導航:首頁 > 電器電路 > 高速數字電路設計

高速數字電路設計

發布時間:2021-12-21 13:26:20

⑴ 關於高速數字設計電源LC濾波減小紋波的問題

1.濾波截止頻率計算公式為 f= 1/(2π√LC),主要根據具體的設計需求確定LC的取值~

2.在畫原理圖時候,並聯部分先後,不過做為良好的習慣,還是最好按照先濾除低頻後濾除高頻的來。但是在最終生成PCB是,就一定要嚴格按照這個需要,准確的排放電容~在晶元入口端再進行一次濾波是有必要的,因為在最終生成PCB板子後,可能電源濾波之後的晶元需要經過一段導線的連接才能到達供電晶元,而在這段導線經過的板子中,極可能收到導線附近晶元或者其他導線的干擾,所以,在進入晶元端都需要在進行一次濾波,保證供電電源的「純凈」。
3.數字地和模擬地在最終設計的時候,一般是單點接地的,這就是說整個板子的所有數字地集中後,再和所有模擬地集中的位置,僅僅在電路板的一點位置相連接。這樣做是為了避免數字信號和模擬信號的干擾。如果整個電路中,AGND和DGND都僅僅用一個GND表示,那麼在生成PCB時,系統會自動默認這兩個地是隨時導通的,那麼可能數字信號可能接入模擬信號的地,模擬信號接入數字信號地。造成數字模擬信號的干擾。AGND和DGND之間用0歐電阻連接,在實際上其實完全是導通的,只是為了給PCB軟體一個區分,避免在電路的中間就自動默認是聯通的。這方面,你可以詳細,了解下「單點接地」。
碼字辛苦啊~

⑵ 高速數字設計中的PDS是什麼意思

電源分布系統設計
基本概念
設計目標
一般設計規則
多層板疊層結構
電流迴路
去耦電容及其應用
雜訊抑制

為數字信號提供穩定的電壓參考
為邏輯電路提供低阻抗的接地連接
為邏輯電路提供低阻抗的電源連接
為電源和地提供低交流阻抗的通路

為數字電路正常工作提供電源
公共通路阻抗將產生電源和地電位差
XPSW = ESR + 2f × ESL
ESR —— 電源分布系統寄生電阻。低頻或直流情況下,是造成電源電位差的主要原因。
ESL —— 電源分布系統寄生電感。高頻情況下,交變電流將在寄生電感上產生電源電位差,其幅度遠大於寄生電阻的影響。
電源分布系統寄生電感
兩條平行的電源和地圓導線
一般設計規則(1)
PDS必須為電路正常工作提供穩定的、無雜訊的電壓和電流
為數字信號提供穩定的電壓參考
對於每一個電路來說,PDS應當被視為獨立的、相互隔離的,以保證雜訊不能通過PDS耦合到其他電路
電源、地平面(線)之間應具有盡可能小的交流阻抗
PDS必須為信號提供無干擾的迴流通路
電源、地平面應同時具備空間電場的屏蔽作用
一般設計規則(2)
盡可能採用平面設計,或保持電源和地線盡可能短和寬,避免「梳狀」地線
「背靠背」的電源和地層設計,具有最小的PDS阻抗,並具備高頻去耦作用,能有效抑制高頻雜訊
配置足夠的、均勻分布的去耦電容
在數模混合設計中,應為數字電路和模擬電路分別提供獨立的PDS
大量的不同邏輯電平、不同雜訊容限的電路(如TTL、ECL等)在混合設計中,應為它們分別提供獨立的PDS
不同的電源、地層應相對隔離,不直接疊壓
多層板的疊層結構
疊層結構的設計主要考慮以下因素
穩定、低雜訊、低交流阻抗的PDS
傳輸線結構要求
傳輸線特性阻抗要求
串擾雜訊抑制
空間電磁干擾的吸收和屏蔽
結構對稱,防止變形
在高速數字設計中的一般規則是
電源層數 + 地層數 = 信號層數
電源層和地層盡可能成對設計,並至少有一對是「背靠背」設計
採用帶狀線結構,關鍵信號傳輸應採用對稱帶狀線

⑶ 高速數字電路設計實際上是模擬電路設計 正確 錯誤

答案:錯誤
數字電路與模擬電路對於信號的處理方式完全不同,分屬於兩大電路體系,前者處理的是離散的二值邏輯信號,後者處理的是連續變化信號,無論高速與否兩者均有本質區別。

⑷ 高速數字電路中影響串擾的因素

在高速電路中信號的頻率的變高、邊沿變陡、電路板的尺寸變小、布線的密度變大,這些因素使得在高速數字電路的設計中,信號完整性問題越來越突出,其已經成為高速電路設計工程師不可避免的問題。串擾是指有害信號從一個網路轉移到另一個網路,它是信號完整性問題中一個重要問題,在數字設計中普遍存在,有 可能出現在晶元、PCB板、連接器、晶元封裝和連接器電纜等器件上。如果串擾超過一定的限度就會引起電路的誤觸發,導致系統無法正常工作。因此了解串擾問 題產生的機理並掌握解決串擾的設計方法,對於工程師來說是相當重要的。

串擾是信號在傳輸線上傳播時,由於電磁耦合而在相鄰的傳輸線上產生不期望的電壓或電流雜訊干擾,信號線的邊緣場效應是導致串擾產生的根本原因。

當干擾線上有信號傳輸時,由於信號邊沿電壓的變化,在信號邊沿附近的區域,干擾線上的分布電容會感應出時變的電場,而受害線處於這個電場裡面, 所以變化的電場會在受害線上產生感應電流。可以把信號的邊沿看成是沿干擾線移動的電流源,在它移動的過程中,通過電容耦合不斷地在受害線上產生電流雜訊。

⑸ 比較專業的解釋一下高頻模擬電路,低頻模擬電路和數字電路

首先關於數電和模電:先一句話概括模電 就是處理模擬信號的電路,數電 就是處理數字信號的電路。

由自然界 產生的信號 ,基本是模擬信號(比如我們聽到一段聲音,看到的一段圖像),他是時變信號,這種信號在他的度量連續范圍內,可以取得 任意值。

而數字信號也是時變信號,但他在任意時刻只呈現兩種離散值(可以定義為"0"和"1",,或者"真"和"假",或者"開","關"等等任意定義)中的 一個值!
然而數字系統的原始輸入並不是剛好是 0,1或者 真、假 這樣的邏輯輸入。而是把真實模擬信號量化。也就是規定一定范圍的信號為「0」,規定一段信號的范圍為「1」,即 稱為劃定了門限。
這樣把模擬量轉化成邏輯量,按一定編碼規則記錄了真實的模擬信息。
所以數字電路電路的本質其實就是 開關電路 因為用 開和關 就可以表示兩個邏輯信號。數電的最基本器件——門電路,就是由開關電路組成的。

所以數電與模電相比的主要優勢在:
1.數字系統更易於設計:因為開關電路不必考慮 精確的電流電壓大小值,只考慮高低也就是范圍。
2.精度高,抗干擾性強:信號數字化保存之後,精度不會損失。比真實模擬信號好保存。
3.可編程性好:模擬電路也可編程,但不用想也知道會多復雜。。。
4.集成度更高:開關電路比 千遍萬化的模擬電路更容易集成化,沒有那麼多電容、電感等元件 ,主要有 CMOS晶體管組成,集成成本低。易於保存。

同樣數電有明顯缺點:
1.現實世界 主要是模擬量;
2.處理數字信號花費時間:要采樣、量化、編碼。。。。

經過以上分析已經能夠發現一個問題了,那就是
一個數字系統輸入是真實模擬信號,同樣人在接受數字系統的輸出信號 也只能識別經過解碼還原出來模擬的信號。
其實這輸入和輸出的模擬信號也不是真正的原始真實世界的信號 是必須經過加工,處理了的模擬信號。簡單說模擬信號也必須滿足一定條件才能 進行數模 、模數轉換。
所以事實證明 不管數字電路如何先進 ,模擬電路的作用很難,甚至不可能被相應的數字電路所替代!

關於高頻和低頻:
首先電路設計的高頻和無線電通信里劃分的那個高頻電磁波(HF波段)是兩碼事!
為什麼電路里要分高頻,低頻? 因為:

1.高頻時半導體元件元件特性會與低頻時候發生改變:高頻信號下,半導體的PN結形成空間電荷區里,空間電荷因為PN結外加電壓變化而快速變化,引起充放電效應明顯, 即產生了在低頻下可忽視的PN結電容效應,直接導致電路發生了改變,低頻電路的晶體管電路模型不再適用。
2.在高頻時候,電子元件產生的雜訊影響會加劇。高頻和低頻時的雜訊類型也不同。模擬電路里雜訊處理是非常重要的一環。
3.高頻產生的電共振效應,即諧振現象,引出了有別於低頻的電路設計方式。
4.元件寄生效應:類似PN結電容效應那樣 頻率搞到一定程度導線之間,導線和電路板之間,以及各元件之間,也會引起電容效應。同時高頻產生磁場效應,使得 導線自身、各元件自身會產生寄生電感效應。
5.趨膚效應:當通過導體的電流頻率升高,產生交變磁場,由洛倫茨作用產生了阻礙電流變化的感應電場,有磁場分布關系可以知道這個感應電場在導體中心最強,而趨於導體表面減弱。這導致了高頻時導體電流只能在導體表面傳播,交流電阻變大。
6.高頻輻射效應:頻率高到一定程度 由於能量輻射到空氣中,電流減小,相當於高頻電阻增加。

那麼究竟什麼是高頻呢?電路里高於音頻(20k)就是高頻,他的上限是個什麼范圍呢?其實他沒有確定的范圍!
一種看法是 只要還能用集總參數,即 電「路」的方法來分析電路就仍然是高頻。
也就是說他是一個相對的概念。
我們知道當電路的幾何尺寸與信號的波長長度相當時
傳統電路的集總參數電路定律(如歐姆定律等)就不再適用了,這時候要用麥克斯韋方程組的方法來分析電路。

但是,假如:對於 頻率 3GHZ 的微波信號 (波長 = 光速/頻率),波長為10毫米 。
如果把電路幾何尺寸做的非常小,電路集成在不到10毫米的基片上 ,
使得電路幾何尺寸任然可以遠小於信號波長
那麼我們仍然可以用 「路」的方法來分析電路。

所以"高頻"在電路里是個模糊概念。

至於數字電路里 我已經揭示了 數字電路本質是開關電路 ,我們不用頻率高低來劃分,而用 開關 的速度來劃分,即常聽到 「高速、低速」數字電路的說法了。
但事實上高速數字電路與模擬高頻電路確實存在知識的交叉點。

以上OVER!

補充問題回答:頻率當然是電路所處理的信號頻率了(電路里信號可以是電壓也可以是電流形式,甚至電磁波的形式,具體看什麼樣的電路啦)

總之電路設計的高頻就是20khz以上的信號,至於上限范圍是沒有確定義,是相對的概念,所以高頻的范圍很大的。

無線電波里高頻 商業劃分的 HF波段: 3M-30M HZ 的電磁波

⑹ 什麼是高速PCB

PCB布線
在PCB設計中,布線是完成產品設計的重要步驟,可以說前面的准備工作都是為它而做的, 在整個PCB中,以布線的設計過程限定最高,技巧最細、工作量最大。PCB布線有單面布線、 雙面布線及多層布線。布線的方式也有兩種:自動布線及互動式布線,在自動布線之前, 可以用互動式預先對要求比較嚴格的線進行布線,輸入端與輸出端的邊線應避免相鄰平行, 以免產生反射干擾。必要時應加地線隔離,兩相鄰層的布線要互相垂直,平行容易產生寄生耦合。
自動布線的布通率,依賴於良好的布局,布線規則可以預先設定, 包括走線的彎曲次數、導通孔的數目、步進的數目等。一般先進行探索式布經線,快速地把短線連通, 然後進行迷宮式布線,先把要布的連線進行全局的布線路徑優化,它可以根據需要斷開已布的線。 並試著重新再布線,以改進總體效果。
對目前高密度的PCB設計已感覺到貫通孔不太適應了, 它浪費了許多寶貴的布線通道,為解決這一矛盾,出現了盲孔和埋孔技術,它不僅完成了導通孔的作用, 還省出許多布線通道使布線過程完成得更加方便,更加流暢,更為完善,PCB 板的設計過程是一個復雜而又簡單的過程,要想很好地掌握它,還需廣大電子工程設計人員去自已體會, 才能得到其中的真諦。

1 電源、地線的處理
既使在整個PCB板中的布線完成得都很好,但由於電源、 地線的考慮不周到而引起的干擾,會使產品的性能下降,有時甚至影響到產品的成功率。所以對電、 地線的布線要認真對待,把電、地線所產生的噪音干擾降到最低限度,以保證產品的質量。
對每個從事電子產品設計的工程人員來說都明白地線與電源線之間噪音所產生的原因, 現只對降低式抑制噪音作以表述:
(1)、眾所周知的是在電源、地線之間加上去耦電容。
(2)、盡量加寬電源、地線寬度,最好是地線比電源線寬,它們的關系是:地線>電源線>信號線,通常信號線寬為:0.2~0.3mm,最經細寬度可達0.05~0.07mm,電源線為1.2~2.5 mm
對數字電路的PCB可用寬的地導線組成一個迴路, 即構成一個地網來使用(模擬電路的地不能這樣使用)
(3)、用大面積銅層作地線用,在印製板上把沒被用上的地方都與地相連接作為地線用。或是做成多層板,電源,地線各佔用一層。

2 數字電路與模擬電路的共地處理
現在有許多PCB不再是單一功能電路(數字或模擬電路),而是由數字電路和模擬電路混合構成的。因此在布線時就需要考慮它們之間互相干擾問題,特別是地線上的噪音干擾。
數字電路的頻率高,模擬電路的敏感度強,對信號線來說,高頻的信號線盡可能遠離敏感的模擬電路器件,對地線來說,整人PCB對外界只有一個結點,所以必須在PCB內部進行處理數、模共地的問題,而在板內部數字地和模擬地實際上是分開的它們之間互不相連,只是在PCB與外界連接的介面處(如插頭等)。數字地與模擬地有一點短接,請注意,只有一個連接點。也有在PCB上不共地的,這由系統設計來決定。

3 信號線布在電(地)層上
在多層印製板布線時,由於在信號線層沒有布完的線剩下已經不多,再多加層數就會造成浪費也會給生產增加一定的工作量,成本也相應增加了,為解決這個矛盾,可以考慮在電(地)層上進行布線。首先應考慮用電源層,其次才是地層。因為最好是保留地層的完整性。

4 大面積導體中連接腿的處理
在大面積的接地(電)中,常用元器件的腿與其連接,對連接腿的處理需要進行綜合的考慮,就電氣性能而言,元件腿的焊盤與銅面滿接為好,但對元件的焊接裝配就存在一些不良隱患如:①焊接需要大功率加熱器。②容易造成虛焊點。所以兼顧電氣性能與工藝需要,做成十字花焊盤,稱之為熱隔離(heat shield)俗稱熱焊盤(Thermal),這樣,可使在焊接時因截面過分散熱而產生虛焊點的可能性大大減少。多層板的接電(地)層腿的處理相同。

5 布線中網路系統的作用
在許多CAD系統中,布線是依據網路系統決定的。網格過密,通路雖然有所增加,但步進太小,圖場的數據量過大,這必然對設備的存貯空間有更高的要求,同時也對象計算機類電子產品的運算速度有極大的影響。而有些通路是無效的,如被元件腿的焊盤佔用的或被安裝孔、定們孔所佔用的等。網格過疏,通路太少對布通率的影響極大。所以要有一個疏密合理的網格系統來支持布線的進行。
標准元器件兩腿之間的距離為0.1英寸(2.54mm),所以網格系統的基礎一般就定為0.1英寸(2.54 mm)或小於0.1英寸的整倍數,如:0.05英寸、0.025英寸、0.02英寸等。

6 設計規則檢查(DRC)
布線設計完成後,需認真檢查布線設計是否符合設計者所制定的規則,同時也需確認所制定的規則是否符合印製板生產工藝的需求,一般檢查有如下幾個方面:

(1)、線與線,線與元件焊盤,線與貫通孔,元件焊盤與貫通孔,貫通孔與貫通孔之間的距離是否合理,是否滿足生產要求。
(2)、電源線和地線的寬度是否合適,電源與地線之間是否緊耦合(低的波阻抗)?在PCB中是否還有能讓地線加寬的地方。
(3)、對於關鍵的信號線是否採取了最佳措施,如長度最短,加保護線,輸入線及輸出線被明顯地分開。
(4)、模擬電路和數字電路部分,是否有各自獨立的地線。
(5)後加在PCB中的圖形(如圖標、注標)是否會造成信號短路。
(6)對一些不理想的線形進行修改。
(7)、在PCB上是否加有工藝線?阻焊是否符合生產工藝的要求,阻焊尺寸是否合適,字元標志是否壓在器件焊盤上,以免影響電裝質量。
(8)、多層板中的電源地層的外框邊緣是否縮小,如電源地層的銅箔露出板外容易造成短路。

第二篇 PCB布局
在設計中,布局是一個重要的環節。布局結果的好壞將直接影響布線的效果,因此可以這樣認為,合理的布局是PCB設計成功的第一步。
布局的方式分兩種,一種是互動式布局,另一種是自動布局,一般是在自動布局的基礎上用互動式布局進行調整,在布局時還可根據走線的情況對門電路進行再分配,將兩個門電路進行交換,使其成為便於布線的最佳布局。在布局完成後,還可對設計文件及有關信息進行返回標注於原理圖,使得PCB板中的有關信息與原理圖相一致,以便在今後的建檔、更改設計能同步起來, 同時對模擬的有關信息進行更新,使得能對電路的電氣性能及功能進行板級驗證。

--考慮整體美觀
一個產品的成功與否,一是要注重內在質量,二是兼顧整體的美觀,兩者都較完美才能認為該產品是成功的。
在一個PCB板上,元件的布局要求要均衡,疏密有序,不能頭重腳輕或一頭沉。

--布局的檢查
印製板尺寸是否與加工圖紙尺寸相符?能否符合PCB製造工藝要求?有無定位標記?
元件在二維、三維空間上有無沖突?
元件布局是否疏密有序,排列整齊?是否全部布完?
需經常更換的元件能否方便的更換?插件板插入設備是否方便?
熱敏元件與發熱元件之間是否有適當的距離?
調整可調元件是否方便?
在需要散熱的地方,裝了散熱器沒有?空氣流是否通暢?
信號流程是否順暢且互連最短?
插頭、插座等與機械設計是否矛盾?
線路的干擾問題是否有所考慮?

第三篇 高速PCB設計
(一)、電子系統設計所面臨的挑戰

隨著系統設計復雜性和集成度的大規模提高,電子系統設計師們正在從事100MHZ以上的電路設計,匯流排的工作頻率也已經達到或者超過50MHZ,有的甚至超過100MHZ。目前約50% 的設計的時鍾頻率超過50MHz,將近20% 的設計主頻超過120MHz。
當系統工作在50MHz時,將產生傳輸線效應和信號的完整性問題;而當系統時鍾達到120MHz時,除非使用高速電路設計知識,否則基於傳統方法設計的PCB將無法工作。因此,高速電路設計技術已經成為電子系統設計師必須採取的設計手段。只有通過使用高速電路設計師的設計技術,才能實現設計過程的可控性。

(二)、什麼是高速電路

通常認為如果數字邏輯電路的頻率達到或者超過45MHZ~50MHZ,而且工作在這個頻率之上的電路已經佔到了整個電子系統一定的份量(比如說1/3),就稱為高速電路。
實際上,信號邊沿的諧波頻率比信號本身的頻率高,是信號快速變化的上升沿與下降沿(或稱信號的跳變)引發了信號傳輸的非預期結果。因此,通常約定如果線傳播延時大於1/2數字信號驅動端的上升時間,則認為此類信號是高速信號並產生傳輸線效應。
信號的傳遞發生在信號狀態改變的瞬間,如上升或下降時間。信號從驅動端到接收端經過一段固定的時間,如果傳輸時間小於1/2的上升或下降時間,那麼來自接收端的反射信號將在信號改變狀態之前到達驅動端。反之,反射信號將在信號改變狀態之後到達驅動端。如果反射信號很強,疊加的波形就有可能會改變邏輯狀態。

(三)、高速信號的確定

上面我們定義了傳輸線效應發生的前提條件,但是如何得知線延時是否大於1/2驅動端的信號上升時間? 一般地,信號上升時間的典型值可通過器件手冊給出,而信號的傳播時間在PCB設計中由實際布線長度決定。下圖為信號上升時間和允許的布線長度(延時)的對應關系。
PCB 板上每單位英寸的延時為 0.167ns.。但是,如果過孔多,器件管腳多,網線上設置的約束多,延時將增大。通常高速邏輯器件的信號上升時間大約為0.2ns。如果板上有GaAs晶元,則最大布線長度為7.62mm。
設Tr 為信號上升時間, Tpd 為信號線傳播延時。如果Tr≥4Tpd,信號落在安全區域。如果2Tpd≥Tr≥4Tpd,信號落在不確定區域。如果Tr≤2Tpd,信號落在問題區域。對於落在不確定區域及問題區域的信號,應該使用高速布線方法。

(四)、什麼是傳輸線

PCB板上的走線可等效為下圖所示的串聯和並聯的電容、電阻和電感結構。串聯電阻的典型值0.25-0.55 ohms/foot,因為絕緣層的緣故,並聯電阻阻值通常很高。將寄生電阻、電容和電感加到實際的PCB連線中之後,連線上的最終阻抗稱為特徵阻抗Zo。線徑越寬,距電源/地越近,或隔離層的介電常數越高,特徵阻抗就越小。如果傳輸線和接收端的阻抗不匹配,那麼輸出的電流信號和信號最終的穩定狀態將不同,這就引起信號在接收端產生反射,這個反射信號將傳回信號發射端並再次反射回來。隨著能量的減弱反射信號的幅度將減小,直到信號的電壓和電流達到穩定。這種效應被稱為振盪,信號的振盪在信號的上升沿和下降沿經常可以看到。

(五)、傳輸線效應

基於上述定義的傳輸線模型,歸納起來,傳輸線會對整個電路設計帶來以下效應。
• 反射信號Reflected signals
• 延時和時序錯誤Delay & Timing errors
• 多次跨越邏輯電平門限錯誤False Switching
• 過沖與下沖Overshoot/Undershoot
• 串擾Inced Noise (or crosstalk)
• 電磁輻射EMI radiation

5.1 反射信號
如果一根走線沒有被正確終結(終端匹配),那麼來自於驅動端的信號脈沖在接收端被反射,從而引發不預期效應,使信號輪廓失真。當失真變形非常顯著時可導致多種錯誤,引起設計失敗。同時,失真變形的信號對雜訊的敏感性增加了,也會引起設計失敗。如果上述情況沒有被足夠考慮,EMI將顯著增加,這就不單單影響自身設計結果,還會造成整個系統的失敗。
反射信號產生的主要原因:過長的走線;未被匹配終結的傳輸線,過量電容或電感以及阻抗失配。

5.2 延時和時序錯誤
信號延時和時序錯誤表現為:信號在邏輯電平的高與低門限之間變化時保持一段時間信號不跳變。過多的信號延時可能導致時序錯誤和器件功能的混亂。
通常在有多個接收端時會出現問題。電路設計師必須確定最壞情況下的時間延時以確保設計的正確性。信號延時產生的原因:驅動過載,走線過長。

5.3 多次跨越邏輯電平門限錯誤
信號在跳變的過程中可能多次跨越邏輯電平門限從而導致這一類型的錯誤。多次跨越邏輯電平門限錯誤是信號振盪的一種特殊的形式,即信號的振盪發生在邏輯電平門限附近,多次跨越邏輯電平門限會導致邏輯功能紊亂。反射信號產生的原因:過長的走線,未被終結的傳輸線,過量電容或電感以及阻抗失配。

5.4 過沖與下沖
過沖與下沖來源於走線過長或者信號變化太快兩方面的原因。雖然大多數元件接收端有輸入保護二極體保護,但有時這些過沖電平會遠遠超過元件電源電壓范圍,損壞元器件。

5.5 串擾
串擾表現為在一根信號線上有信號通過時,在PCB板上與之相鄰的信號線上就會感應出相關的信號,我們稱之為串擾。
信號線距離地線越近,線間距越大,產生的串擾信號越小。非同步信號和時鍾信號更容易產生串擾。因此解串擾的方法是移開發生串擾的信號或屏蔽被嚴重干擾的信號。
5.6 電磁輻射
EMI(Electro-Magnetic Interference)即電磁干擾,產生的問題包含過量的電磁輻射及對電磁輻射的敏感性兩方面。EMI表現為當數字系統加電運行時,會對周圍環境輻射電磁波,從而干擾周圍環境中電子設備的正常工作。它產生的主要原因是電路工作頻率太高以及布局布線不合理。目前已有進行 EMI模擬的軟體工具,但EMI模擬器都很昂貴,模擬參數和邊界條件設置又很困難,這將直接影響模擬結果的准確性和實用性。最通常的做法是將控制EMI的各項設計規則應用在設計的每一環節,實現在設計各環節上的規則驅動和控制。

(六)、避免傳輸線效應的方法
針對上述傳輸線問題所引入的影響,我們從以下幾方面談談控制這些影響的方法。

6.1 嚴格控制關鍵網線的走線長度
如果設計中有高速跳變的邊沿,就必須考慮到在PCB板上存在傳輸線效應的問題。現在普遍使用的很高時鍾頻率的快速集成電路晶元更是存在這樣的問題。解決這個問題有一些基本原則:如果採用CMOS或TTL電路進行設計,工作頻率小於10MHz,布線長度應不大於7英寸。工作頻率在50MHz布線長度應不大於1.5英寸。如果工作頻率達到或超過75MHz布線長度應在1英寸。對於GaAs晶元最大的布線長度應為0.3英寸。如果超過這個標准,就存在傳輸線的問題。

6.2 合理規劃走線的拓撲結構
解決傳輸線效應的另一個方法是選擇正確的布線路徑和終端拓撲結構。走線的拓撲結構是指一根網線的布線順序及布線結構。當使用高速邏輯器件時,除非走線分支長度保持很短,否則邊沿快速變化的信號將被信號主幹走線上的分支走線所扭曲。通常情形下,PCB走線採用兩種基本拓撲結構,即菊花鏈(Daisy Chain)布線和星形(Star)分布。
對於菊花鏈布線,布線從驅動端開始,依次到達各接收端。如果使用串聯電阻來改變信號特性,串聯電阻的位置應該緊靠驅動端。在控制走線的高次諧波干擾方面,菊花鏈走線效果最好。但這種走線方式布通率最低,不容易100%布通。實際設計中,我們是使菊花鏈布線中分支長度盡可能短,安全的長度值應該是:Stub Delay <= Trt *0.1.
例如,高速TTL電路中的分支端長度應小於1.5英寸。這種拓撲結構佔用的布線空間較小並可用單一電阻匹配終結。但是這種走線結構使得在不同的信號接收端信號的接收是不同步的。
星形拓撲結構可以有效的避免時鍾信號的不同步問題,但在密度很高的PCB板上手工完成布線十分困難。採用自動布線器是完成星型布線的最好的方法。每條分支上都需要終端電阻。終端電阻的阻值應和連線的特徵阻抗相匹配。這可通過手工計算,也可通過CAD工具計算出特徵阻抗值和終端匹配電阻值。

在上面的兩個例子中使用了簡單的終端電阻,實際中可選擇使用更復雜的匹配終端。第一種選擇是RC匹配終端。RC匹配終端可以減少功率消耗,但只能使用於信號工作比較穩定的情況。這種方式最適合於對時鍾線信號進行匹配處理。其缺點是RC匹配終端中的電容可能影響信號的形狀和傳播速度。
串聯電阻匹配終端不會產生額外的功率消耗,但會減慢信號的傳輸。這種方式用於時間延遲影響不大的匯流排驅動電路。 串聯電阻匹配終端的優勢還在於可以減少板上器件的使用數量和連線密度。
最後一種方式為分離匹配終端,這種方式匹配元件需要放置在接收端附近。其優點是不會拉低信號,並且可以很好的避免雜訊。典型的用於TTL輸入信號(ACT, HCT, FAST)。
此外,對於終端匹配電阻的封裝型式和安裝型式也必須考慮。通常SMD表面貼裝電阻比通孔元件具有較低的電感,所以SMD封裝元件成為首選。如果選擇普通直插電阻也有兩種安裝方式可選:垂直方式和水平方式。
垂直安裝方式中電阻的一條安裝管腳很短,可以減少電阻和電路板間的熱阻,使電阻的熱量更加容易散發到空氣中。但較長的垂直安裝會增加電阻的電感。水平安裝方式因安裝較低有更低的電感。但過熱的電阻會出現漂移,在最壞的情況下電阻成為開路,造成PCB走線終結匹配失效,成為潛在的失敗因素。

6.3 抑止電磁干擾的方法
很好地解決信號完整性問題將改善PCB板的電磁兼容性(EMC)。其中非常重要的是保證PCB板有很好的接地。對復雜的設計採用一個信號層配一個地線層是十分有效的方法。此外,使電路板的最外層信號的密度最小也是減少電磁輻射的好方法,這種方法可採用"表面積層"技術"Build-up"設計製做PCB來實現。表面積層通過在普通工藝 PCB 上增加薄絕緣層和用於貫穿這些層的微孔的組合來實現 ,電阻和電容可埋在表層下,單位面積上的走線密度會增加近一倍,因而可降低 PCB的體積。PCB 面積的縮小對走線的拓撲結構有巨大的影響,這意味著縮小的電流迴路,縮小的分支走線長度,而電磁輻射近似正比於電流迴路的面積;同時小體積特徵意味著高密度引腳封裝器件可以被使用,這又使得連線長度下降,從而電流迴路減小,提高電磁兼容特性。

6.4 其它可採用技術
為減小集成電路晶元電源上的電壓瞬時過沖,應該為集成電路晶元添加去耦電容。這可以有效去除電源上的毛刺的影響並減少在印製板上的電源環路的輻射。
當去耦電容直接連接在集成電路的電源管腿上而不是連接在電源層上時,其平滑毛刺的效果最好。這就是為什麼有一些器件插座上帶有去耦電容,而有的器件要求去耦電容距器件的距離要足夠的小。
任何高速和高功耗的器件應盡量放置在一起以減少電源電壓瞬時過沖。
如果沒有電源層,那麼長的電源連線會在信號和迴路間形成環路,成為輻射源和易感應電路。
走線構成一個不穿過同一網線或其它走線的環路的情況稱為開環。如果環路穿過同一網線其它走線則構成閉環。兩種情況都會形成天線效應(線天線和環形天線)。天線對外產生EMI輻射,同時自身也是敏感電路。閉環是一個必須考慮的問題,因為它產生的輻射與閉環面積近似成正比。

結束語
高速電路設計是一個非常復雜的設計過程,ZUKEN公司的高速電路布線演算法(Route Editor)和EMC/EMI分析軟體(INCASES,Hot-Stage)應用於分析和發現問題。本文所闡述的方法就是專門針對解決這些高速電路設計問題的。此外,在進行高速電路設計時有多個因素需要加以考慮,這些因素有時互相對立。如高速器件布局時位置靠近,雖可以減少延時,但可能產生串擾和顯著的熱效應。因此在設計中,需權衡各因素,做出全面的折衷考慮;既滿足設計要求,又降低設計復雜度。高速PCB設計手段的採用構成了設計過程的可控性,只有可控的,才是可靠的,也才能是成功的!
參考資料:高速PCB設計指南

⑺ 數字電路設計

1、與非門實現與非功能,即L=-(A·B)【用-表示非】
A、B先與
再求非,輸入同時為1輸出才為0,否則為1(0的屏蔽作用)。真值表如下:
A
B
L
0
0
1
0
1
1
1
0
1
1
1
0
異或門L=A(+)B,輸入不同則輸出為1,否則為0(可用於半加器設計),真值表如下:
A
B
L
0
0
0
0
1
1
1
0
1
1
1
0
全加器能進行加數,被加數和地位來的進位信號相加,並根據求和結果給出該位的進位信號。真值表如下:(Ci為低位進位信號
Co為進位信號
S為和)
A
B
Ci
Co
S
0
0
0
0
0
0
0
1
0
1
0
1
0
0
1
0
1
1
1
0
1
0
0
0
1
1
0
1
1
0
1
1
0
1
0
1
1
1
1
1
2、TTL門電路的空載功耗與CMOS門的靜態功耗相比,是較大的,約為數十毫瓦(mw)而後者僅約為幾十納(10-9)瓦;
速度上通常以為TTL門的速度高於CMOS門電路。影響
TTL門電路工作速度的主要因素是電路內部管子的開關特性、電路結構及內部的各電阻阻數值。
集成門電路多餘輸入端一般不讓懸空(如TTL與非門輸入端懸空可以相當於高電平),以防止干擾信號的引入。處理以不改變電路工作狀態和穩定可靠為原則。有以下方法:1、把多餘端和其他輸入端連在一起;2、根據邏輯要求可以將「與門」或者「與非門」的多餘輸入端通過1-3千歐的電阻接正電源。將「或門」
「或非門」多餘端接地。
高速電路應採用第二種方法。
3、我做實驗結果是:其餘輸入端為高電平(邏輯1)時,連續脈沖能通過,但是有半個周期的時移(由於「非」功能的作用);其餘輸入端為低電平(邏輯0)時,輸出一直為高電平。
希望對你有幫助,有疑問q我
273158963,互相學習。
祝你學習愉快!!~

⑻ 《高速數字電路設計》 即網上流傳的黑魔書 有實體版么

英文原版書名:
High-Speed Digital Design: A Handbook of Black Magic
國內不一定有賣。

中文版:
《高速數字設計》
(美)Howard Johnson, Martin Graham 著
沈 立、朱來文、陳宏偉 等譯
王 強 審校
電子工業出版社
統一書號:ISBN 7-5053-9909-8
中國版本圖書館CIP數據核字(2004)第041101號

⑼ 數字電路主要講什麼內容,對硬體設計有幫助嗎

數字電路主要講的內容:
1.
用數字信號完成對數字量進行算術運算和邏輯運算的電路稱為數字電路,或數字系統。
2.
由於它具有邏輯運算和邏輯處理功能,所以又稱數字邏輯電路。
3.
現代的數字電路由半導體工藝製成的若干數字集成器件構造而成。
4.
邏輯門是數字邏輯電路的基本單元。
5.
存儲器是用來存儲二進制數據的數字電路。
6.
從整體上看,數字電路可以分為組合邏輯電路和時序邏輯電路兩大類。
對硬體設計的幫助:
數字電路設計,是硬體設計的一部分。

⑽ 高速pcb設計需要注意哪些問題

問題太多了,一句兩句也說不清,自己看吧。
高速PCB設計指南之一
第一篇 PCB布線
在PCB設計中,布線是完成產品設計的重要步驟,可以說前面的准備工作都是為它而
做的, 在整個PCB中,以布線的設計過程限定最高,技巧最細,工作量最大.PCB布線有
單面布線, 雙面布線及多層布線.布線的方式也有兩種:自動布線及互動式布線,在自動
布線之前, 可以用互動式預先對要求比較嚴格的線進行布線,輸入端與輸出端的邊線應避
免相鄰平行, 以免產生反射干擾.必要時應加地線隔離,兩相鄰層的布線要互相垂直,平
行容易產生寄生耦合.
自動布線的布通率,依賴於良好的布局,布線規則可以預先設定, 包括走線的彎曲次數,
導通孔的數目,步進的數目等.一般先進行探索式布經線,快速地把短線連通, 然後進行
迷宮式布線,先把要布的連線進行全局的布線路徑優化,它可以根據需要斷開已布的線. 並
試著重新再布線,以改進總體效果.
對目前高密度的PCB設計已感覺到貫通孔不太適應了, 它浪費了許多寶貴的布線通道,
為解決這一矛盾,出現了盲孔和埋孔技術,它不僅完成了導通孔的作用, 還省出許多布線
通道使布線過程完成得更加方便,更加流暢,更為完善,PCB 板的設計過程是一個復雜而
又簡單的過程,要想很好地掌握它,還需廣大電子工程設計人員去自已體會, 才能得到其
中的真諦.
1 電源,地線的處理
既使在整個PCB板中的布線完成得都很好,但由於電源, 地線的考慮不周到而引起的干
擾,會使產品的性能下降,有時甚至影響到產品的成功率.所以對電, 地線的布線要認真
對待,把電,地線所產生的噪音干擾降到最低限度,以保證產品的質量.
對每個從事電子產品設計的工程人員來說都明白地線與電源線之間噪音所產生的原因,
現只對降低式抑制噪音作以表述:
(1),眾所周知的是在電源,地線之間加上去耦電容.
(2),盡量加寬電源,地線寬度,最好是地線比電源線寬,它們的關系是:地線>電源線>
信號線,通常信號線寬為:0.2~0.3mm,最經細寬度可達0.05~0.07mm,電源線為1.2~2.5 mm
對數字電路的PCB可用寬的地導線組成一個迴路, 即構成一個地網來使用(模擬電路的地不
能這樣使用)
(3),用大面積銅層作地線用,在印製板上把沒被用上的地方都與地相連接作為地線用.或
是做成多層板,電源,地線各佔用一層.
2 數字電路與模擬電路的共地處理
現在有許多PCB不再是單一功能電路(數字或模擬電路),而是由數字電路和模擬電路混
合構成的.因此在布線時就需要考慮它們之間互相干擾問題,特別是地線上的噪音干擾.
數字電路的頻率高,模擬電路的敏感度強,對信號線來說,高頻的信號線盡可能遠離敏感
的模擬電路器件,對地線來說,整人PCB對外界只有一個結點,所以必須在PCB內部進行
處理數,模共地的問題,而在板內部數字地和模擬地實際上是分開的它們之間互不相連,只
是在PCB與外界連接的介面處(如插頭等).數字地與模擬地有一點短接,請注意,只有一
個連接點.也有在PCB上不共地的,這由系統設計來決定.
高速PCB設計指南
- 2 -
3 信號線布在電(地)層上
在多層印製板布線時,由於在信號線層沒有布完的線剩下已經不多,再多加層數就會造成
浪費也會給生產增加一定的工作量,成本也相應增加了,為解決這個矛盾,可以考慮在電(地)
層上進行布線.首先應考慮用電源層,其次才是地層.因為最好是保留地層的完整性.
4 大面積導體中連接腿的處理
在大面積的接地(電)中,常用元器件的腿與其連接,對連接腿的處理需要進行綜合的考
慮,就電氣性能而言,元件腿的焊盤與銅面滿接為好,但對元件的焊接裝配就存在一些不良
隱患如:①焊接需要大功率加熱器.②容易造成虛焊點.所以兼顧電氣性能與工藝需要,做
成十字花焊盤,稱之為熱隔離(heat shield)俗稱熱焊盤(Thermal),這樣,可使在焊接時
因截面過分散熱而產生虛焊點的可能性大大減少.多層板的接電(地)層腿的處理相同.
5 布線中網路系統的作用
在許多CAD系統中,布線是依據網路系統決定的.網格過密,通路雖然有所增加,但步
進太小,圖場的數據量過大,這必然對設備的存貯空間有更高的要求,同時也對象計算機類
電子產品的運算速度有極大的影響.而有些通路是無效的,如被元件腿的焊盤佔用的或被安
裝孔,定們孔所佔用的等.網格過疏,通路太少對布通率的影響極大.所以要有一個疏密合
理的網格系統來支持布線的進行.
標准元器件兩腿之間的距離為0.1英寸(2.54mm),所以網格系統的基礎一般就定為0.1英寸
(2.54 mm)或小於0.1英寸的整倍數,如:0.05英寸,0.025英寸,0.02英寸等.
6 設計規則檢查(DRC)
布線設計完成後,需認真檢查布線設計是否符合設計者所制定的規則,同時也需確認所制
定的規則是否符合印製板生產工藝的需求,一般檢查有如下幾個方面:
(1),線與線,線與元件焊盤,線與貫通孔,元件焊盤與貫通孔,貫通孔與貫通孔之間的距
離是否合理,是否滿足生產要求.
(2),電源線和地線的寬度是否合適,電源與地線之間是否緊耦合(低的波阻抗) 在PCB
中是否還有能讓地線加寬的地方.
(3),對於關鍵的信號線是否採取了最佳措施,如長度最短,加保護線,輸入線及輸出線被
明顯地分開.
(4),模擬電路和數字電路部分,是否有各自獨立的地線.
(5)後加在PCB中的圖形(如圖標,注標)是否會造成信號短路.
(6)對一些不理想的線形進行修改.
(7),在PCB上是否加有工藝線 阻焊是否符合生產工藝的要求,阻焊尺寸是否合適,字
符標志是否壓在器件焊盤上,以免影響電裝質量.
(8),多層板中的電源地層的外框邊緣是否縮小,如電源地層的銅箔露出板外容易造成短。

閱讀全文

與高速數字電路設計相關的資料

熱點內容
oppor9plus不顯示維修視頻 瀏覽:57
廣汽廠家電話號碼是多少 瀏覽:537
閑魚怎麼搞到賣家電話 瀏覽:136
琿春紅松傢具 瀏覽:124
機電設備維修是什麼職稱 瀏覽:712
格力空調鄭州售後維修電話 瀏覽:179
配有彩頁的傢具書籍有哪些 瀏覽:555
秦皇島哪裡有傢具賣 瀏覽:239
華為售後維修點天津靜海 瀏覽:491
華碩筆記本光碟機保修多少年 瀏覽:619
發動機連桿彎曲維修費 瀏覽:252
西鐵城日本買保修多久 瀏覽:728
無錫蘋果官網維修中心 瀏覽:799
捷馬充電器維修 瀏覽:553
國家電投內蒙古能源怎麼樣 瀏覽:274
湖南省殘疾人學電器維修學院 瀏覽:845
小米維修售後長春 瀏覽:172
特斯拉改裝了還能保修嗎 瀏覽:284
佛岡縣有電器維修點嗎 瀏覽:27
普通房屋屋頂怎麼做防水 瀏覽:872