mm。
(2)滑线的安装
滑线的接触面应平、直、无锈蚀、导电良好、安装适当,在跨越建筑物的伸缩缝时,应设补偿装置。供电滑线在非导电的接触面涂红色油漆,并在适当位置装置安全标志或表示带电的指示灯。如安装安全滑线时应平直、导电良好,如用软缆供电时,线号要符合要求,设牵引绳。
(3)起重机的桥架安装架设
安装前应会同委托安装单位及制造单位的代表一起开箱,按照随机所带的装箱,清点、核对所交货物与装箱单所列的零件数量是否相符、随机文件是否齐全,核对完毕后,作出记录,由三方代表当场签字,桥架的组装和架设时所有参加施工人员严格遵守各工种的安全操作规程,严禁违章作业。
起重机组装时,要把桥架按工作位置放在垫架上,固定牢固后,再组装端梁,测量对角线差,不应大于5mm,跨度不应大于3mm,完全符合规定后,再进行组装电葫芦,小车运行间隙不应大于5mm,最后组装操纵室。
(4)电器安装
安装前应详细熟悉电器原理图、配线图、电气总图和有关技术资料,了解操作原理和各元件的作用。以便准确安装和迅速处理安装过程中出现的问题。检查各电器元件和电机的对地缘电阻应不低于0.8兆欧。在潮湿环境中应不小于0.4兆欧,检查各线路是否正确,确定无误码率后,方可通电试运转。在试运转时,检查各运行方向是否一致、行程开关是否符合要求的方向、上下断电限位器是否安全可靠。各安全装置必须安全可靠合格后,方可起吊架设,在吊装过程中,严格遵守安全操作规程,严禁违章作业。
五、起重机所带电的外壳、电线管等均应有可靠的接地,起重机轨道以及起重机上任何一点的接地电阻均不得大于4欧姆。重复接地电阻不大于10欧姆。主回路和控制电路对地绝缘电阻不小于0.8兆欧。
六、起重机试运转合格后,要作无负荷试验、静负荷试验、动载试验。自检合格后,认真填写竣工报告,通知甲方,组织有关部门验收,合格后交付使用。
参考:http://www.zgqzw.com/Article3/ArticleDetail.asp?id=755
⑼ 数控双柱立车横梁无法移动
1、首先横梁移动时必须是工作台停止状态。
2、登上顶部 看升降电机是否转动,如果不转,检查电路或者电机
3,如果电机或者电路没问题,检查横梁后升降螺母是否已经磨损了,如果扣磨完了,需要更换。
先查这几点,不行再说。
⑽ 万能试验机横梁不能上下移动怎样处理
1. 移动横梁升降不畅:如果不是电气的原因首先要查看丝杆与机座孔间润滑不够或异物阻卡或者丝杆下部螺帽的锁定螺丝松动。如果出现以上情况可拆下丝杆下部进行清洗、加润滑油、安装。
2. 按升降按钮横梁没反应:
a.急停按钮被按下,将急停按钮拉起来。
b.热继电器保护,打开电气控制柜,将热继电器复位,横梁上下限位开关坏:更换限位开关。
3不同的实验速度会得到不同的实验结果:横梁运动速度存在不稳定性因此需要对速度进行校验检定。
4. 横梁只降不升:检查横梁上限位开关是否被撞坏,如果损坏更换限位开关。
5.横梁向反方向移动:可能是试验机软件出了差错,可及时联系厂家。
6. 横梁受力时产生形变:横梁的材料选择不当,容易增加自重力,使测量结果不准确,应及时更换横梁。