1. 开关电源工作原理详解 开关电源工作原理图
随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40%-50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。为了提高效率,人们研制出了开关式稳压电源,它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使旦冲码用电源变压器等特点,是一种较理想的稳压电源。正因为如此,开关式稳压电模哪源已广泛应用于各种电子设备中,本文对各类开关电源工作原理作一阐述。
一、开关电源工作原理
开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算,
即Uo=Um×T1/T
式中Um为矩形脉冲最大电压值判裤;T为矩形脉冲周期;T1为矩形脉冲宽度。
从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路
1、基本电路
图二开关电源基本电路框图
开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
2.单端反激式开关电源
单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1整流和电容C滤波后向负载输出。
单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。
单端反激式开关电源使用的开关管VT1承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。
3.单端正激式开关电源
单端正激式开关电源的典型电路如图四所示。这种电路在形式上与单端反激式电路相似,但工作情形不同。当开关管VT1导通时,VD2也
导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3继续向负载释放能量。
在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。为满足磁芯复位条件,即磁通建立和
复位时间应相等,所以电路中脉冲的占空比不能大于50%。由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200W的功率。电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。
4.自激式开关稳压电源
自激式开关稳压电源的典型电路如图五所示。这是一种利用间歇振荡电路组成的开关电源,也是目前广泛使用的基本电源之一。
当接入电源后在R1给开关管VT1提供启动电流,使VT1开始导通,其集电极电流Ic在L1中线性增长,在L2中感应出使VT1基极为正,发射极为负的正反馈电压,使VT1很快饱和。与此同时,感应电压给C1充电,随着C1充电电压的增高,VT1基极电位逐渐变低,致使VT1退出饱和区,Ic开始减小,在L2中感应出使VT1基极为负、发射极为正的电压,使VT1迅速截止,这时二极管VD1导通,高频变压器T初级绕组中的储能释放给负载。在VT1截止时,L2中没有感应电压,直流供电输人电压又经R1给C1反向充电,逐渐提高VT1基极电位,使其重新导通,再次翻转达到饱和状态,电路就这样重复振荡下去。这里就像单端反激式开关电源那样,由变压器T的次级绕组向负载输出所需要的电压。
自激式开关电源中的开关管起着开关及振荡的双重作从,也省去了控制电路。电路中由于负载位于变压器的次级且工作在反激状态,具有输人和输出相互隔离的优点。这种电路不仅适用于大功率电源,亦适用于小功率电源。
5.推挽式开关电源
推挽式开关电源的典型电路如图六所示。它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。
这种电路的优点是两个开关管容易驱动,主要缺点是开关管的耐压要达到两倍电路峰值电压。电路的输出功率较大,一般在100-500W范围内。
6.降压式开关电源
降压式开关电源的典型电路如图七所示。当开关管VT1导通时,二极管VD1截止,输人的整流电压经VT1和L向C充电,这一电流使电感L中的储能增加。当开关管VT1截止时,电感L感应出左负右正的电压,经负载RL和续流二极管VD1释放电感L中存储的能量,维持输出直流电压不变。电路输出直流电压的高低由加在VT1基极上的脉冲宽度确定。
这种电路使用元件少,它同下面介绍的另外两种电路一样,只需要利用电感、电容和二极管即可实现。
7.升压式开关电源
升压式开关电源的稳压电路如图八所示。当开关管VT1导通时,电感L储存能量。当开关管VT1截止时,电感L感应出左负右正的电压,该电压叠加在输人电压上,经二极管VD1向负载供电,使输出电压大于输人电压,形成升压式开关电源。
8.反转式开关电源
反转式开关电源的典型电路如图九所示。这种电路又称为升降压式开关电源。无论开关管VT1之前的脉动直流电压高于或低于输出端的稳定电压,电路均能正常工作。
当开关管VT1导通时,电感L储存能量,二极管VD1截止,负载RL靠电容C上次的充电电荷供电。当开关管VT1截止时,电感L中的电流继续流通,并感应出上负下正的电压,经二极管VD1向负载供电,同时给电容C充电。
以上介绍了脉冲宽度调制式开关电源工作原理和各种电路类型,在实际应用中,会有各种各样的实际控制电路,但无论怎样,也都是在这些基础上发展出来的。更多信息请关注土巴兔装修网。
阅读本文的人还喜欢:
最全电工最常见电路符号以及电工最常见电路故障
2. 开关电源电路分析
R38限流,来R41均压,R44和C20抗干源扰。TL431是输入基准为2.5V的稳压集成电路,高于2.5V时期输出端电位降低,光耦导通加强,UC2844(1)电位下降,UC2844(6)输出脉冲宽度变窄,开关电源输出端电压下降。C15和E7是UC2844的电源滤波。由于UC2844的(8)是5V基准电压,所以R31是UC2844的分压电阻。R35和R3是开关电源的电流取样电阻。上边那个二极管整流,10R是限流电阻。
3. 开关电源故障分析
1.无输出,但保险丝和保险管正常
这种现象说明开关管未工作,或者工作后进入了保护状态。首先测量开关电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则检查启动电阻 和启动脚外接的元器件是否有漏电存在歼野,此时如开关电源芯片控制正常,则经上述检查可很快找到故障。若有启动电压,则测量控制芯片的驱动输出脚在开机瞬间是 否有高低电平的跳变。若无,则说明控制芯片损坏、外围震荡电路元器件或保护电路有问题,可先代换控制芯片,再检查外围元器件。若有跳变,一般为开关管不良 或损坏。
2.保险丝或保险管烧断
主要检查整流桥各二极管,大滤波电容及开关管等部位,抗干扰电路出问题也会导致保险丝烧断、发黑。值得注意的是, 因开关管击穿导致的保险丝或保险管烧断,往往还伴随着过流检测电阻和电源控制芯片的损坏,负温度系数热敏电阻也很容易和保险丝或保险管一起烧坏。
3.输出电压过高
这种故障忘完来自稳压取样和稳压控制电路。我们知道,直流输出、取样电阻、误差取样放大器、光电耦合器和开关电源控制芯片等电路共同构成一个闭合的控制环 路,在这一环节中,任何一处出现问题都会导致输出电压升高。对于有过压保护电路的电源,输出电压过高首先会使过压保护电路动作,此时,可断开过压保护电 路,使过压保护电路不起作用,测开机瞬间的电源主电压。如果测量值比正常值高,说明输出电压高。实际维修中,以取样电阻变值、误差放大器或光电耦合器不良 常见。
4.输出电压过低
根据维修经验,除稳压控制电路会引起输出电压过低外,还有一些原因会引起输出电压过低。主要有以下几点。
a.开关电源负载有短路故障。此时,因断开开关电源电路的所有负载,以区分是开关电源不良还是负载电路有故障。若断开负载电路电压输出正常,说明是负载过重,若仍不正常,说明开关电源有故障。
b.输出电压整流二极管,滤波电容失效等,可以通过代换法进行判断。
c.开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。
d.开关变压器不良,不但造成输出电压下降,还会造成开关管激励不足而屡损开关管。
e.大滤波电容(即300V滤波电容)不良,造成电源带负载能力差,一接负载输出电压便下降。
屡损开关管的故障
屡损电源开关管是开关电源电路维修的重点和难点开关管是开关电源的核心部件,工作在大电流、高电压的环境下,其损坏的比例是比较高的,一旦损坏,往往不是 换上新管就可以排除故障,甚至还会损坏信管,对于这种屡损开关管的故障排除起来是比较麻烦的,往往令初学者无从下手。下面简要分析一下屡损开关管的常见故 障。
1.开关管过压损坏
a.市电电压过高,对开关管提供的漏极工作电压高,开关管漏极产生的开关脉冲幅度自然升高许多,突破开关管D-S的耐压值造成开关管击穿。
b.稳压电路有问题,使开关电源输出电压升高的同时,开关变压器的各绕组产生的感应电压幅度大,在其一次绕组产生的感应电压与开关管漏极D得到的直流工作电压叠加,如果这个叠加值超过开关管的D-S的耐压值,会损坏开关管。
c.开关管漏极D保护电路有问题,不能讲开关管漏极D幅度颇高的尖峰脉冲吸收掉而造成开关管漏极电压过高击穿。
d.大滤波电容失效,使其两端含有大量的高频脉冲,在开关管截止期间与反峰电压叠加后导致开关管过压损坏。
2.开关管过流损坏
a.开关管散热片过小或固定不牢。
b.开关电源负载过重。常见原因是输出电压整流、滤波电路不良或负载电路有短路、漏电等故障。
c.开关变压器匝间短路。
3.开关管功耗大损坏
常见的有开启损耗大和关断损耗大两种。开启损耗大主要是由于开关管在规定的时间内不能由放大状态进入到饱和状态。开关管因开启损耗大的原因主要是由于开关 管激励不足造成的。关断损耗大主要是由于开关管在规定的时间内不能由放大状态进入到截止状态。开关氏中喊管因关断损耗大的原因主要是由于开关管栅极的波形发生畸 变造成的。
4.开培余关管本身质量有问题
市售开关电源开关管质量良莠不齐,如果开关管存在质量问题,屡损开关管也就在所难免了。
5.开关管替换不良
开关电源的场效应管功率一般较大,不能用小功率、耐压低的场效应管进行替换,否则极易损坏。
4. 开关电源原理分析
开关电源是工作在开关状态的电源,有负反馈能根据负载的变兆埋纤化改变电源通断的占空比,从而达到稳压的目的。
开关电源的主要部分是那个变压器,你这个图是一个结构比较简单的开关电源,我们首先确定的是变压器的左边是原边,右边是副变,副边上上面那个是电压输出,二极管和电容的作用分别是单向导通和滤波。副边下面的那个线圈的作用很重要,是作为负反馈将输出侧的电压情况反馈给原边,你这个电路图中没有开关电源的专用芯片那么负责控制通断的就应该是那个三极管摸样的族仿东西。那你这个电路的整个工作原理可以这样分析,直流电源流过变压器原边产生磁场,在变压器副边感应出磁场从而产生电压,当负反馈的感应电压到一定值得时候,三极管关断,原边回路被切断,副边不再感应出电压,三极管又导通,原边再次导通,重复以上的过程,所以电源就一直工作在这个开关状态从而达到稳压的目的。
这个电路大概的过程应该是这样,至于那个电阻和电容并联的耦合电路时为了滤掉交流部分,你这个电路比液销较简单实际的工作效果可能不会太好,希望上面的分析能够对你有帮助。
5. 开关电源电路详细解析
开关电源的工作原理是:
1.交流电源输入经整流滤波成直流;
2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;
3.开关变压器次级感应出高频电压,经整流滤波供给负载;
4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的.
交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰;
在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高;
开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出;
一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源
ATX电源的主要组成部分
EMI滤波电路:EMI滤波电路主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰,在优质电源中一般都有两极EMI滤波电路。
一级EMI电路:交流电源插座上焊接的是一级EMI电源滤波器电路,这是一块独立的电路板,是交流电输入后所经过的第一组电路,这个由扼流圈和电容组成的低通网络能滤除电源线上的高频杂波和同相干扰信号,同时也将电源内部的干扰信号屏蔽起来,构成了电源抗电磁干扰的第一道防线。
二级EMI电路:市电进入电源板后先通过电源保险丝,然后再次经过由电感和电容组成的第二道EMI电路以充分滤除高频杂波,然后再经过限流电阻进入高压整流滤波电路。保险丝能在电源功率太大或元件出现短路时熔断以保护电源内部的元件,而限流电阻含有金属氧化物成分,能限制瞬间的大电流,减少电源对内部元件的电流冲击。
桥式整流器和高压滤波:经过EMI滤波后的市电,再经过全桥整流和电容滤波后就变成了高压的直流电。将输入端的交流电转变为脉冲直流电,目前有两种形式,一种是全桥就是把四个二极管封装在一起,一种是用4个分立的二极管组成桥式整流电路,作用相同,效果也一样。
一般说来,在全桥附近应该有两个或更多的高大桶状元件,即高压电解电容,其作用是将脉动的直流电滤除交流成分而输出比较平稳的直流电。高压电解电容的使用与开关电路的设计有密切关系,其容量往往是以往电源评测时的焦点,但实际上它的容量和电源的功率毫无关系,不过增大它的容量会减小电源的纹波干扰,提高电源的电流输出质量。
PFC电路:PFC电路称为功率因素校正或补偿电路,功率因素越高,电能利用率就越大。
目前PFC电路有两种方式,一种是无源式PFC,又称被动式PFC,一种是有源式PFC,又称主动式PFC。无源式PFC是通过一个工频电感来补偿交流输入的基波电流与电压的相位差,迫使电流与电压相位一致,无源PFC效率较低,一般只有65%-70%,且所用的工频电感又大又笨重,但由于成本低,仍有许多 ATX电源采用这种方式。有源PFC是由电子元器件组成的,体积小,重量轻,通过专用的IC去调整电流波形的相位,效率大大提高,达95%以上,但由于成本较高,通常只能在高级应用场合才能看到。
开关三极管与开关变压器:开关电源顾名思义其核心就是开关二字。开关三极管和开关变压器是开关电源的核心部件,通过自激式或他激式使开关管工作在饱和、截止(即开、关)状态,从而在开关变压器的副绕组上感应出高频电压,再经过整流、滤波和稳压后输出各种直流电压。开关三极管和开关变压器是ATX电源的核心部件,其质量直接影响电源的好坏和使用寿命,尤其是开关三极管,工作在高反压状态下,没有足够的保护电路,很容易击穿烧毁。开关管的品质直接决定了电源的稳定性,它也是电源中主要的发热元件,拆开电源后看到的主散热片上的两个晶体管就是开关管。
影响高频开关变压器性能的因素包括铁氧体的效率、磁芯截面积的大小和磁隙的宽度,截面积过小的变压器容易产生磁饱和而无法输出较大的功率,各个绕组的匝数直接影响输出的电压,通常我们无法具体的掌握这些参数,所以无法准确的判断变压器到底能输出多大的功率,只有通过电子负载机测量才能知道,另外,开关变压器的输出端虽然很多,但其中的某些输出端使用的却是相同的绕组,比如+3.3VDC和+5VDC就是这样,所以当+3.3VDC输出最大电流时+ 5VDC就无法输出很大的电流了,所以我们不能将电源各个输出端的功率进行简单的累加。
除主变压器外,一般电源内还应有两个小变压器,其中一个将开关电路控制信号进行放大以驱动开关管进行工作,同时还可以将开关管工作的高压区和集成电路工作的低压区进行物理隔离。另外一个完全是一套独立的小型开关电源,这就是我们所说的待机电路,其输出的电压为电源的主电路供电,同时通过+5V StandBy端输出到主板来实现唤醒功能。
低压整流滤波电路:经过高频开头变压器降压后的脉动电压同样要使用二极管和电容进行整流和滤波,只是此时整流时的工作频率很高,必须使用具有快速恢复功能的肖特基整流二极管,普通的整流二极管难当此任,而整流部分使用的电容也不能有太大的交流阻抗,否则就无法滤除其中的高频交流成分,因此选择的电容不但容量要大,还要有较低的交流电阻才行,此外还能见到1、2个体积硕大的带磁心的电感线圈,与滤波电容一起滤除高频的交流成分,保证输出纯净的直流电。
由于低压整流端需要输出很大的电流,所以整流二极管同样会产生大量的热量,这些二极管与前面的开关管都需要单独的散热片进行散热,电源中另一个散热片上所固定的就是这些元件。从这些元件输出的就是各种不同电压的输出电流了。
稳压和保护电路:稳压电路通常是从电源输出端的输出电压取样出部分电压与标准电压作比较,比较出的差值经过放大后去驱动开关三极管,调节开关管的占空比,从而达到电压的稳定。保护电路的作用是通过检测各端输出电压或电流的变化,当输出端发生短路、过压、过流、过载、欠压等到现象时,保护电路动作,切断开关管的激励信号,使开关管停振,输出电压和电流为零,起到保护作用
6. 开关电源电路及原理是什么
顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。
开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。
另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。
根据开关器件在电路中连接的方式,开关电源,大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。
其中,变压器式开关电源(后面简称变压器开关电源)还可以进一步分成:推挽式、半桥式、全桥式等多种;根据变压器的激励和输出电压的相位,又可以分成:正激式、反激式、单激式和双激式等多种;如果从用途上来分,还可以分成更多种类。
工作原理
开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态;
在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。
与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。
与线性电源的比较
与传统的线性电源相比,开关电源的优势在于效率高(此处的效率可以简单的看作输入功率与输出功率之比),加之开关晶体管工作于开关状态,损耗较小,发热较低,不需要体积/重量非常大的散热器,因此体积较小、重量较轻。但开关电源工作时,由于频率较高,会对电网及周围设备造成干扰,因此,必须妥善的处理此问题。
线性电源的优势在于结构相对简单,可靠性相对较高,电流纹波率可以很容易的做到比较低,维修也较为方便。
实际上,现代的电路中,开关电源电路和线性电源电路在大多数情况下,是组合使用的——使用开关电源进行初步的变换,给纹波、精度要求不高的电路使用;同时,使用低压差稳压器(LDO)获取精密的、低纹波(噪声)的电压供诸如运算放大器(OP-AMP),模数转换器(A/D Converter)使用。
以上内容参考:网络-开关电源
7. 开关电源电路图分析
+310V电压经过1R1,1R2,稳压二极管1D1(防止栅极因电压过高击穿)给开关管G12栅极提供电压,使其导通,G12导通后,变压器初级大圆56对地导通,+310V给变压器充电,由于电感对初级电流的阻碍作用,变压器上的电流从小到大,当电流达到一定程度后,电流检测电阻1R5上的电压增大(大于0.7V),使三极管导通,G11导通后,G12栅极对地被短路,G12关断,变压器初级所存的电能传递给变压器的两个次级,用于输出(124绕组)和光耦,G12栅极的供电(78绕组)。D19,D13,1C5,1C0,1L1这些都是输出整流滤波部分。1R9给光耦提供导通电压。1R11,1R12组成采样电路,通过电阻分压的方式采集输出电压信号,TL431是一个精密基准电压芯片,当1R11采集电压大于2.5V时候,TL431KA级导通,光耦初级随之导通,光耦初级导通后次级也随之导通,接着G11导通,G12栅极无电压,G12关断。1C7,1R8,1D5是一个吸收网络,用于变压器初级上感生的高压,防止G12因过压而发生2次击穿。这个电源需要注意的是变压器初级一定要有足够的电感量,次级最好加一个几百欧的放电电阻,两个输出整流二极管最好也加上RC吸收电路。打字慢,应孝袜该还有很多问题没说明白,滚慎塌欢迎继续追问。
8. 小开关电源电路分析,请见图
大概说----括号内表示下图;
1)是变压器正反馈振荡电路,从L1输入激励电流,L2L3获得感回生电压输出,答而L2作为反馈电压,增强Q2导通与截止过程,振荡频率主要由C1、R4(C3、R7)控制;
D2、C2、D4(C4、R6、D4、Q1等)构成过载保护电路,正常时,C2(C4)经D2(D3)整流,输出一个直流负(正)压,当过载发生时,此电容上的压降增大,超过某一设置阀值时,会令D4(D4)击穿导通,从而拉低Q2基极电平而截止;(D2、C2、R3)为吸收电路,吸收因Q2截止时引起L1产生的高电压,保护Q2。
2)基本就是下图比上图多了个吸收电路保护Q2。
3)两个电路都适合。
4)作为电源都应该滤除高频毛刺的,你也可以通过实验来验证是否对你的电路产生影响。
9. 开关电源电路图及原理
开关电源电路图如下:
开关电源原理(稳压环路原理)
当输出U0升高,经取样电阻R7、R8、R10、VR1分压后,U1③脚电压升高,当其超过U1②脚基准电压后U1①脚输出高电平,使Q1导通,光耦OT1发光二极管发光,光电三极管导通,UC3842①脚电位相应变低,从而改变U1⑥脚输出占空比减小,U0降低。
当输出U0降低时,U1③脚电压降低,当其低过U1②脚基准电压后U1①脚输出低电平,Q1不导通,光耦OT1发光二极管不发光,光电三极管不导通,UC3842①脚电位升高,从而改变U1⑥脚输出占空比增大,U0降低。周而复始,从而使输出电压保持稳定。调节VR1可改变输出电压值。
反馈环路是影响开关电源稳定性的重要电路。如反馈电阻电容错、漏、虚焊等,会产生自激振荡,故障现象为:波形异常,空、满载振荡,输出电压不稳定等。
10. 开关电源工作原理
电源→输入滤波器→全桥整流→直流滤波→开关管(振荡逆变)→开关变压器→输出整流与滤波。交流电源输入经整流滤波成直流
通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上
开关变压器次级感应出高频电压,经整流滤波供给负载
输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的
交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰;
在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高;
开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出;
一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源.
主要用于工业以及一些家用电器上,如电视机,电脑等
开关电源原理图分析1、正激电路
电路的工作过程:a>
开关S开通后,变压器绕组N1两端的电压为上正下负,与其耦合的N2绕组两端的电压也是上正下负.因此VD1处于通态,VD2为断态,电感L的电流逐渐增长;
b>
S关断后,电感L通过VD2续流,VD1关断.S关断后变压器的激磁电流经N3绕组和VD3流回电源,所以S关断后承受的电压为
.
c>
变压器的磁心复位:开关S开通后,变压器的激磁电流由零开始,随着时间的增加而线性的增长,直到S关断.为防止变压器的激磁电感饱和,必须设法使激磁电流在S关断后到下一次再开通的一段时间内降回零,这一过程称为变压器的磁心复位.正激电路的理想化波形:
变压器的磁心复位时间为:
Tist=N3*Ton/N1
输出电压:输出滤波电感电流连续的情况下:
Uo/Ui=N2*Ton/N1*T
磁心复位过程:
2、反激电路
反激电路原理图
反激电路中的变压器起着储能元件的作用,可以看作是一对相互耦合的电感.
工作过程:
S开通后,VD处于断态,N1绕组的电流线性增长,电感储能增加;
S关断后,N1绕组的电流被切断,变压器中的磁场能量通过N2绕组和VD向输出端释放.S关断后的电压为:us=Ui+N1*Uo/N2
反激电路的工作模式:
电流连续模式:当S开通时,N2绕组中的电流尚未下降到零.
输出电压关系:Uo/Ui=N2*ton/N1*toff
电流断续模式:S开通前,N2绕组中的电流已经下降到零.
输出电压高于上式的计算值,并随负载减小而升高,在负载为零的极限情况下,
,因此反激电路不应工作于负载开路状态.
反激电路的理想化波形