⑴ 全控型器件的缓冲电路的主要作用是什么
开通时:Cs经Rs放电,Rs起到限制放电电流的作用;
关断时:负载电流经版VDs从Cs分流,使/dt减小,抑制权过电压。
1、导通时,易产生di/dt过大,采用串联电感加以抑制。
2、导通时,易产生/dt过大,采用并联电容加以抑制。
3、缓冲电路可以增加器件的安全工作区。
4、缓冲电路可以吸收开关损耗。
(1)全桥缓冲电路扩展阅读:
缓冲电路的基本工作原理:利用电感电流不能突变的特性抑制器件的电流上升率,利用电容电压不能突变的特性抑制器件的电压上升率。
以GTO为例的一种简单的缓冲电路。其中L与GTO串联,以抑制GTO导通时的电流上升率dI/dt,电容C和二极管D组成关断吸收电路,抑制当GTO关断时端电压的上升率dV/dt,其中电阻R为电容C提供了放电通路。缓冲电路有多种形式,以适用于不同的器件和不同的电路。
⑵ 全控型期间的缓冲电路的主要作用是什么
消耗电能是rcd缓冲电路的唯一负面影响。有效性也是一个问题,rcd缓冲电路不能主动去抑制关断时器件上尖峰电压的发生。而且聚丙烯薄膜电容器工作状况恶劣(高频,高压,脉冲,大电流)电容易失效。
⑶ IGBT的RCD缓冲电路各元件参数选择
在开关电源中,通常的设计会在mos管的漏极或者igbt的c如你所说的加电阻并二极管内(应该还要串一容电容)至电源的正极.此电路是缓冲电路,吸收电路尖峰,避免开关过程中产生的高压尖峰击穿开关管导致损坏.在不同的开关电源中的接法也略有不同,如单端反激式的就如你所说是从漏极接到电源正,而在全桥移相电路里上半桥本身就是接电源正极的,所以上半桥是电源正极加电阻反串二极管接到桥点即上管的源极,而下半桥是漏极加反向二极管串电阻接至电源的负极,同时还有电容连接.同时利用电容的能量来达到导通瞬间和判断瞬间能量的释放和吸收,减少对开关管的冲击.
⑷ 缓冲电路的工作原理
缓冲电路的基本工作原理是利用电感电流不能突变的特性抑制器件的电流上升专率,利用电容电压不能突属变的特性抑制器件的电压上升率。图示以GTO为例的一种简单的缓冲电路。其中L与GTO串联,以抑制GTO导通时的电流上升率dI/dt,电容C和二极管D组成关断吸收电路,抑制当GTO关断时端电压的上升率dV/dt,其中电阻R为电容C提供了放电通路。缓冲电路有多种形式,以适用于不同的器件和不同的电路。
⑸ 全桥电路的作用
摘要 你好,全桥电路的作用主要有:
⑹ 全波整流和全桥整流的电路图
⑺ 全桥电路原理图
带电流,电压双反馈环的电路就不叫能全桥电路了,而是双闭环调速或调压电路。
桥式整流器是利用二极管的单向导通性进行整流的最常用的电路,常用来将交流电转变为直流电。
桥式整流电路的工作原理如下:E2为正半周时,对D1、D3加正向电压,D1、D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成E2、D1、Rfz 、D3通电回路,在Rfz 上形成上正下负的半波整流电压,E2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成E2、D2、Rfz 、D4通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。如此重复下去,结果在Rfz 上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整流电路小一半。
桥式整流是对二极管半波整流的一种改进。
半波整流利用二极管单向导通特性,在输入为标准正弦波的情况下,输出获得正弦波的正半部分,负半部分则损失掉。
桥式整流电路图
桥式整流器利用四个二极管,两两对接。输入正弦波的正半部分是两只管导通,得到正的输出;输入正弦波的负半部分时,另两只管导通,由于这两只管是反接的,所以输出还是得到正弦波的正半部分。 桥式整流器对输入正弦波的利用效率比半波整流高一倍。桥式整流是交流电转换成直流电的第一个步骤。
桥式整流器 BRIDGE RECTIFIERS,也叫做整流桥堆。
桥式整流器是由多只整流二极管作桥式连接,外用绝缘塑料封装而成,大功率桥式整流器在绝缘层外添加金属壳包封,增强散热。桥式整流器品种多,性能优良,整流效率高,稳定性好,最大整流电流从0.5A到50A,最高反向峰值电压从50V到1000V。
⑻ 请教各位大侠全桥变换副边整流二极管缓冲电路的问题
1 副边整流二极管的反向恢复过程 实际上已导通的二极管在突然加上反向电压的一段时间内,电流下降到零以后,它并不立刻停止导通,还处于反向低阻状态。此时在反向电压作用下,载流子进入复合过程,于是在反方向继续流过电流;当载流子复合完毕,反向电流才迅速衰减到零。这个阶段就是二极管的反向恢复过程,如图1所示。 在反向电流衰减过程中,电路产生强烈的过渡过程,它在关断元件两端产生极高的过电压,即换流过电压;另外,因电流衰减时在关断元件上同时存在电流与电压,在元件中瞬时产生极大的功率,即所谓关断功率。 二极管振荡的等效电路如图2所示。 图中,Lk为变压器的漏感,Lp为二极管的串联寄生电感,Cp为二极管的并联寄生电容,D为理想二极管。 当副边电压为零时,在全桥整流器中四个二极管全部导通,输出滤波电感电流处于自然续流状态。而当副边电压变化为高电压U2时,整流桥中有两只二极管要关断,两只二极管继续导通。这时变压器的漏感和整流管的串联寄生电感Lp就开始与整流管的并联寄生电容Cp之间产生寄生振荡。二极管电流与电压波形呈指数衰减的高频振荡波形,在二极管关断瞬间会产生很高反向电压浪涌。它的存在不但增加了二极管的功耗,而且也对输出电能质量产生很大影响。特别是在大功率应用中,巨大的电压尖峰很有可能造成二极管的过压击穿。因此在设计中应予以特别关注。 2 减小电压尖峰的对策 整流二极管的反向恢复时间除由器件本身的性能决定外,还受许多电路因素的影响。包括其导通时流过的正向电流的大小、正向电流的下降速率、反向电压的大小以及反向电压的上升速率等。 反向电流i是产生电压尖峰的根源,减小i的数值无疑是抑制尖峰的根本措施。选用合适的整流二极管,例如:快恢复二极管,虽然反向恢复时间短,反向恢复损耗小,但恢复特性较硬,电压尖峰仍然很大。可适当选用恢复特性相对较软(tb/ta值小)的软快恢复二极管。另外适当加大二极管电流容量或者多管并联以减小通过每只管的正向电流都能对抑制电压尖峰起到积极的影响。合理的布局布线,减小变压器漏感及引线电感,从而减小振荡也是一个抑制尖峰的根本方法。 当器件选好,布线完毕后,我们还能通过外加缓冲电路的办法抑制电压尖峰。常用的缓冲电路有以下几种: (1)RC吸收电路 解决功率二极管反向恢复问题最常见的办法是采用RC吸收电路,它是在每个二极管上并联一个R和C的串联支路。RC吸收电路如图3所示二极管反向关断时,寄生电感中的能量对寄生电容充电,同时还通过吸收电阻R对吸收电容C充电。在吸收同样能量的情况下,吸收电容越大,其上的电压就越小;当二极管快速正向导通时,C通过R放电,能量的大部分将消耗在R上。虽然这种吸收网络能够有效的抑制反向电压尖峰,但是它是有损耗的,相当于把整流二极管的关断损耗转移到了RC吸收电路上,不利于提高变换器的效率。
⑼ 缓冲电路的介绍
缓冲电路(Snubber Circuit)又称吸收电路,它是电力电子器件的一回种重要的保护答电路,不仅用于半控型器件的保护,而且在全控型器件(如GTR、GTO、功率MOSFET和IGBT等)的应用技术中,起着更重要的作用。
⑽ IGBT常用缓冲电路有哪些
1、 缓冲电路的作用与基本类型
电力电子器件的缓冲电路(snubber circuit)又称吸收电路,它是电力电子器件的一种重要的保护电路,不仅用于半控型器件的保护,而且在全控型器件(如GTR、GTO、功率MOSFET和IGBT等)的应用技术中起着重要的作用。
晶闸管开通时,为了防止过大的电流上升率而烧坏器件,往往在主电路中串入一个扼流电感,以限制过大的di/dt,串联电感及其配件组成了开通缓冲电路,或称串联缓冲电路。晶闸管关断时,电源电压突加在管子上,为了抑制瞬时过电压和过大的电压上升率,以防止晶闸管内部流过过大的结电容电流而误触发,需要在晶闸管的两端并联一个RC网络,构成关断缓冲电路,或称并联缓冲电路。
GTR、GTO等全控型自关断器件在实际使用中都必须配用开通和关断缓冲电路;但其作用与晶闸管的缓冲电路有所不同,电路结构也有差别。主要原因是全控型器件的工作频率要比晶闸管高得多,因此开通与关断损耗是影响这种开关器件正常运行的重要因素之一。例如,GTR在动态开关过程中易产生二次击穿的现象,这种现象又与开关损耗直接相关。所以减少全控器件的开关损耗至关重要,缓冲电路的主要作用正是如此,也就是说GTR和功率MOSFET用缓冲电路抑制di/dt和/dt,主要是为了改变器件的开关轨迹,使开关损耗减少,进而使器件可靠地运行。
没有缓冲电路时GTR开关过程中集电极电压uCE和集电极电流iC的波形,开通和关断过程中都存在uCE和iC同时达到最大值的时刻;因此出现了瞬时的最大开关损耗功率Pon和Poff,从而危及器件的安全。所以,应采用开通和关断缓冲电路,抑制开通时的di/dt,降低关断时的/dt,使uCE和iC的最大值不会同时出现。
GTR开关过程中的uCE和iC的轨迹,其中轨迹1和2是没有缓冲电路的情况,开通时uCE由UCC(电源电压)经矩形轨迹降到0,相应地iC由0升到ICM;关断时iC由ICM经矩形轨迹降到0,相应地uCE由0升高到UCC。不但集电极电压和电流的最大值同时出现,而且电压和电流都有超调现象,这种情况下瞬时功耗很大,极易产生局部热点,导致GTR的二次击穿而损坏。加上缓冲电路后,uCE和iC的开通与关断轨迹分别如3和4所示,由可见,其轨迹不再是矩形,避免了两者同时出现最大值的情况,大大降低了开关损耗,并且最大程度地利用于GTR的电气性能。
GTR的开通缓冲电路用来限制导通时的di/dt,以免发生元件的过热点,而且它在GTR逆变器中还起着抑制贯穿短路电流的峰值及其di/dt的作用。GTO的关断缓冲电路不仅为限制GTO关断时再加电压的/dt及过电压,而且对降低GTO的关断损耗,使GTO发挥应有的关断能力,充分发挥它的负荷能力起重要作用。
IGBT的缓冲电路功能更侧重于开关过程中过电压的吸收与抑制,这是由于IGBT的工作频率可以高达30~50kHz;因此很小的电路电感就可能引起颇大的LdiC/dt,从而产生过电压,危及IGBT的安全。PWM逆变器中IGBT在关断和开通中的uCE和iC波形。在iC下降过程中IGBT上出现了过电压,其值为电源电压UCC和LdiC/dt两者的叠加。
为开通时的uCE和iC波形,增长极快的iC出现了过电流尖峰iCP,当iCP回落到稳定值时,过大的电流下降率同样会引起元件上的过电压而须加以吸收。逆变器中IGBT开通时出现尖峰电流,其原因是由于在刚导通的IGBT负载电流上叠加了桥臂中互补管上反并联的续流二极管的反向恢复电流,所以在此二极管恢复阻断前,刚导通的IGBT上形成逆变桥臂的瞬时贯穿短路,使iC出现尖峰,为此需要串入抑流电感,即串联缓冲电路,或放大IGBT的容量。
综上所述,缓冲电路对于工作频率高的自关断器件,通过限压、限流、抑制di/dt和/dt,把开关损耗从器件内部转移到缓冲电路中去,然后再消耗到缓冲电路的电阻上,或者由缓冲电路设法再反馈到电源中去。此缓冲电路可分为两在类,前一种是能耗型缓冲电路,后一种是反馈型缓冲电路。能耗型缓冲电路简单,在电力电子器件的容量不太大,工作频率也不太高的场合下,这种电路应用很广泛。