Ⅰ 电路板中变压器的作用
它是用来将电压升高或降低的 作用是为了节约电,减少电能的消耗。由于发电厂距离用电专去通常都有一定属的距离,在这一段距离里,消耗在输电线上的电能是不可以忽略的。你可以算一下:在发电机输出的总功率一定的情况下,当电压高时,电流就会降低,这就会是消耗在输电线上的电能减少,起到了节能的作用。而到了居民用地区以后,这时为了居民的安全,就要将高压电转化为220V的电,这就是变压器
Ⅱ 变压器在电路图和PCB上怎么画
像下面这两个板子上就有变压器封装了。 可以参考别人怎么做的。 逆天上有很多 现成PCB文件可以下载 瞧瞧。
Ⅲ 电路板中的变压器,和继电器工作的原理
其实,变压器的工作原理并不复杂,根据电磁感应原理,当一个导电的物体处于变化的磁场中,在导电体中就能够感应出电流来。将变压器接在交流电网中,电流就输入到变压器的初级线圈,这时,电流周围会产生磁场。由于输入的交流电的电流方向不断改变,就会产生一个和电流同步变化的磁场,所产生的磁场沿变压器的铁芯构成一条闭合回路。由于磁场的大小与方向不断改变,从而在次级线圈内感应出电流来。因为在每一圈线圈上的电压都相等,所以,次级线圈圈数越多,从次级线圈输出的电压就越高。
继电器工作时,电磁铁通电,把衔铁吸下来使D和E接触,工作电路闭合。电磁铁断电时失去磁性,弹簧把衔铁拉起来,切断工作电路。因此,继电器就是利用电磁铁控制工作电路通断的开关。
用继电器控制电路的好处:用低电压控制高电压;远距离控制;自动控制。
继电器是一种靠电磁感应工作的自动化电器开关。
继电器的工作原理和特性
继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。
电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。
Ⅳ 关于变压器等效电路图
在变压器设计时,其空载时的电感量足够大,其感抗也大,而电阻指铜阻和铁阻,铜阻是指绕变压器铜导线的电阻,应该很小,铁阻是铁芯变压器的磁滞损耗,铁阻与铁芯的磁滞回线面积成正比,好的变压器尽量选择磁滞回线面积小的铁芯,这部分的电阻也很小。
Ⅳ 变压器的电路图怎么画
变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。它可以变换交流电压、电流和阻抗。最简单的铁心变压器由一个软磁材料做成的铁心及套在铁心上的两个匝数不等的线圈构成。
向左转|向右转
铁心的作用是加强两个线圈间的磁耦合。为了减少铁内涡流和磁滞损耗,铁心由涂漆的硅钢片叠压而成;两个线圈之间没有电的联系,线圈由绝缘铜线(或铝线)绕成。一个线圈接交流电源称为初级线圈(或原线圈),另一个线圈接用电器称为次级线圈(或副线圈)。实际的变压器是很复杂的,不可避免地存在铜损(线圈电阻发热)、铁损(铁心发热)和漏磁(经空气闭合的磁感应线)等,为了简化讨论这里只介绍理想变压器。理想变压器成立的条件是:忽略漏磁通,忽略原、副线圈的电阻,忽略铁心的损耗,忽略空载电流(副线圈开路原线圈线圈中的电流)。例如电力变压器在满载运行时(副线圈输出额定功率)即接近理想变压器情况。
变压器是利用电磁感应原理制成的静止用电器。当变压器的原线圈接在交流电源上时,铁心中便产生交变磁通,交变磁通用φ表示。原、副线圈中的φ是相同的,φ也是简谐函数,表为φ=φmsinωt。由法拉第电磁感应定律可知,原、副线圈中的感应电动势为e1=-N1dφ/dt、e2=-N2dφ/dt。式中N1、N2为原、副线圈的匝数。由图可知U1=-e1,U2=e2(原线圈物理量用下角标1表示,副线圈物理量用下角标2表示),其复有效值为U1=-E1=jN1ωΦ、U2=E2=-jN2ωΦ,令k=N1/N2,称变压器的变比。由上式可得U1/ U2=-N1/N2=-k,即变压器原、副线圈电压有效值之比,等于其匝数比而且原、副线圈电压的位相差为π。
Ⅵ 变压器电路分析
变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。它可以变换交流电压、电流和阻抗。最简单的铁心变压器由一个软磁材料做成的铁心及套在铁心上的两个匝数不等的线圈构成。
铁心的作用是加强两个线圈间的磁耦合。为了减少铁内涡流和磁滞损耗,铁心由涂漆的硅钢片叠压而成;两个线圈之间没有电的联系,线圈由绝缘铜线(或铝线)绕成。一个线圈接交流电源称为初级线圈(或原线圈),另一个线圈接用电器称为次级线圈(或副线圈)。实际的变压器是很复杂的,不可避免地存在铜损(线圈电阻发热)、铁损(铁心发热)和漏磁(经空气闭合的磁感应线)等,为了简化讨论这里只介绍理想变压器。理想变压器成立的条件是:忽略漏磁通,忽略原、副线圈的电阻,忽略铁心的损耗,忽略空载电流(副线圈开路原线圈线圈中的电流)。例如电力变压器在满载运行时(副线圈输出额定功率)即接近理想变压器情况。
变压器是利用电磁感应原理制成的静止用电器。当变压器的原线圈接在交流电源上时,铁心中便产生交变磁通,交变磁通用φ表示。原、副线圈中的φ是相同的,φ也是简谐函数,表为φ=φmsinωt。由法拉第电磁感应定律可知,原、副线圈中的感应电动势为e1=-N1dφ/dt、e2=-N2dφ/dt。式中N1、N2为原、副线圈的匝数。由图可知U1=-e1,U2=e2(原线圈物理量用下角标1表示,副线圈物理量用下角标2表示),其复有效值为U1=-E1=jN1ωΦ、U2=E2=-jN2ωΦ,令k=N1/N2,称变压器的变比。由上式可得U1/ U2=-N1/N2=-k,即变压器原、副线圈电压有效值之比,等于其匝数比而且原、副线圈电压的位相差为π。
进而得出:
U1/U2=N1/N2
在空载电流可以忽略的情况下,有I1/ I2=-N2/N1,即原、副线圈电流有效值大小与其匝数成反比,且相位差π。
进而可得
I1/ I2=N2/N1
理想变压器原、副线圈的功率相等P1=P2。说明理想变压器本身无功率损耗。实际变压器总存在损耗,其效率为η=P2/P1。电力变压器的效率很高,可达90%以上。
Ⅶ 变压器在电路图上用什么符号表示
电压器在电路图中的表示方法根据其性质的不同,画法分为以下几种:
拓展资料版:
变压器由铁芯(或磁芯)和权线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。
它可以变换交流电压、电流和阻抗。最简单的铁心变压器由一个软磁材料做成的铁心及套在铁心上的两个匝数不等的线圈构成,如图所示。
铁心的作用是加强两个线圈间的磁耦合。为了减少铁内涡流和磁滞损耗,铁心由涂漆的硅钢片叠压而成;两个线圈之间没有电的联系,线圈由绝缘铜线(或铝线)绕成。
一个线圈接交流电源称为初级线圈(或原线圈),另一个线圈接用电器称为次级线圈(或副线圈)。实际的变压器是很复杂的,不可避免地存在铜损(线圈电阻发热)、铁损(铁心发热)和漏磁(经空气闭合的磁感应线)等,为了简化讨论这里只介绍理想变压器。
理想变压器成立的条件是:忽略漏磁通,忽略原、副线圈的电阻,忽略铁心的损耗,忽略空载电流(副线圈开路原线圈线圈中的电流)。例如电力变压器在满载运行时(副线圈输出额定功率)即接近理想变压器情况。
资料参考:网络 变压器
Ⅷ 小型的变压器要怎么接到电路板上使用
220~15V的变压器用作电路上的电源需要附加整流和滤波电路。
Ⅸ 电子电路中变压器的接法是什么
这不是电抄源变压器,是电压转换器,一般用于自动控制或数字化测量。
输入:1--4
0-380VAC
输出:6--7
0-20V”的意思是:在1--4端输入0--380V的电压,6--7端等比例输出0--20V电压,就是电压变比是380/20=19。比如在1-4端输入220V,那么6-7的输出就是220/19=11.58V。
虽然外表上看区别不大,但这种变压器不能做为电源变压器,因为为了得到良好的线性特性,防止磁饱和,在磁回路中会留有气隙,电压变换特性得到改善,但不利于功率传送。
Ⅹ 可控硅 触发 变压器 电路。请教高人。
后级是交流,需要隔离,所以用变压器。变压器次级输出正弦波,半波整流后,只取上半周做控制信号,改变控制单元方便占空比就可以控制可控硅导通与截止时间