Ⅰ 步进电机控制原理
1.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给户在产品选型、使用中造成许多麻烦。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。
二、感应子式步进电机工作原理(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。
1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图:
2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。
3、力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力F与(dФ/dθ)成正比
其磁通量Ф=Br*S Br为磁密,S为导磁面积 F与L*D*Br成正比 L为铁芯有效长度,D为转子直径 Br=N·I/RN·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。力矩=力*半径力矩与电机有效体积*安匝数*磁密 成正比(只考虑线性状态)因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。
(二)感应子式步进电机
1、特点: 感应子式步进电机与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。 感应子式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C= ,D= . 一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相,而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,可以作二相电机绕组串联或并联使用。
2、分类 感应子式步进电机以相数可分为 :二相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG为感应子式步进电机代号)、57BYG、86BYG、110BYG、(国际标准),而像70BYG、90BYG、130BYG等均为国内标准。
3、步进电机的静态指标术语相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即 A-AB-B-BC-C-CD-D-DA-A.步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。 虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过份采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。
Ⅱ 步进电机控制电路中各元件功能
74LS04:六角复倒相器;4N25:通用光电制耦合器;二极管D1~D5:续流二极管。
各元件功能:
4N25(通用光电耦合器):当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。
74LS04(六角倒相器):可以将输入信号的相位反转180度,这种电路应用在摸拟电路,比如说音频放大,时钟振荡器等
二极管D1~D5(续流二极管):用来保护元件不被感应电压击穿或烧坏,以并联的方式接到产生感应电动势的元件两端,并与其形成回路,使其产生的高电动势在回路以续电流方式消耗,从而起到保护电路中的元件不被损坏的作用。
各个部件在一套完整三相电机驱动电路中:
由8031提供相序(时序)正脉冲,经74LS04倒相后输出负脉冲,经4N25隔离倒相后输出正脉冲驱动复合管打开,将绕组底边接地使电流流经绕组。
当绕组通电后再切断电源时,绕组所产生的自感电动势左边正、右边负,而且比加在绕组上的工作电压高出N倍,这个感生电压很高,对开关复合管是一种威协,在绕组上并接续流二极管D,就是为绕组的自感电动势提供一个泄放通道。消除感生电压对开关器件的危害。
Ⅲ 步进电机细分驱动电路
步进电机细分驱动电路
为了对步进电机的相电流进行控制,从而达到细分步进电机步距角的目的,人们曾设计了很多种步进电机的细分驱动电路。随着微型计算机的发展,特别是单片计算机的出现,为步进电机的细分驱动带来了便利。目前,步进电机细分驱动电路大多数都采用单片微机控制,它们的构成框图如图4 所示。
单片机根据要求的步距角计算出各相绕组中通过的电流值,并输出到数模转换器(DPA) 中,由DPA 把数字量转换为相应的模拟电压,经过环形分配器加到各相的功放电路上,控制功放电路给各相绕组通以相应的电流,来实现步进电机的细分。单片机控制的步进电机细分驱动电路根据末级功放管的工作状态可分为放大型和开关型两种放大型步进电机细分驱动电路中末级功放管的输出电流直接受单片机输出的控制电压控制,电路较简单,电流的控制精度也较高,但是由于末级功放管工作在放大状态,使功放管上的功耗较大,发热严重,容易引起晶体管的温漂,影响驱动电路的性能。
甚至还可能由于晶体管的热击穿,使电路不能正常工作。因此该驱动电路一般应用于驱动电流较小、控制精度较高、散热情况较好的场合。开关型步进电机细分驱动电路中的末级功放管工作在开关状态,从而使得晶体管上的功耗大大降低,克服了放大型细分电路中晶体管发热严重的问题。但电路较复杂,输出的电流有一定的波纹。因此该驱动电路一般用于输出力矩较大的步进电机的驱动。
随着大输出力矩步进电机的发展,开关型细分驱动电路近年来得到长足的发展。目前,最常用的开关型步进电机细分驱动电路有斩波式和脉宽调制(PWM) 式两种。斩波式细分驱动电路的基本工作原理是对电机绕组中的电流进行检测,和DPA 输出的控制电压进行比较,若检测出的电流值大于控制电压,电路将使功放管截止,反之,使功放管导通。这样,DPA输出不同的控制电压,绕组中将流过不同的电流值。脉宽调制式细分驱动电路是把DPA 输出的控制电压加在脉宽调制电路的输入端,脉宽调制电路将输入的控制电压转换成相应脉冲宽度的矩形波,通过对功放管通断时间的控制,改变输出到电机绕组上的平均电流。
由于电机绕组是一个感性负载,对电流有一定的波波作用,而且脉宽调制电路的调制频率较高,一般大于20 kHz ,因此,虽然是断续通电,但电机绕组中的电流还是较平稳的。和斩波式细分动电路相比,脉宽调制式细分驱动电路的控制精度高,工作频率稳定,但线路较复杂。因此,脉宽调制式细分驱动电路多用于综合驱动性能要求较高的场合。
Ⅳ 步进电机控制电路的设计
采用CMOS电路可以的。
Ⅳ 步进电动机的控制电源由哪几部分组成
步进电动机的控制电源由以下部分组成:
1、AC/DC转换和稳压部分;起到交流电源的交流转直流的转换功能,并兼具稳压的作用。
2、DC总线的全桥供电部分;步进电机需要正反转,必须要有安全可靠的换向电路,这里就是完成这个功能。
3、全桥的驱动电路的驱动部分;全桥电路的工作与换向,需要前级的逻辑信号控制,所以,这里有一个逻辑的接口电路来实现。
Ⅵ 五相步进电机控制系统
五相步进电机控制系统研究 1 引言
CIPH9803A是一种可编程五相步进电机控制芯片。该芯片具有步数设置(最大步数高达100万步)、可逆运转、启动、停车、暂停、工速、快速等多种设置功能,它具有一个传感信号输入端口,可控制步进电机的定位停车。实际应用表明,以CIPH9803A专用芯片为核心的五相步进电机控制电路具有成本低、可靠性高等优点,特别适合机床设备的技术改造。 2 引脚功能和技术参数
2.1 引脚功能
CIPH9803A芯片的引脚排列如图1所示。各引脚功能如下:
RST:复位引脚,高电平有效,正常工作时,该引脚应为低电平;
OUT1~OUT5:分别为五相步进电机的A~E相的激励输出,均为负脉冲有效,负载电流小于25mA;
XTAL1、XTAL2:晶体振荡电路接入端;
STOP:步进电机停车输入端,负脉冲有效。当步进电机运行到指定位置时,可将光电传感器产生的负脉冲输入到该端,以自动停止步进电机的运行;
LED:按键指示输出端,低电平有效。在键盘的任一键按下时,该端输出低电平;
GND:电源地;
VDD:电源正端(+2.7~+6.5V);
C1~C4:分别用于连接行列式键盘的第1~4列;
R1~R4:分别用于连接行列式键盘的第1~4行。2.2 主要技术参数
CIPH9803A的主要技术参数如下:
●工速:6r/min;
●快速:60r/min;
●OUT1~OUT5:步进电机的五相激励输出,为五相十拍,负载能力小于25mA;
●最大步数设置:999999步。3 工作原理
CIPH9803A在工作时,首先应由键盘设置步进电机的运转步数。在步数设置过程中,如果发现当前输入的数字有误,可按一下“C”功能键将其消除,每按一次“C”功能键就可消除一位已输入的数字,如果连按六次“C”功能键,就可消除已输入的六位数字;运转步数设置好后,可由“A”功能键设置正反转标志,“A”功能键是正反转双功能切换键,默认为正转;由“B”功能键设置工速与快速标志,“B”功能键是工速与快速双功能切换键,默认为工速;当步进电机的运转步数、正反转标志以及工速快速标志等设置好后,只要按一下“E”功能键则可立即启动步进电机运行。在步进电机运行过程中,如果需要暂停,只要按一下 “D”键即可,若再按一下“D”键,则步进电机将继续运行。步进电机停车方式有三种:一是运行到规定步数后自动停车;二是按“F”功能键强行停车;三是由定位传感器获取的定位信号来控制停车。 4 应用电路
基于CIPH9803A专用芯片的五相步进电机控制系统电路如图2所示。图中,固态继电器为步进电机功率驱动器件,用户应根据步进电机负载大小合理选择固态继电器的型号,如5A、10A、15A、20A等。5 结束语
基于CIPH9803A专用芯片的五相步进电机控制系统具有集成度高、外围电路简单、便于维护、运行可靠等特点。该系统在天津某机电公司机床设备的技术改造中使用后,效果十分理想。
Ⅶ 步进电机基本控制方法
进电机的基本控制方法有几下几种情况:1、采用专用芯片,这样控制简单,成本就低,但一般工作电流不大约2A左右,工作电压不高,36VDC左右;2、采用MCU+功率器件的方式,电流通过模拟电路来控制,MCU提供细分环形分配器,这种方式,控制相对简单,工作电流和电压都可以做大,但控制参数一般比较固定,应用不灵活;3、采用DSP实现全数字式控制,控制比较复杂,但控制算法灵活,可以自动整定不同电机的控制参数。
Ⅷ 控制步进电机的电气线路图
你选用的是什么牌子PLC和步进?不一样的牌子接线方法不同的。
Ⅸ 步进电机和驱动器怎样接入控制电路
步进电机一般采用L298N驱动,图中是其对两个二相步进电机的驱动,也可以直接驱动一个四相步进电机. L298N的接线查看其引脚图. 四相步进电机的接线通过线的颜色区分