㈠ 光发射机的发展历史,和应用及前景怎样
光发射机的作用是将从复用设备送来的HDB3信码变换成NRZ码;接着将NRZ码编为适合在光缆线路上传输的码型;最后在进行电/光转换,将电信号转换成光信号并耦合进光纤。
光发射机由输入接口、光源、驱动电路、监控电路、控制电路等构成,其核心是光源及驱动电路。在数字通信中,输入电路将输入的信号(如PCM脉冲)进行整形,变换成适于线路传送的码型后通过驱动电路光源,或者送到光调制器调制光源输出的连续光波。为了稳定输出的平均光功率和工作温度,通常要设置一个自动的温度控制及功率控制电路。
我们都知道,信息的处理都是在电的领域内完成的,在光纤通信中,我们必须把电信号转变成光信号,这样才能在光纤上传播。在光纤通信系统中,信息由LED或LD发出的光波所携带,光波就是载波,把信息加载到光波上的过程就是调制。光调制器就是实现从电信号到光信号的转换的器件。 调制方式通常分为两大类,即模拟调制和数字调制。 模拟调制又有两类,一类是用模拟基带信号直接对光源进行强度调制(D-IM);另一采用连续或脉冲的射频(RF)波作为副载波,模拟基带信号先对它的幅度、频率或相位等进行调制,再用该受调制的副载波去强度调制光源。模拟调制的优点是设备简单,占有带宽较窄,但它的抗干扰性能差,中继时噪声累积。 数字调制是光纤通信的主要调制方式,将模拟信号抽样量化后,以二进制数字信号“1”或“0”对光载波进行通断调制,并进行脉冲编码(PCM)。数字调制的优点是抗干扰能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输,它的缺点是需要较宽的频带,设备也复杂。 按调制方式与光源的关系来分,有直接调制和外调制两种。前者指直接用电调制信号来控制半导体光源的振荡参数(光强、频率等),得到光频的调幅波或调频波,这种调制又称内调制;后者是让光源输出的幅度与频率等恒定的光载波通过光调制器,光信号通过调制器实现对光载波的幅度、频率及相位等进行调制,光源直接调制的优点是简单,但调制速率受到载流子寿命及高速率下的性能退化的限制(如频率啁啾等)。外调制方式需要调制器,结构复杂,但可获得优良的调制性能,尤其适合于高速率下运用。 按被调制光波的参数分:强度调制、相位调制、偏振调制等。 目前光纤通信中应用最多的是光源的基带直接强度调制、副载波强度调制及数字调制,高速率时采用外调制。
㈡ 最短的光脉冲是多少
图片说明:新的80阿秒闪光可以对2.5飞秒光脉冲进行成像。
不管你如何盯着看,都肯定无法看到它,因为它的持续时间实在是太短太短了。德国科学家的一项最新研究,找到了实现迄今最短的闪光的新方法,它的持续时间仅有80阿秒(attosecond,1阿秒为10的-18次方秒,飞秒(femtosecond)的千分之一),而此前的记录为2007年的130阿秒。新的超短光脉冲已经被用于捕获因太短而无法拍到的激光脉冲的图像。相关论文发表在6月20日的《科学》(Science)杂志上。
进行该项研究的是德国马普量子光学研究所的Eleftherios Goulielmakis和同事。他们制造光脉冲的方法是将相对更长(实际上也很短,只有2.5飞秒)的激发脉冲射向氖气云,受激的氖原子会以极紫外光(EUV)短脉冲的形式释放出能量。
需要指出的是,激发脉冲只包含一两个光波振动,因此其中蕴藏着紧密的能量冲击。为了实现这一点,研究人员利用了一种名为“啁啾反射镜”(chirped mirror)的装置,这种多层镜能够优化色散补偿,使处于脉冲前端的光子比较慢的后方光子传播更远的距离,这使“反射标记”有时间追上,从而创造出紧密的光子“包裹”,几乎在同一时间击中氖原子。
为了确证源自氖原子的闪光到底有多短,Goulielmakis等人将它们作为激发光,引入第二团氖气云。受激氖原子释放的电子被用作“闪光枪”(flashgun),照亮了一些初始的2.5飞秒激发脉冲。Goulielmakis解释说,“只有以(比2.5飞秒)更短的时间取样,才能让它们变得可见。”
通过纪录穿过脉冲的电子能量,研究人员得到了初始激光束的侧面图(如图),这有些类似于径赛中的终点摄影图像(photo-finish image)。利用电脑进行图像分析的结果表明,激发这些电子的新创造光脉冲持续时间仅有80阿秒,这是迄今为止的最短纪录。此前的记录为2007年创造的130阿秒。
英国帝国理工学院的Jonathan Marangos表示,“从130到80是重要的一大步,”新的研究成果可以让科学家对较大原子的电子运动进行成像,而“任何对微观世界更好的理解都将对整个科学领域产生影响。”
Goulielmakis未来的打算是创造24阿秒的光脉冲,这是原子单位的时间(氢原子电子从轨道一端到另一端的时间)。而Marangos则认为,更短的仄秒(zeptosecond,千分之一阿秒)也是有可能实现的,它将能够成像原子核内部粒子比如质子的运动。
㈢ 什么是相参积累、啁啾雷达、多普勒模糊度
1.积累分为相参积累和非相参积累,非相参积累又称视频积累。简单的讲,由于雷达回波信号不但有微弱的信号,还会有很强的噪声,相对于噪声来说,信号的强度是没有什么优势的,雷达的主要目的就是要把微弱的目标信号从噪声中分离出来,即设法提高信号和噪声的比值(信噪比)。我们要想把信号提取出来,必须要将信号放大,但放大的同时噪声也被放大,因为它们总是同时存在的,并且放大电路自己本身也有噪声,放大后信号与噪声的比值反而变小了,这样更不利于提取有用的回波信号。解决的方法是进行积累,我们可以对n个回波进行累加,由于噪声是随机的,累加的结果是信号变强(理想状态是提高到n倍),而噪声因是随机的,强度反而变小,这样信号与噪声比就提高了。相参积累又称中频积累,它是最理想的积累,因为中频积累保存了相位信息,所以理论上积累后信噪比可提高到n倍,但这相对来说对雷达体制的要求较高;视频积累又称非相参积累,也称检波后积累,它是将已变为中频的回波信号经包络检波后进行累加,由于检波后相位信息丢失,回波变为非相参的,成为纯粹的视频信号,故称非相参积累。视频积累的效果不如相参积累,其信噪比提高倍数小于n,但大于n的1/2次方,但已相当可观了,虽然视频积累不如相参积累效果好,但是由于它较容易实现,所以很多现代雷达依然使用视频积累的方式。 2.啁啾雷达是线性调频(LFM)雷达,是发射线性调频信号(chrip信号)的雷达,是当前比较常见的雷达,因能较易实现匹配滤波,又能解决发射功率与测距精度的矛盾,所以使用比较普遍。另:chrip,英语原意为一种鸟叫啁啾声,后来作为线性调频信号的代称,大抵外国人也善于取类比象。但将其翻译成“啁啾雷达",国内却属少见,可能是此人根本不懂雷达,就是随意用翻译软件翻译的,或者从其他小报上看到的拿来就用。可笑。 3.可能是指距离模糊。多普勒雷达因发射脉冲重复频率不同而会造成不同的模糊。高重频易造成测距模糊,测速不模糊,低重频相反。多普勒模糊度大约指前者。可以使用其他方法解模糊。具体可查阅相关资料。
㈣ 十三行服装批发市场在哪里
-
-
-
INPE包括运行Windows安装程序及脚本、连接网络共享、自动化基本过程以及执行硬件验证所需的最小功能。”换句话说,Windows PE是一个只拥有最少核心服务的Mini操作系统。与Win9X/2000/XP相比,Windows PE的主要不同点就是:它可以自定义制作自身的可启动副本,在保证你需要的核心服务的同时保持最小的操作系统体积,同时它又是标准的32位视窗API的系统平台。
用PE来安装windows的优势:
(1)因为速度快
(2)可以不用光驱,适用于没有光驱的笔记本电脑
(3)因为可以在pe中可以使用虚拟光驱,可以不解开iso文件直接安装,减少麻烦。
㈤ 光发射机输出的光功率与输入电信号的哪些参数有关
光发射机的构成 光发送机由输入接口、光源、驱动电路、监控电路、控制电路等构成,其核心是光源及驱动电路。
在数字通信中,输入电路将输入的信号(如PCM脉冲)进行整形,变换成适于线路传送的码型后通过驱动电路光源,或者送到光调制器调制光源输出的连续光波。为了稳定输出的平均光功率和工作温度,通常要设置一个自动的温度控制及功率控制电路。
光源的调制我们都知道,信息的处理都是在电的领域内完成的,在光纤通信中,我们必须把电信号转变成光信号,这样才能在光纤上传播。在光纤通信系统中,信息由LED或LD发出的光波所携带,光波就是载波,把信息加载到光波上的过程就是调制。
光调制器就是实现从电信号到光信号的转换的器件。 调制方式通常分为两大类,即模拟调制和数字调制。
模拟调制又有两类:
一类是用模拟基带信号直接对光源进行强度调制(D-IM);
另一采用连续或脉冲的射频(RF)波作为副载波,模拟基带信号先对它的幅度、频率或相位等进行调制,再用该受调制的副载波去强度调制光源。模拟调制的优点是设备简单,占有带宽较窄,但它的抗干扰性能差,中继时噪声累积。
数字调制是光纤通信的主要调制方式,将模拟信号抽样量化后,以二进制数字信号“1”或“0”对光载波进行通断调制,并进行脉冲编码(PCM)。数字调制的优点是抗干扰能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输,它的缺点是需要较宽的频带,设备也复杂。 按调制方式与光源的关系来分,有直接调制和外调制两种。前者指直接用电调制信号来控制半导体光源的振荡参数(光强、频率等),得到光频的调幅波或调频波,这种调制又称内调制;后者是让光源输出的幅度与频率等恒定的光载波通过光调制器,光信号通过调制器实现对光载波的幅度、频率及相位等进行调制,光源直接调制的优点是简单,但调制速率受到载流子寿命及高速率下的性能退化的限制(如频率啁啾等)。外调制方式需要调制器,结构复杂,但可获得优良的调制性能,尤其适合于高速率下运用。 按被调制光波的参数分:强度调制、相位调制、偏振调制等。 目前光纤通信中应用最多的是光源的基带直接强度调制、副载波强度调制及数字调制,高速率时采用外调制。 光源的控制电路 系统对光源的要求是很高的,包括: 1.波长稳定性要求:WDM系统对光源发射波长的稳定性具有较高的要求,波长的漂移将导致信道之间的串扰。 2.功率稳定性要求:某信道功率的漂移,不仅影响本信道的传输性能,而且通过EDFA的瞬态效应影响其它信道的性能。 光源的控制电路主要包括温度控制和功率控制电路,它们的作用就是消除温度变化和器件老化的影响,稳定发射机性能。其它的控制电路还有光源慢启动保护电路、激光器反向冲击电流保护电路、激光器过流保护电路和激光器关断电路。
㈥ 关于传感器的问题
3.由磁栅、磁头和检测电路组成
2.由定尺和滑尺组成.
1.光栅传感器是根据莫尔条纹原理制成的一种脉冲输出数字式传感器。