❶ 电路三要素中稳态值怎么算
通常称时间常数,响应的初始值和稳态值为一阶电路的三要素,确定出三要素并求得响应的方法称为三要素法。
三要素法计算公式:计算方法。
用三要素法计算含一个电容或一个电感的直流激励一阶电路响应的一般步骤是:初始值f (0+)的计算。
(1) 根据t<0的电路,计算出t=0-时刻的电容电压uC(0-)或电感电流iL(0-)。
(2) 根据电容电压和电感电流连续性,即: uC(0+)=uC(0-)和iL(0+)=iL(0-)确定电容电压或电感电流初始值。
(1)电路稳态扩展阅读:
放射性测井仪器中的时间常数:放射性测井仪器中计数率表的时间常数由积分回路中电阻和电容的乘积确定,其值根据计数率、测井速度和要求的测量精度选定。计数率低,则需较大的时间常数才能保证必要精度;但时间常数大,仪器惰性大,测井速度即相应降低。
心电图机的时间常数:心电图机的技术指标之一,是指*标准灵敏度方波从最高(100%)幅值下降到37%幅值时所需要的时间,单位是秒。时间常数与心电图波下降速率有关,时间愈长幅值下降愈慢,反之越快。
检查时,用25mm/s的速度走纸,给1mV标准电压,使描笔向上移动10mm并按住1mV铵钮不动,直到描笔由最大幅值下降到基线时再松手并停止走纸。分析时,将方波由10mm下降到3.7mm时所需要的小格数乘上0.04s,即为该心电图机的时间常数。心电图机的时间常数一般≥3.2s。
❷ 正弦稳态电路
jωL是电感的阻抗,ωL是电感的电抗值。
❸ 什么叫单稳态电路暂稳态和稳态,如何判断他的稳定性谢谢高手指点。
单稳态电路只有一个稳定状态,触发翻转后经过一段时间会回到原来的稳定状态版,一般作固定脉冲权宽度整形。
与双稳态电路不同,单稳态触发器只有一个稳定的状态,这个稳定状态要么是0,要么是1。
单稳态触发器的工作特点是:(1)在没有受到外界触发脉冲作用的情况下,单稳态触发器保持在稳态;(2)在受到外界触发脉冲作用的情况下,单稳态触发器翻转,进入“暂稳态”。假设稳态为0,则暂稳态为1。(3)经过一段时间,单稳态触发器从暂稳态返回稳态。单稳态触发器在暂稳态停留的时间仅仅取决于电路本身的参数。
❹ 无稳态电路的工作原理是什么
1、上电瞬间前,Q1Q2都是截止的,上电后瞬间R1,R2让Q1,Q2导通。此刻C1左端和C2右端都是0V电压(Vce导通饱和,小电流时低于0.1V,大电流0.3V左右,实际并不为0V)。C1右端和C2左端都接Q1Q2的基极,导通状态电压约为0.7V。所以电容C1,C2开始充电。此刻Q1,Q2皆导通。
2、当C1,C2开始充电,透过R1,R2的电流被电容充电电流分流(电容端初始电压为0,不能突变,充电电流也很大,Vb得到的电流就很少了,会进入截止)。Vb会瞬间降低。由于元件的不对称,Q1Q2中会有一个先更快进入截止状态。假设是Q1.
3、当Q1一瞬间进入截止,C1左侧电压透过R3充电被抬升到Vcc。右边电压也会跟着被抬升,这样Q2的Vb会被抬升回原来Vbe的0.7V,回到导通状态。不会继续进入截止状态。此刻Q1截止,C1继续充电,(下面4看到,Q1的Vb会慢慢抬升,很快就会离开截止状态进入导通,通)。这个过程是Q1先进入截止,而Q2一直保持导通。
4、当Q1的Vb随着C2充电抬升,很快又回到导通区域。Q1再一次导通,让C1的左侧电位从Vcc快速透过Q1放电回到0V。这样,原来C1两侧电位差是Vcc-Vb,现在左侧被拉低到0V,电压无法突变,右侧电压被拉低为(Vb-Vcc),成为负电压,比电源负极的0V还负。Q2就突然深度截止了。(从原来正的Vb0.7V瞬间变为Vb-Vcc的负电压-4.3V)。此刻,Q1导通,Q2深度截止。
5、此刻,电容C1,左侧0V,右侧Vb-Vcc(-4.3V),电源Vcc5V开始透过R1给C1充电。而C2保持着Vb(0,7V)的电压。Q1保持导通,基极电流由R2提供。Q2保持截止,直到C1充电到Vb(0.7v)才会再次导通。C1从-4.3V充电到0.7V的周期,就是Q2输出高电平,Q1输出低电平的时间,也就是方波的前半个周期的时间。
C1右侧的初始电压为-4.7V,终止电压为0.7V,由电源5V透过R1给C1充电。透过电容充电公式可以计算时间t。
6、当C1充电到0.7V,Q2从截止进入导通。C2的右侧瞬间从Vcc被拉到0V。由于电容电压无法突变,C2左侧电压从Vb的0.7V,瞬间被拉低到0.7-5=-4.3V,负电压让Q1深度截止。此刻,Q1深度截止,Q2导通,Q2的导通基极电流由R1提供。
C2电容从-4.7V开始由电源5V透过R2充电到0.7V,让Q1导通,成为上面5的状态。透过电容充电公式可以计算这个充电周期需要的时间。
7、到此,从上电扰动进入了非稳态。在状态5和状态6中反复交替。Q1Q2反复轮流导通和截止。计算周期t1=0.69*R1C1,t2=0.69R2C2,总周期T=0.69*(R1C1+R2C2),调节R1R2可以调节占空比。如果R1R2,C1C2相等,那么T=1.38*RC,占空比50%。
注意地方就是:
1、R3,R4不能太小,太小让Q1Q2的Ic过大,无法进入饱和区,即使进入,Vce也比较高,如果大于Vb则电路不会震荡。即使三极管进入饱和区了,但随着Ic提高,Vce压降会提高(Vcest),会让方波的低电平提高。但R3,R4过小,会让电压从0拉升回5V时过慢,出现方波上升沿变缓。严重时变成三角波了。
2、R1,R2过大,导致Ib过小Ib=(Vcc-Vb)/R,三极管无法进入饱和截止区,同样方波最低电压也会抬升。当Vce提升到Vb(0.7V)就无法工作了。可选择高放大倍数的三极管。或者用达林顿接法。但达林顿接法让Vb成为1.2V,Vce为0.7V,方波输出低电平总是0.7V。
3、充电周期时间的计算:
电容充电公式Vt=V0+(Vcc-V0)(1-e-t/RC)
化简是Vt=Vcc-(Vcc-V0)e-t/RC
Vt是充电某个时刻t的电压。Vcc是充电无限长的电压,V0是初始电压。
t=-RCln((Vcc-Vt)/(Vcc-V0))
由于V0=Vb-Vcc,Vt=Vb
所以t=-RCln((Vcc-Vb)/(2Vcc-Vb))
由于Vcc>Vb可以近似简化成t=-RCln(Vcc/2Vcc)=-RCln0.5=0.69RC
也可以近似为t=0.7RC,所以整个周期T=1.4RC,频率就是f=1/(2*0.69*RC)=0.72/(RC)
实际电路中,电压越小,Vb的忽略会让误差变大。电压5V之后误差在1%以内,7V以后误差在0.1%以内。3V的电压误差在1.5%以上。
有一个问题就是,反而用精确的公式把Vb算进去,计算的误差反而很大(10V
时5.1%,7V时7.3%,4V时13%)。还不如估算公式准确(基本都在1%以内)。不知道是什么原因。也许电容充电计算部分有问题。但电容充电的初始电压和终止电压是经过实际测试,没有问题的。这个问题还需要深入研究。
这是基极Vb1,Vb2,也就是电容内侧的电压波形。我们看到电容充电从负电压开始(图中波形中间的线是0V)。清楚看到Q2的Vb(也就是C1)电压降了一点接近0V然后又充电慢慢回到Vb导通,此刻让Q1的Vb立刻被拉到负电压状态,开始充电爬升到Vb才导通。让Q2的Vb立刻变成负电压状态。不断反复循环。
❺ 怎么看一个电路的稳态和暂稳态有多少个
直观来看具有稳态的触发器都有对称交叉耦合的结构,比如双三极管和
门电内路
构成的触发容器都具有这种特征,而具有暂稳态的
单稳态触发器
往往在电路结构上是不对称的,且包含阻容充放电环节,正是由于阻容充放电过渡过程导致了暂稳态的产生。
❻ 什么叫稳态电路
稳态就是说稳定的电路,没有不规则电流和电压变化的电路
正弦稳态电路就是说电路的电压或者电流是按照正弦变化的电路,可以用sinXXX表示的
这个是我印象里面的
❼ 电力系统“稳态”和“暂态”各指的是什么
稳态和抄暂态,是由于电路中有电磁袭振荡。首先一定是交流电路,暂态分析是指电路接通瞬间,由于电压跳变,会使电路原本状态发生改变,由0-时的状态变为0+时的状态,在这瞬间的改变是暂态分析的范围。在0+之后,电路中的电压电流会随着时间变化,其变化方式由电路元件决定,当满足一定条件时,时间足够长后,电路中的电压电流会趋近于稳定,这时的分析就是稳态分析了。
❽ . 说明什么是稳态电路什么是暂态电路
数字电路有两种状态,1和0
稳态就是对电路无干预,电路永远保持的状态
暂稳态是对电路不干预,电路暂时保持,一定时间后会自动改变成另一中状态,并且将稳定保持
无稳态是电路自动在两个状态上变来变去
❾ 什么是电路的稳态过程和暂态过程
由某一稳态转变为另一稳态的转变过程(电平变话细节)
由崭稳态转变回崭稳态的过程(电平变化细节)