A. 如何看懂開關電源電路圖
Protel等用於製作電路板的電路圖一般有原理圖和PCB板圖。PCB板圖直接拿去做電路板的版,原理圖是到電子元件級別權的電路原理構成圖,製作人一般會自己先劃分好原理圖的結構框架圖,在細致的給出每個框架的電子元件級別的電路。
B. 開關在電路中的作用是什麼
切斷電流的作用.一、主電路
從交流電網輸入、直流輸出的全過程,包括:
1、輸入濾波器:其作用是將電網存在的雜波過濾,同時也阻礙本機產生的雜波反饋到公共電網。
2、整流與濾波:將電網交流電源直接整流為較平滑的直流電,以供下一級變換。
3、逆變:將整流後的直流電變為高頻交流電,這是高頻開關電源的核心部分,頻率越高,體積、重量與輸出功率之比越小。
4、輸出整流與濾波:根據負載需要,提供穩定可靠的直流電源。
二、控制電路
一方面從輸出端取樣,經與設定標准進行比較,然後去控制逆變器,改變其頻率或脈寬,達到輸出穩定,另一方面,根據測試電路提供的資料,經保護電路鑒別,提供控制電路對整機進行各種保護措施。
三、檢測電路
除了提供保護電路中正在運行中各種參數外,還提供各種顯示儀表資料。
四、輔助電源
提供所有單一電路的不同要求電源。
開關控制穩壓原理
開關K以一定的時間間隔重復地接通和斷開,在開關K接通時,輸入電源E通過開關K和濾波電路提供給負載RL,在整個開關接通期間,電源E向負載提供能量;當開關K斷開時,輸入電源E便中斷了能量的提供。可見,輸入電源向負載提供能量是斷續的,為使負載能得到連續的能量提供,開關穩壓電源必須要有一套儲能裝置,在開關接通時將一部份能量儲存起來,在開關斷開時,向負載釋放。圖中,由電感L、電容C2和二極體D組成的電路,就具有這種功能。電感L用以儲存能量,在開關斷開時,儲存在電感L中的能量通過二極體D釋放給負載,使負載得到連續而穩定的能量,因二極體D使負載電流連續不斷,所以稱為續流二極體。在AB間的電壓平均值EAB可用下式表示:
EAB=TON/T*E
式中TON為開關每次接通的時間,T為開關通斷的工作周期(即開關接通時間TON和關斷時間TOFF之和)。
由式可知,改變開關接通時間和工作周期的比例,AB間電壓的平均值也隨之改變,因此,隨著負載及輸入電源電壓的變化自動調整TON和T的比例便能使輸出電壓V0維持不變。改變接通時間TON和工作周期比例亦即改變脈沖的占空比,這種方法稱為「時間比率控制」(Time
Ratio
Control,縮寫為TRC)。
按TRC控制原理,有三種方式:
一、脈沖寬度調制(Pulse
Width
Molation,縮寫為PWM)
開關周期恆定,通過改變脈沖寬度來改變占空比的方式。
二、脈沖頻率調制(Pulse
Frequency
Molation,縮寫為PFM)
導通脈沖寬度恆定,通過改變開關工作頻率來改變占空比的方式。
三、混合調制
導通脈沖寬度和開關工作頻率均不固定,彼此都能改變的方式,它是以上二種方式的混合
C. 什麼是開關電路,開關電源,驅動電路
工作在開關兩種狀態下的電路,就叫開關電路。
利用開關電專路設計的電源,叫開關電源。
驅動電路:不屬同的電路對驅動電路要求不同
有的驅動電路是一個PWM控制器,比如步進電機的驅動
有的驅動電路是一個電壓放大器,例如功放中的前置放大器
有的驅動電路是一個電流放大器,例如音箱的驅動電路就是一個音頻率功率放大器
D. 給個簡單的開關電源電路圖
開關電源主要有三部分組成:PWM控制模塊、開關管(BJT、MOSFET、IGBT等)和濾波器(電感、電容),隔離內開關電源還包括容隔離變壓器。當然還要考慮EMI,PFC,即功率因數校正)的設計。
在小功率的電源中還存在一些線性電源,但在中、大功率的電源中,線性電源已經被開關電源所取代。隨著控制晶元頻率的提高和功能的增多,高速和低功耗功率開關管的研製成功,開關電源是未來電源主要的發展方向。
(4)電源開關電路擴展閱讀:
注意事項:
1、開關電源的輸入電壓可以是220V或是110V,根據電路設計合理選擇輸入電壓檔位。否則會造成開關電源的損害。
2、注意分辨開關電源輸出電壓接線柱的地線端和零線端。並確保開關電源接地可靠。
3、開關電源的金屬外殼電源外殼一般與地(FG)連接,要可靠接地,以確保安全,不可誤將外殼接在零線上。
4、為了達到充分散熱的,一般開關電源宜安裝在空氣對流條件較好的位置、或安裝在機箱殼體上通過殼體將熱傳達室外出去。
5、開關電源出廠以前加阻性負載進行測試,若需用在容性或感性為負載時,應事先在訂貨合同中加以說明。
E. 電路圖里的開關是連接電源的正極還是負極
使用單極開關時:直流的是斷開電源的正極。交流的是斷開電源的火線。
使用兩極開關時:直流的是電源的正極和負極都斷開。交流的是電源的火線和零線都斷開。
動力設備使用三極開關(三相開關),同時斷開三根火線(相線)。
F. 開關電源工作原理
電源→輸入濾波器→全橋整流→直流濾波→開關管(振盪逆變)→開關變壓器→輸出整流與濾波。交流電源輸入經整流濾波成直流
通過高頻PWM(脈沖寬度調制)信號控制開關管,將那個直流加到開關變壓器初級上
開關變壓器次級感應出高頻電壓,經整流濾波供給負載
輸出部分通過一定的電路反饋給控制電路,控制PWM占空比,以達到穩定輸出的目的
交流電源輸入時一般要經過厄流圈一類的東西,過濾掉電網上的干擾,同時也過濾掉電源對電網的干擾;
在功率相同時,開關頻率越高,開關變壓器的體積就越小,但對開關管的要求就越高;
開關變壓器的次級可以有多個繞組或一個繞組有多個抽頭,以得到需要的輸出;
一般還應該增加一些保護電路,比如空載、短路等保護,否則可能會燒毀開關電源.
主要用於工業以及一些家用電器上,如電視機,電腦等
開關電源原理圖分析1、正激電路
電路的工作過程:a>
開關S開通後,變壓器繞組N1兩端的電壓為上正下負,與其耦合的N2繞組兩端的電壓也是上正下負.因此VD1處於通態,VD2為斷態,電感L的電流逐漸增長;
b>
S關斷後,電感L通過VD2續流,VD1關斷.S關斷後變壓器的激磁電流經N3繞組和VD3流回電源,所以S關斷後承受的電壓為
.
c>
變壓器的磁心復位:開關S開通後,變壓器的激磁電流由零開始,隨著時間的增加而線性的增長,直到S關斷.為防止變壓器的激磁電感飽和,必須設法使激磁電流在S關斷後到下一次再開通的一段時間內降回零,這一過程稱為變壓器的磁心復位.正激電路的理想化波形:
變壓器的磁心復位時間為:
Tist=N3*Ton/N1
輸出電壓:輸出濾波電感電流連續的情況下:
Uo/Ui=N2*Ton/N1*T
磁心復位過程:
2、反激電路
反激電路原理圖
反激電路中的變壓器起著儲能元件的作用,可以看作是一對相互耦合的電感.
工作過程:
S開通後,VD處於斷態,N1繞組的電流線性增長,電感儲能增加;
S關斷後,N1繞組的電流被切斷,變壓器中的磁場能量通過N2繞組和VD向輸出端釋放.S關斷後的電壓為:us=Ui+N1*Uo/N2
反激電路的工作模式:
電流連續模式:當S開通時,N2繞組中的電流尚未下降到零.
輸出電壓關系:Uo/Ui=N2*ton/N1*toff
電流斷續模式:S開通前,N2繞組中的電流已經下降到零.
輸出電壓高於上式的計算值,並隨負載減小而升高,在負載為零的極限情況下,
,因此反激電路不應工作於負載開路狀態.
反激電路的理想化波形
G. 什麼是開關電原電路
開關電源是利用現代電力電子技術,控制開關管開通和關斷的時間比率,維持穩定輸出電壓的一種電源,開關電源一般由脈沖寬度調制(PWM)控制IC和MOSFET構成。目前,開關電源以小型、輕量和高效率的特點被廣泛應用幾乎所有的電子設備。
簡單說一下什麼是開關電源和它的構成,這樣你會明白其原理,開關電源與我們傳統使用的變壓器相比從功能上是一致的,但傳統的線圈變壓器是利用電磁感應原理產生的電動勢,電力轉換效率比較低,大部分電力都以
熱(電阻)與
磁
的形式消耗在了轉換過程上,所以線圈變壓器輸出的電流比較小,負載不如開關電源。
開關電源說簡單一點,就是將電源用開關來控制,在周期內做反復快速的
開
關
開
關
開
關
的動作,
一開一關的速度(占空比),能控制電壓的高與低,由於只是開與關所以能量的損耗非常小,負載的電流可以做得很大,開關電源電路中也有一個小的線圈變壓器起到隔離交流的作用。由於結構全部使用的是電子元件,所以重量非常輕、便於攜帶,已經逐漸替代了傳統笨重的老式線圈變壓器。
開關電源雖好但不成熟,由於基本上全部都是電子元器件,所以極其容易損壞,常見的就是家庭使用的節能燈,就是典型的開關電源。大部分節能燈燈管沒壞電路先壞。相比較老式的日光燈管使用的是鎮流器,雖非常笨重但因技術原理簡單成熟,一般都是燈管損壞,鎮流器卻可使用多年。
H. 三極體控制電源開關電路
小朋友,你兩個圖都不對啊。
第一個T2無法打開,第二個圖T1無法輸出。
I. 開關電源電路是怎樣的工作原理
原理簡介
開關電源的工作過程相當容易理解,在線性電源中,讓功率晶體管工作在線性模式,與線性電源不同的是,PWM開關電源是讓功率晶體管工作在導通和關斷的狀態,在這兩種狀態中,加在功率晶體管上的伏-安乘積是很小的(在導通時,電壓低,電流大;關斷時,電壓高,電流小)/功率器件上的伏安乘積就是功率半導體器件上所產生的損耗。 與線性電源相比,PWM開關電源更為有效的工作過程是通過「斬波」,即把輸入的直流電壓斬成幅值等於輸入電壓幅值的脈沖電壓來實現的。脈沖的占空比由開關電源的控制器來調節。一旦輸入電壓被斬成交流方波,其幅值就可以通過變壓器來升高或降低。通過增加變壓器的二次繞組數就可以增加輸出的電壓組數。最後這些交流波形經過整流濾波後就得到直流輸出電壓。 控制器的主要目的是保持輸出電壓穩定,其工作過程與線性形式的控制器很類似。也就是說控制器的功能塊、電壓參考和誤差放大器,可以設計成與線性調節器相同。他們的不同之處在於,誤差放大器的輸出(誤差電壓)在驅動功率管之前要經過一個電壓/脈沖寬度轉換單元。 開關電源有兩種主要的工作方式:正激式變換和升壓式變換。盡管它們各部分的布置差別很小,但是工作過程相差很大,在特定的應用場合下各有優點。
電路原理
所謂開關電源,顧名思義,就是這里有一扇門,一開門電源就通過,一關門電源就停止通過,那麼什麼是門呢,開關電源里有的採用可控硅,有的採用開關管,這兩個元器件性能差不多,都是靠基極、(開關管)控制極(可控硅)上加上脈沖信號來完成導通和截止的,脈沖信號正半周到來,控制極上電壓升高,開關管或可控硅就導通,由220V整流、濾波後輸出的300V電壓就導通,通過開關變壓器傳到次級,再通過變壓比將電壓升高或降低,供各個電路工作。振盪脈沖負半周到來,電源調整管的基極、或可控硅的控制極電壓低於原來的設置電壓,電源調整管截止,300V電源被關斷,開關變壓器次級沒電壓,這時各電路所需的工作電壓,就靠次級本路整流後的濾波電容放電來維持。待到下一個脈沖的周期正半周信號到來時,重復上一個過程。這個開關變壓器就叫高頻變壓器,因為他的工作頻率高於50HZ低頻。那麼推動開關管或可控硅的脈沖如何獲得呢,這就需要有個振盪電路產生,我們知道,晶體三極體有個特性,就是基極對發射極電壓是0.65-0.7V是放大狀態,0.7V以上就是飽和導通狀態, -0.1V- -0.3V就工作在振盪狀態,那麼其工作點調好後,就靠較深的負反饋來產生負壓,使振盪管起振,振盪管的頻率由基極上的電容充放電的時間長短來決定,振盪頻率高輸出脈沖幅度就大,反之就小,這就決定了電源調整管的輸出電壓的大小。那麼變壓器次級輸出的工作電壓如何穩壓呢,一般是在開關變壓器上,單繞一組線圈,在其上端獲得的電壓經過整流濾波後,作為基準電壓,然後通過光電耦合器,將這個基準電壓返回振盪管的基極,來調整震盪頻率的高低,如果變壓器次級電壓升高,本取樣線圈輸出的電壓也升高,通過光電耦合器獲得的正反饋電壓也升高,這個電壓加到振盪管基極上,就使振盪頻率降低,起到了穩定次級輸出電壓的穩定,太細的工作情況就不必細講了,也沒必要了解的那麼細的,這樣大功率的電壓由開關變壓器傳遞,並與後級隔開,返回的取樣電壓由光耦傳遞也與後級隔開,所以前級的市電電壓,是與後級分離的,這就叫冷板,是安全的,變壓器前的電源是獨立的,這就叫開關電源。說到這里吧。
開關條件
J. 開關電源的工作原理以及電路圖是什麼
一、開關電源工作原理
1、開關式穩壓電源接控制方式分為調寬式和調頻式兩種,在實際的應用中,調寬式使用得較多,在目前開發和使用的開關電源集成電路中,絕大多數也為脈寬調制型。因此下面就主要介紹調寬式開關穩壓電源。
2、調寬式開關穩壓電源的基本原理可參見下圖。
3、對於單極性矩形脈沖來說,其直流平均電壓Uo取決於矩形脈沖的寬度,脈沖越寬,其直流平均電壓值就越高。直流平均電壓U。可由公式計算,即Uo=Um×T1/T式中Um為矩形脈沖最大電壓值;T為矩形脈沖周期;T1為矩形脈沖寬度。
4、從上式可以看出,當Um 與T 不變時,直流平均電壓Uo 將與脈沖寬度T1 成正比。這樣,只要我們設法使脈沖寬度隨穩壓電源輸出電壓的增高而變窄,就可以達到穩定電壓的目的。
二、開關式穩壓電源的原理電路
基本電路
補充:
1、交流電壓經整流電路及濾波電路整流濾波後,變成含有一定脈動成份的直流電壓,該電壓進人高頻變換器被轉換成所需電壓值的方波,最後再將這個方波電壓經整流濾波變為所需要的直流電壓。
2、控制電路為一脈沖寬度調制器,它主要由取樣器、比較器、振盪器、脈寬調制及基準電壓等電路構成。這部分電路目前已集成化,製成了各種開關電源用集成電路。控制電路用來調整高頻開關元件的開關時間比例,以達到穩定輸出電壓的目的。