Ⅰ protel自動布線的問題,老是不能布完
這個PCB自動布線的原理貌似是根據數學的拓撲演算法去完成的 PCB自動布線出現沒有連接上不是說沒有在原理圖沒連接的原因 而是你的元件太多系統自動布線不了了,只有人工改動元件的位置自己布線或者再次重新自動布線 嚴格來說系統自動布線不是很規范 不太考慮電氣規則 還是人工布線的好 不然也不會有專門布線這個職位了
Ⅱ 後端走線在哪
後端走線一般在金屬層走線。
一、專用集成電路(ASIC)的數字後端設計需要各種類型的庫。庫是物理版圖、抽象視圖、時序和功能模型、晶體管電路描述的集合。工藝中可以使用多層金屬,使用交替走線,例如第一層金屬垂直走線,第二層金屬水平走線。此時,ASIC後端設計會有更多的走線資源。優先選用使用第一金屬進行標准單元的走線,如果需要更高層金屬的話,盡量使用第二金屬。這會增加頂層的走線資源。
二、布線是繼布局和時鍾樹綜合之後的重要物理實施任務,其內容是將分布在晶元核內的模塊、標准單元和輸入輸出介面單元( I /O pad)按邏輯關系進行互連,其要求是百分之百地完成它們之間的所有邏輯信號的互連,並為滿足各種約束條件進行優化。能否按照設計的需求將信號線布通是決定晶元是否能夠流片的首要前提。進行消除布線擁塞(congestion)、優化時序(timing)、減小耦合效應(coupling)、消除串擾(crosstalk)、降低功耗、保證信號完整性(signal integrity)、預防DFM問題和提高良品率等布線的優化工作則是衡量布線質量的重要指標。
三、超大規模集成電路多層布線採用自動布線方法,它是由雙層PCB(printed circuit board),布線和FPGA通道布線等方法發展而來的一種復雜的布線方法。在實施過程中,它被分為全局布線(global routing)和詳細布線(detail routing)以及布線修正(search and repair)三個步驟來分別完成。自動布線的質量依賴於布局的效果以及EDA工具中所採用的布線演算法和優化的方法。
Ⅲ 錫接走線法如何處理電路圖上交叉的導線
首先安排好元件位置。然後實在不行使用過孔、依靠元件本身的管腳構成一個飛線。最後如果如果是因為電路圖的復雜度的原因,確實不能使用錫接法,那麼還是考慮飛線和PCB吧。。順便說一下,現代的軟體進行PCB自動布線,演算法已經在一代一代的改善了,動態規劃、蟻群演算法、機器學習等等演算法都可以運用於其上,電路布線的問題實際上就是一個路徑規劃的問題——既要越短越好,又要減少沖突。
Ⅳ 家裝電工布線現在多少錢一平米了
現在人們生活質量提高了,人們開始對於房子的裝修是越來越重視,而房子裝修中最為重要就是電路的裝修,如果在家裝過程中電路裝修出現問題的話,會給人們的生活帶來非常大的安全隱患,因此人們對於家裝電工的選擇是非常慎重的。那下面小編就給大家說一說目前市場上家裝電工的價格,同時給大家介紹一下家裝電工布線原則。
家裝電工多少錢
大家都知道家裝中電是非常重要的一件事情,一般的市場上改電報價:強電改造每米單價23元,強電改造每米單價28元,強電改造每米單價38元,原管穿牆電線每米單價18元。暗盒每個5-15元不等。牆體打孔10-30元。電視線、電話線、網線每米均在20元左右,開關插座100-200元區間(來源網路,僅供參考)。
家裝電工布線原則
1、配電箱戶表後應根據室內用電設備的不同功率分別配線供電;大功率家電設備應獨立配線安裝插座。
2、配線時,相線與零線的顏色應不同;同一住宅相線(L)顏色應統一,零線(N)宜用藍色,保護線(PE)必須用黃綠雙色線。
3、導線間和導線對地間電阻必須大於0.5MΩ。
4、各弱電子系統均用星型結構。
5、進線穿線管2~3根從戶外引入家用信息接入箱。出線穿線管從家用信息箱到各個戶內信息插座。所敷設暗管(穿線管)應採用鋼管或阻燃硬質聚氯乙烯管(硬質PVC管)。
6、直線管的管徑利用率應為50%~60%,彎管的管徑利用率應為40%~50%。
7、所布線路上存在局部干擾源,且不能滿足最小凈距離要求時,應採用鋼管。
8、暗管直線敷設長度超過30米,中間應加裝過線盒。
5、進線穿線管2~3根從戶外引入家用信息接入箱。出線穿線管從家用信息箱到各個戶內信息插座。所敷設暗管(穿線管)應採用鋼管或阻燃硬質聚氯乙烯管(硬質PVC管)。
10、暗管彎曲半徑不得小於該管外徑的6~10倍。
11、在暗管孔內不得有各種線纜接頭。
12、電源線配線時,所用導線截面積應滿足用電設備的最大輸出功率。
13、電線與暖氣、熱水、煤氣管之間的平行距離不應小於300mm,交叉距離不應小於100mm。
14、穿入配管導線的接頭應設在接線盒內,接頭搭接應牢固,涮錫並用絕緣帶包纏應均勻緊密。
現在越來越多的人們都會來到城市中發展,而想要在大城市中發展就需要在城市中擁有自己的房子。而大家都知道現在社會上的房價是非常高的,因此人們一旦擁有一套自己的房子就會對其進行非常認真的裝修。在房子裝修中的電路是人們最為關心的,而小編上面給大家說的家裝電工布線原則,有興趣的朋友可以看一下。
Ⅳ 請問誰有詳細的PCB板AD等敏感元件的布線規則謝謝!
高速PCB設計指南
高速PCB設計指南之一
第一篇 PCB布線
在PCB設計中,布線是完成產品設計的重要步驟,可以說前面的准備工作都是為它而做的,在整個PCB中,以布線的設計過程限定最高,技巧最細、工作量最大。PCB布線有單面布線、雙面布線及多層布線。布線的方式也有兩種:自動布線及互動式布線,在自動布線之前,可以用互動式預先對要求比較嚴格的線進行布線,輸入端與輸出端的邊線應避免相鄰平行,以免產生反射干擾。必要時應加地線隔離,兩相鄰層的布線要互相垂直,平行容易產生寄生耦合。
自動布線的布通率,依賴於良好的布局,布線規則可以預先設定,包括走線的彎曲次數、導通孔的數目、步進的數目等。一般先進行探索式布經線,快速地把短線連通,然後進行迷宮式布線,先把要布的連線進行全局的布線路徑優化,它可以根據需要斷開已布的線。並試著重新再布線,以改進總體效果。
對目前高密度的PCB設計已感覺到貫通孔不太適應了,它浪費了許多寶貴的布線通道,為解決這一矛盾,出現了盲孔和埋孔技術,它不僅完成了導通孔的作用,還省出許多布線通道使布線過程完成得更加方便,更加流暢,更為完善,PCB板的設計過程是一個復雜而又簡單的過程,要想很好地掌握它,還需廣大電子工程設計人員去自已體會,才能得到其中的真諦。
1電源、地線的處理
既使在整個PCB板中的布線完成得都很好,但由於電源、地線的考慮不周到而引起的干擾,會使產品的性能下降,有時甚至影響到產品的成功率。所以對電、地線的布線要認真對待,把電、地線所產生的噪音干擾降到最低限度,以保證產品的質量。
對每個從事電子產品設計的工程人員來說都明白地線與電源線之間噪音所產生的原因,現只對降低式抑制噪音作以表述:
(1)、眾所周知的是在電源、地線之間加上去耦電容。
(2)、盡量加寬電源、地線寬度,最好是地線比電源線寬,它們的關系是:地線>電源線>信號線,通常信號線寬為:0.2~0.3mm,最經細寬度可達0.05~0.07mm,電源線為1.2~2.5mm
對數字電路的PCB可用寬的地導線組成一個迴路,即構成一個地網來使用(模擬電路的地不能這樣使用)
(3)、用大面積銅層作地線用,在印製板上把沒被用上的地方都與地相連接作為地線用。或是做成多層板,電源,地線各佔用一層。
2數字電路與模擬電路的共地處理
現在有許多PCB不再是單一功能電路(數字或模擬電路),而是由數字電路和模擬電路混合構成的。因此在布線時就需要考慮它們之間互相干擾問題,特別是地線上的噪音干擾。
數字電路的頻率高,模擬電路的敏感度強,對信號線來說,高頻的信號線盡可能遠離敏感的模擬電路器件,對地線來說,整人PCB對外界只有一個結點,所以必須在PCB內部進行處理數、模共地的問題,而在板內部數字地和模擬地實際上是分開的它們之間互不相連,只是在PCB與外界連接的介面處(如插頭等)。數字地與模擬地有一點短接,請注意,只有一個連接點。也有在PCB上不共地的,這由系統設計來決定。
3信號線布在電(地)層上
在多層印製板布線時,由於在信號線層沒有布完的線剩下已經不多,再多加層數就會造成浪費也會給生產增加一定的工作量,成本也相應增加了,為解決這個矛盾,可以考慮在電(地)層上進行布線。首先應考慮用電源層,其次才是地層。因為最好是保留地層的完整性。
4大面積導體中連接腿的處理
在大面積的接地(電)中,常用元器件的腿與其連接,對連接腿的處理需要進行綜合的考慮,就電氣性能而言,元件腿的焊盤與銅面滿接為好,但對元件的焊接裝配就存在一些不良隱患如:①焊接需要大功率加熱器。②容易造成虛焊點。所以兼顧電氣性能與工藝需要,做成十字花焊盤,稱之為熱隔離(heatshield)俗稱熱焊盤(Thermal),這樣,可使在焊接時因截面過分散熱而產生虛焊點的可能性大大減少。多層板的接電(地)層腿的處理相同。
5布線中網路系統的作用
在許多CAD系統中,布線是依據網路系統決定的。網格過密,通路雖然有所增加,但步進太小,圖場的數據量過大,這必然對設備的存貯空間有更高的要求,同時也對象計算機類電子產品的運算速度有極大的影響。而有些通路是無效的,如被元件腿的焊盤佔用的或被安裝孔、定們孔所佔用的等。網格過疏,通路太少對布通率的影響極大。所以要有一個疏密合理的網格系統來支持布線的進行。
標准元器件兩腿之間的距離為0.1英寸(2.54mm),所以網格系統的基礎一般就定為0.1英寸(2.54mm)或小於0.1英寸的整倍數,如:0.05英寸、0.025英寸、0.02英寸等。
6設計規則檢查(DRC)
布線設計完成後,需認真檢查布線設計是否符合設計者所制定的規則,同時也需確認所制定的規則是否符合印製板生產工藝的需求,一般檢查有如下幾個方面:
(1)、線與線,線與元件焊盤,線與貫通孔,元件焊盤與貫通孔,貫通孔與貫通孔之間的距離是否合理,是否滿足生產要求。
(2)、電源線和地線的寬度是否合適,電源與地線之間是否緊耦合(低的波阻抗)?在PCB中是否還有能讓地線加寬的地方。
(3)、對於關鍵的信號線是否採取了最佳措施,如長度最短,加保護線,輸入線及輸出線被明顯地分開。
(4)、模擬電路和數字電路部分,是否有各自獨立的地線。
(5)後加在PCB中的圖形(如圖標、注標)是否會造成信號短路。
(6)對一些不理想的線形進行修改。
(7)、在PCB上是否加有工藝線?阻焊是否符合生產工藝的要求,阻焊尺寸是否合適,字元標志是否壓在器件焊盤上,以免影響電裝質量。
(8)、多層板中的電源地層的外框邊緣是否縮小,如電源地層的銅箔露出板外容易造成短路。
第二篇 PCB布局
在設計中,布局是一個重要的環節。布局結果的好壞將直接影響布線的效果,因此可以這樣認為,合理的布局是PCB設計成功的第一步。
布局的方式分兩種,一種是互動式布局,另一種是自動布局,一般是在自動布局的基礎上用互動式布局進行調整,在布局時還可根據走線的情況對門電路進行再分配,將兩個門電路進行交換,使其成為便於布線的最佳布局。在布局完成後,還可對設計文件及有關信息進行返回標注於原理圖,使得PCB板中的有關信息與原理圖相一致,以便在今後的建檔、更改設計能同步起來,同時對模擬的有關信息進行更新,使得能對電路的電氣性能及功能進行板級驗證。
--考慮整體美觀
一個產品的成功與否,一是要注重內在質量,二是兼顧整體的美觀,兩者都較完美才能認為該產品是成功的。
在一個PCB板上,元件的布局要求要均衡,疏密有序,不能頭重腳輕或一頭沉。
--布局的檢查
印製板尺寸是否與加工圖紙尺寸相符?能否符合PCB製造工藝要求?有無定位標記?
元件在二維、三維空間上有無沖突?
元件布局是否疏密有序,排列整齊?是否全部布完?
需經常更換的元件能否方便的更換?插件板插入設備是否方便?
熱敏元件與發熱元件之間是否有適當的距離?
調整可調元件是否方便?
在需要散熱的地方,裝了散熱器沒有?空氣流是否通暢?
信號流程是否順暢且互連最短?
插頭、插座等與機械設計是否矛盾?
線路的干擾問題是否有所考慮?
第三篇 高速PCB設計
(一)、電子系統設計所面臨的挑戰
隨著系統設計復雜性和集成度的大規模提高,電子系統設計師們正在從事100MHZ以上的電路設計,匯流排的工作頻率也已經達到或者超過50MHZ,有的甚至超過100MHZ。目前約50%的設計的時鍾頻率超過50MHz,將近20%的設計主頻超過120MHz。
當系統工作在50MHz時,將產生傳輸線效應和信號的完整性問題;而當系統時鍾達到120MHz時,除非使用高速電路設計知識,否則基於傳統方法設計的PCB將無法工作。因此,高速電路設計技術已經成為電子系統設計師必須採取的設計手段。只有通過使用高速電路設計師的設計技術,才能實現設計過程的可控性。
(二)、什麼是高速電路
通常認為如果數字邏輯電路的頻率達到或者超過45MHZ~50MHZ,而且工作在這個頻率之上的電路已經佔到了整個電子系統一定的份量(比如說1/3),就稱為高速電路。
實際上,信號邊沿的諧波頻率比信號本身的頻率高,是信號快速變化的上升沿與下降沿(或稱信號的跳變)引發了信號傳輸的非預期結果。因此,通常約定如果線傳播延時大於1/2數字信號驅動端的上升時間,則認為此類信號是高速信號並產生傳輸線效應。
信號的傳遞發生在信號狀態改變的瞬間,如上升或下降時間。信號從驅動端到接收端經過一段固定的時間,如果傳輸時間小於1/2的上升或下降時間,那麼來自接收端的反射信號將在信號改變狀態之前到達驅動端。反之,反射信號將在信號改變狀態之後到達驅動端。如果反射信號很強,疊加的波形就有可能會改變邏輯狀態。
(三)、高速信號的確定
上面我們定義了傳輸線效應發生的前提條件,但是如何得知線延時是否大於1/2驅動端的信號上升時間?一般地,信號上升時間的典型值可通過器件手冊給出,而信號的傳播時間在PCB設計中由實際布線長度決定。下圖為信號上升時間和允許的布線長度(延時)的對應關系。
PCB板上每單位英寸的延時為0.167ns.。但是,如果過孔多,器件管腳多,網線上設置的約束多,延時將增大。通常高速邏輯器件的信號上升時間大約為0.2ns。如果板上有GaAs晶元,則最大布線長度為7.62mm。
設Tr為信號上升時間,Tpd為信號線傳播延時。如果Tr≥4Tpd,信號落在安全區域。如果2Tpd≥Tr≥4Tpd,信號落在不確定區域。如果Tr≤2Tpd,信號落在問題區域。對於落在不確定區域及問題區域的信號,應該使用高速布線方法。
(四)、什麼是傳輸線
PCB板上的走線可等效為下圖所示的串聯和並聯的電容、電阻和電感結構。串聯電阻的典型值0.25-0.55ohms/foot,因為絕緣層的緣故,並聯電阻阻值通常很高。將寄生電阻、電容和電感加到實際的PCB連線中之後,連線上的最終阻抗稱為特徵阻抗Zo。線徑越寬,距電源/地越近,或隔離層的介電常數越高,特徵阻抗就越小。如果傳輸線和接收端的阻抗不匹配,那麼輸出的電流信號和信號最終的穩定狀態將不同,這就引起信號在接收端產生反射,這個反射信號將傳回信號發射端並再次反射回來。隨著能量的減弱反射信號的幅度將減小,直到信號的電壓和電流達到穩定。這種效應被稱為振盪,信號的振盪在信號的上升沿和下降沿經常可以看到。
(五)、傳輸線效應
基於上述定義的傳輸線模型,歸納起來,傳輸線會對整個電路設計帶來以下效應。
•反射信號Reflectedsignals
•延時和時序錯誤Delay&Timingerrors
•多次跨越邏輯電平門限錯誤FalseSwitching
•過沖與下沖Overshoot/Undershoot
•串擾IncedNoise(orcrosstalk)
•電磁輻射EMIradiation
5.1反射信號
如果一根走線沒有被正確終結(終端匹配),那麼來自於驅動端的信號脈沖在接收端被反射,從而引發不預期效應,使信號輪廓失真。當失真變形非常顯著時可導致多種錯誤,引起設計失敗。同時,失真變形的信號對雜訊的敏感性增加了,也會引起設計失敗。如果上述情況沒有被足夠考慮,EMI將顯著增加,這就不單單影響自身設計結果,還會造成整個系統的失敗。
反射信號產生的主要原因:過長的走線;未被匹配終結的傳輸線,過量電容或電感以及阻抗失配。
5.2延時和時序錯誤
信號延時和時序錯誤表現為:信號在邏輯電平的高與低門限之間變化時保持一段時間信號不跳變。過多的信號延時可能導致時序錯誤和器件功能的混亂。
通常在有多個接收端時會出現問題。電路設計師必須確定最壞情況下的時間延時以確保設計的正確性。信號延時產生的原因:驅動過載,走線過長。
5.3多次跨越邏輯電平門限錯誤
信號在跳變的過程中可能多次跨越邏輯電平門限從而導致這一類型的錯誤。多次跨越邏輯電平門限錯誤是信號振盪的一種特殊的形式,即信號的振盪發生在邏輯電平門限附近,多次跨越邏輯電平門限會導致邏輯功能紊亂。反射信號產生的原因:過長的走線,未被終結的傳輸線,過量電容或電感以及阻抗失配。
5.4過沖與下沖
過沖與下沖來源於走線過長或者信號變化太快兩方面的原因。雖然大多數元件接收端有輸入保護二極體保護,但有時這些過沖電平會遠遠超過元件電源電壓范圍,損壞元器件。
5.5串擾
串擾表現為在一根信號線上有信號通過時,在PCB板上與之相鄰的信號線上就會感應出相關的信號,我們稱之為串擾。
信號線距離地線越近,線間距越大,產生的串擾信號越小。非同步信號和時鍾信號更容易產生串擾。因此解串擾的方法是移開發生串擾的信號或屏蔽被嚴重干擾的信號。
5.6電磁輻射
EMI(Electro-MagneticInterference)即電磁干擾,產生的問題包含過量的電磁輻射及對電磁輻射的敏感性兩方面。EMI表現為當數字系統加電運行時,會對周圍環境輻射電磁波,從而干擾周圍環境中電子設備的正常工作。它產生的主要原因是電路工作頻率太高以及布局布線不合理。目前已有進行EMI模擬的軟體工具,但EMI模擬器都很昂貴,模擬參數和邊界條件設置又很困難,這將直接影響模擬結果的准確性和實用性。最通常的做法是將控制EMI的各項設計規則應用在設計的每一環節,實現在設計各環節上的規則驅動和控制。
(六)、避免傳輸線效應的方法
針對上述傳輸線問題所引入的影響,我們從以下幾方面談談控制這些影響的方法。
6.1嚴格控制關鍵網線的走線長度
如果設計中有高速跳變的邊沿,就必須考慮到在PCB板上存在傳輸線效應的問題。現在普遍使用的很高時鍾頻率的快速集成電路晶元更是存在這樣的問題。解決這個問題有一些基本原則:如果採用CMOS或TTL電路進行設計,工作頻率小於10MHz,布線長度應不大於7英寸。工作頻率在50MHz布線長度應不大於1.5英寸。如果工作頻率達到或超過75MHz布線長度應在1英寸。對於GaAs晶元最大的布線長度應為0.3英寸。如果超過這個標准,就存在傳輸線的問題。
6.2合理規劃走線的拓撲結構
解決傳輸線效應的另一個方法是選擇正確的布線路徑和終端拓撲結構。走線的拓撲結構是指一根網線的布線順序及布線結構。當使用高速邏輯器件時,除非走線分支長度保持很短,否則邊沿快速變化的信號將被信號主幹走線上的分支走線所扭曲。通常情形下,PCB走線採用兩種基本拓撲結構,即菊花鏈(DaisyChain)布線和星形(Star)分布。
對於菊花鏈布線,布線從驅動端開始,依次到達各接收端。如果使用串聯電阻來改變信號特性,串聯電阻的位置應該緊靠驅動端。在控制走線的高次諧波干擾方面,菊花鏈走線效果最好。但這種走線方式布通率最低,不容易100%布通。實際設計中,我們是使菊花鏈布線中分支長度盡可能短,安全的長度值應該是:StubDelay<=Trt*0.1.
例如,高速TTL電路中的分支端長度應小於1.5英寸。這種拓撲結構佔用的布線空間較小並可用單一電阻匹配終結。但是這種走線結構使得在不同的信號接收端信號的接收是不同步的。
星形拓撲結構可以有效的避免時鍾信號的不同步問題,但在密度很高的PCB板上手工完成布線十分困難。採用自動布線器是完成星型布線的最好的方法。每條分支上都需要終端電阻。終端電阻的阻值應和連線的特徵阻抗相匹配。這可通過手工計算,也可通過CAD工具計算出特徵阻抗值和終端匹配電阻值。
在上面的兩個例子中使用了簡單的終端電阻,實際中可選擇使用更復雜的匹配終端。第一種選擇是RC匹配終端。RC匹配終端可以減少功率消耗,但只能使用於信號工作比較穩定的情況。這種方式最適合於對時鍾線信號進行匹配處理。其缺點是RC匹配終端中的電容可能影響信號的形狀和傳播速度。
串聯電阻匹配終端不會產生額外的功率消耗,但會減慢信號的傳輸。這種方式用於時間延遲影響不大的匯流排驅動電路。串聯電阻匹配終端的優勢還在於可以減少板上器件的使用數量和連線密度。
最後一種方式為分離匹配終端,這種方式匹配元件需要放置在接收端附近。其優點是不會拉低信號,並且可以很好的避免雜訊。典型的用於TTL輸入信號(ACT,HCT,FAST)。
此外,對於終端匹配電阻的封裝型式和安裝型式也必須考慮。通常SMD表面貼裝電阻比通孔元件具有較低的電感,所以SMD封裝元件成為首選。如果選擇普通直插電阻也有兩種安裝方式可選:垂直方式和水平方式。
垂直安裝方式中電阻的一條安裝管腳很短,可以減少電阻和電路板間的熱阻,使電阻的熱量更加容易散發到空氣中。但較長的垂直安裝會增加電阻的電感。水平安裝方式因安裝較低有更低的電感。但過熱的電阻會出現漂移,在最壞的情況下電阻成為開路,造成PCB走線終結匹配失效,成為潛在的失敗因素。
6.3抑止電磁干擾的方法
很好地解決信號完整性問題將改善PCB板的電磁兼容性(EMC)。其中非常重要的是保證PCB板有很好的接地。對復雜的設計採用一個信號層配一個地線層是十分有效的方法。此外,使電路板的最外層信號的密度最小也是減少電磁輻射的好方法,這種方法可採用"表面積層"技術"Build-up"設計製做PCB來實現。表面積層通過在普通工藝PCB上增加薄絕緣層和用於貫穿這些層的微孔的組合來實現,電阻和電容可埋在表層下,單位面積上的走線密度會增加近一倍,因而可降低PCB的體積。PCB面積的縮小對走線的拓撲結構有巨大的影響,這意味著縮小的電流迴路,縮小的分支走線長度,而電磁輻射近似正比於電流迴路的面積;同時小體積特徵意味著高密度引腳封裝器件可以被使用,這又使得連線長度下降,從而電流迴路減小,提高電磁兼容特性。
6.4其它可採用技術
為減小集成電路晶元電源上的電壓瞬時過沖,應該為集成電路晶元添加去耦電容。這可以有效去除電源上的毛刺的影響並減少在印製板上的電源環路的輻射。
當去耦電容直接連接在集成電路的電源管腿上而不是連接在電源層上時,其平滑毛刺的效果最好。這就是為什麼有一些器件插座上帶有去耦電容,而有的器件要求去耦電容距器件的距離要足夠的小。
任何高速和高功耗的器件應盡量放置在一起以減少電源電壓瞬時過沖。
如果沒有電源層,那麼長的電源連線會在信號和迴路間形成環路,成為輻射源和易感應電路。
走線構成一個不穿過同一網線或其它走線的環路的情況稱為開環。如果環路穿過同一網線其它走線則構成閉環。兩種情況都會形成天線效應(線天線和環形天線)。天線對外產生EMI輻射,同時自身也是敏感電路。閉環是一個必須考慮的問題,因為它產生的輻射與閉環面積近似成正比。
結束語
高速電路設計是一個非常復雜的設計過程,ZUKEN公司的高速電路布線演算法(RouteEditor)和EMC/EMI分析軟體(INCASES,Hot-Stage)應用於分析和發現問題。本文所闡述的方法就是專門針對解決這些高速電路設計問題的。此外,在進行高速電路設計時有多個因素需要加以考慮,這些因素有時互相對立。如高速器件布局時位置靠近,雖可以減少延時,但可能產生串擾和顯著的熱效應。因此在設計中,需權衡各因素,做出全面的折衷考慮;既滿足設計要求,又降低設計復雜度。高速PCB設計手段的採用構成了設計過程的可控性,只有可控的,才是可靠的,也才能是成功的!
Ⅵ 小信號濾波
1、微弱信號的放大一定要採取共模差分輸入,切忌採取單端輸入放大。共模差分可以有效地消除共模干擾,特別是因為電源工頻50Hz及諧波。在選用放大器時要選用高輸入阻抗,高共模抑制比的晶元。產生工頻及諧波干擾的主要原因在此。 2、電源系統採用整流橋、7805、7905沒有問題,就是在輸入輸出端一定要用3300uf的電容和0.1uf的電容並聯濾波。而且要注意電路的負載電流,盡量選用冗餘量大一些,這樣可以避免負載過大產生電源的電壓波動。其實,電源的紋波並不會影響信號放大(更何況只有4mV),主要是電源的工頻及諧波的共模干擾。變壓器要選用中間抽頭的兩組輸出。初級和次級間一定要求有屏蔽層。街上10元一隻的變壓是無法達到效果。 3、對於工頻及諧波的干擾一般很難消除,因此,在放大電路要採取相應的濾波電路。通常有源濾波電路比較好,如帶通、陷波電路,應用電路很多,自由選取。或者採取軟體數字濾波,可以考慮一個演算法,來消除干擾。 4、電路布線。地線盡量環抱信號線,形成屏蔽,在有外圍大電流、數字電路時,還要考慮用紫銅屏蔽罩。如果電路中有數字和模擬兩個部分,一定好設計好模擬地和數字地的接觸點,最好是單點連接,切忌形成環路。
Ⅶ EDA技術歷史發展
EDA技術歷史發展
在電子設計自動化(英語:Electronic design automation,縮寫:EDA)出現之前,設計人員必須手工完成集成電路的設計、布線等工作,這是因為當時所謂集成電路的復雜程度遠不及現在。工業界開始使用幾何學方法來製造用於電路光繪(photoplotter)的膠帶。到了1970年代中期,開發人員嘗試將整個設計過程自動化,而不僅僅滿足於自動完成掩膜草圖。第一個電路布線、布局工具研發成功。設計自動化會議(Design Automation Conference)在這一時期被創立,旨在促進電子設計自動化的發展。
電子設計自動化發展的下一個重要階段以卡弗爾·米德(Carver Mead)和琳·康維於1980年發表的論文《超大規模集成電路系統導論》(Introction to VLSI Systems)為標志。這一篇具有重大意義的論文提出了通過編程語言來進行晶元設計的新思想。如果這一想法得到實現,晶元設計的復雜程度可以得到顯著提升。這主要得益於用來進行集成電路邏輯模擬、功能驗證的工具的性能得到相當的改善。隨著計算機模擬技術的發展,設計項目可以在構建實際硬體電路之前進行模擬,晶元布線布局對人工設計的要求降低,而且軟體錯誤率不斷降低。直至今日,盡管所用的語言和工具仍然不斷在發展,但是通過編程語言來設計、驗證電路預期行為,利用工具軟體綜合得到低抽象級物理設計的這種途徑,仍然是數字集成電路設計的基礎。
從1981年開始,電子設計自動化逐漸開始商業化。1984年的設計自動化會議(Design Automation Conference)上還舉辦了第一個以電子設計自動化為主題的銷售展覽。Gateway設計自動化在1986年推出了一種硬體描述語言Verilog,這種語言在現在是最流行的高級抽象設計語言。1987年,在美國國防部的資助下,另一種硬體描述語言VHDL被創造出來。現代的電子設計自動化工具可以識別、讀取不同類型的硬體描述。根據這些語言規范產生的各種模擬系統迅速被推出,使得設計人員可對設計的晶元進行直接模擬。後來,技術的發展更側重於邏輯綜合。
目前的數字集成電路的設計都比較模塊化(參見集成電路設計、設計收斂(Design closure)和設計流(Design flow (EDA)))。半導體器件製造工藝需要標准化的設計描述,高抽象級的描述將被編譯為信息單元(cell)的形式。設計人員在進行邏輯設計時無需考慮信息單元的具體硬體工藝。利用特定的集成電路製造工藝來實現硬體電路,信息單元就會實施預定義的邏輯或其他電子功能。半導體硬體廠商大多會為它們製造的元件提供“元件庫”,並提供相應的標准化模擬模型。相比數字的電子設計自動化工具,模擬系統的電子設計自動化工具大多並非模塊化的`,這是因為模擬電路的功能更加復雜,而且不同部分的相互影響較強,而且作用規律復雜,電子元件大多沒有那麼理想。Verilog AMS就是一種用於模擬電子設計的硬體描述語言。此外,設計人員可以使用硬體驗證語言來完成項目的驗證工作目前最新的發展趨勢是將集描述語言、驗證語言集成為一體,典型的例子有SystemVerilog。
隨著集成電路規模的擴大、半導體技術的發展,電子設計自動化的重要性急劇增加。這些工具的使用者包括半導體器件製造中心的硬體技術人員,他們的工作是操作半導體器件製造設備並管理整個工作車間。一些以設計為主要業務的公司,也會使用電子設計自動化軟體來評估製造部門是否能夠適應新的設計任務。電子設計自動化工具還被用來將設計的功能導入到類似現場可編程邏輯門陣列的半定製可編程邏輯器件,或者生產全定製的專用集成電路。
EDA技術的概念
EDA技術是指以計算機為工作平台,融合了應用電子技術、計算機技術、信息處理及智能化技術的最新成果,進行電子產品的自動設計。
利用EDA工具,電子設計師可以從概念、演算法、協議等開始設計電子系統,大量工作可以通過計算機完成,並可以將電子產品從電路設計、性能分析到設計出IC版圖或PCB版圖的整個過程的計算機上自動處理完成。
應用
現在對EDA的概念或范疇用得很寬。包括在機械、電子、通信、航空航天、化工、礦產、生物、醫學、軍事等各個領域,都有EDA的應用。目前EDA技術已在各大公司、企事業單位和科研教學部門廣泛使用。例如在飛機製造過程中,從設計、性能測試及特性分析直到飛行模擬,都可能涉及到EDA技術。本文所指的EDA技術,主要針對電子電路設計、PCB設計和IC設計。
EDA設計可分為系統級、電路級和物理實現級。
;Ⅷ 在布局、布線中如何處理才能保證100M以上信號的穩定性
高速數字信號布線,關鍵是減小傳輸線對信號質量的影響。因此,100M 以上的高速信號布局時要求信號走線盡量短。數字電路中,高速信號是用信號上升延時間來界定的。
在設計高速 PCB 電路時,阻抗匹配是設計的要素之一。而阻抗值跟走線方式有絕對的關系,例如是走在表面層(microstrip)或內層(stripline/double stripline),與參考層(電源層或地層)的距離,走線寬度,PCB材質等均會影響走線的特性阻抗值。
也就是說要在布線後才能確定阻抗值。一般模擬軟體會因線路模型或所使用的數學演算法的限制而無法考慮到一些阻抗不連續的布線情況,這時候在原理圖上只能預留一些terminators(端接),如串聯電阻等,來緩和走線阻抗不連續的效應。真正根本解決問題的方法還是布線時盡量注意避免阻抗不連續的發生。
Ⅸ 電源雜訊太大,怎麼消除
根據樓主的要求,類似於心電信號的處理,心電信號也就是1MV左右,截至頻率為100Hz。按照個人的經驗,在處理微弱信號時,有如下幾點值得注意。 1、微弱信號的放大一定要採取共模差分輸入,切忌採取單端輸入放大。共模差分可以有效地消除共模干擾,特別是因為電源工頻50Hz及諧波。在選用放大器時要選用高輸入阻抗,高共模抑制比的晶元。產生工頻及諧波干擾的主要原因在此。 2、電源系統採用整流橋、7805、7905沒有問題,就是在輸入輸出端一定要用3300uf的電容和0.1uf的電容並聯濾波。而且要注意電路的負載電流,盡量選用冗餘量大一些,這樣可以避免負載過大產生電源的電壓波動。其實,電源的紋波並不會影響信號放大(更何況只有4mV),主要是電源的工頻及諧波的共模干擾。變壓器要選用中間抽頭的兩組輸出。初級和次級間一定要求有屏蔽層。街上10元一隻的變壓是無法達到效果。 3、對於工頻及諧波的干擾一般很難消除,因此,在放大電路要採取相應的濾波電路。通常有源濾波電路比較好,如帶通、陷波電路,應用電路很多,自由選取。或者採取軟體數字濾波,可以考慮一個演算法,來消除干擾。 4、電路布線。地線盡量環抱信號線,形成屏蔽,在有外圍大電流、數字電路時,還要考慮用紫銅屏蔽罩。如果電路中有數字和模擬兩個部分,一定好設計好模擬地和數字地的接觸點,最好是單點連接,切忌形成環路。 以上僅供參考。
滿意請採納