A. 串联谐振电路
你的理解有点误区,串联谐振LC的阻抗是不会抵消的,如果是失谐补偿也不会抵消阻抗。Q值过高产生高压会使输电线路产生电压波动及辐射,有害。
B. LC串联谐振电路,产生谐振高压的原理及相关的计算公式
在RLC串联电路中,因为电感上的电压UL和电容上的电压UC是反相的,电感上的电压超前电阻上的电压UR 90度,电容上的电压滞后电阻上的电压90度,电感和电容上的电压相互抵消,抵消后的差额(UL-UC)与电阻上的电压方向差90度。求电路的总电压U时,就要把UR作为一条直角边,把(UL-UC)作为一条直角边,把U作为斜边来解直角三角形。于是有:
电路的总电压U=√UR^2+(UL-UC)^2 (都在根号里面) (1)
UR=电路里的总电流I * 电阻R;
UL=电路里的总电流I * 电感的感抗XL;
UC=电路里的总电流I * 电容的容抗XC;
U= 电路里的总电流I * 总阻抗Z;
把这些关系代入(1)式,得:
阻抗Z=√R^2+(XL-XC)^2 (都在根号里面) (2)
当电路发生谐振时,XL刚好等于XC,所以,电路里总阻抗达到了最小值
Z=R;
电流达到了最大值
I=U/R。
对于总电路来说,电感和电容相当于一点阻抗都没有了。但他们各自本身是有阻抗的,只不过对总电路来说互相抵消了而已。因为电感的感抗是随频率上升的,电容的容抗是随频率下降的,正好在谐振频率时他们两者相等。
这时,电感上的电压:
UL=I*XL
电容上的电压:
UC=I*XC
他们大小相等,方向相反。
设谐振频率为f0,则
XL=2*∏*f0*L
XC=1/(2*∏*f0*C)
即:
2*∏*f0*L=1/(2*∏*f0*C)
f0=1/(2*∏*√L*C) (3)
我们把谐振时电感或电容上的电压与电源电压的比值,定义为电路的品质因数Q。其物理意义就是看看电感或电容上的电压比电源电压大了多少倍。
因为谐振时电阻上的电压刚好等于电源电压,所以:
Q=UL/U=UC/U=XL/R=XC/R=2*∏*f0*L/R=1/(2*∏*f0*C*R)
那么为什么谐振时电感或电容上的电压会高于电路的总电压Q倍呢?就是因为电路里的电流达到了最大值,而电感的感抗又与电容的容抗相等。所以他们都达到了电源电压的Q倍。从上面的公式还可以看到,想增大Q值,必须尽量减少电路里的“等效”串联电阻。想减少Q值,就要增大R。
我为什么要在串联电阻前加“等效”二字呢?是因为分析串联谐振电路时,应把并联在电感或电容上的电阻“等效”为串联电阻来看待。
C. 如何调节全桥串联谐振高压电源在谐振状态
首先,LC串联谐振,电路的总阻抗为0欧,然后RLC串联谐振的总阻抗为R的电阻。
D. 如何准确计算LC谐振电路的最大谐振电压
谐振电路都有一个特点,容抗等于感抗,电路呈阻性
那么就有ωL=1/ωC
因为LC都是有知条件,那么可以把谐振的频率点算出来
品质因数Q=ωL/R,所谓品质因数如果为28,那么并联的谐振电路就是电流减少了28倍;如果是串联的谐振电路,那么就是电压增加了28倍.
那么现在串联谐振点下的电压为施加的电压乘以品质因数
如果已知条件告诉你的施加电压为峰值,那么就直接相乘;如果已知条件告诉你的施加电压为有效值,那么还需要将算出来的电压再乘以1.414得出峰值
补充回答:
你想想看,因为有个前提条件ωL=1/ωC
品质因数Q=ωL/R,我考虑了电感,那么电容不是也考虑进去了吗?
首先你要清楚串联谐振实际应用中会用到哪些设备:
要谐振,当然要满足ωL=1/ωC,这其中我们可以改变三个参数来实现谐振,电容C 电感L 和频率ω ,那么现实应用中被试品是电容,电容的大小是固定的,我们可以通过串并联电容改变电容的大小,但很麻烦;那么我们可以改变电感L,以前也使用过可调电感,但实际应用很不方便,体积也比较庞大,所以后来使用最多的也就是改变频率,也就是调频电源。
谐振回路中首先将电源接至可调电源,由可调电源输入电压到励磁变压器的二次端,由励磁变压器变压到一次高压再串联电感,将电感的另一头接到被试品上。这里品质因数Q增大电压的倍数指的是实际加到被试品上的电压也就是电感另一头的电压除以励磁变的高压侧电压。
谐振变压器当然也会饱和,励磁变就是一个变压器,只要是个变压器它就存在铁芯饱和问题,我们实际应用中要计算一下这个变压器的额定电流,看看会不会超过实际容量。如果超过了电感或者励磁变的额定电流就不光是饱和的问题了,就存在损坏试验设备的问题了。
如被试品的电容是0.24μF ,电感是500H ,励磁变的一次额定电流为2A,电感的额定电流也是2A,那么我们算一下,ωL=1/ωC,那么谐振频率就是91.28HZ,算一下,如果我在被试品上加17.4KV电压,那么一次电流就等于
I=ωCU=2πf CU=2*3.14*91.28*0.24*0.000001*17400=2.39A
这个时候电流就超过了试验设备的额定电流,这个时候我们可以算一下,再串联一个同样的电感,电感变为1000H,谐振频率变为64.55HZ,一次电流就变为1.69A就可以了。
我们实际应用中如果电流肯定大于2A,那么一般我们可以这样做,再并联一个电抗器,这个时候电抗器就可以承受4A,当然电感也变小一倍,再将励磁变的一次电流改为4A的。(励磁变的一次电流是可以通过串并联绕组改变的)这个时候如果谐振频率不能达到你的要求,可以并联电容等等方法来实现。
E. 谐振电路的工作原理
谐振的实质来是电容中的电场能与自电感中的磁场能相互转换,此增彼减,完全补偿。电场能和磁场能的总和时刻保持不变,电源不必与电容或电感往返转换能量,只需供给电路中电阻所消耗的电能。
其动力学方程式是F=-kx。 谐振的现象是电流增大和电压减小,越接近谐振中心,电流表电压表功率表转动变化快,但是和短路的区别是不会出现零序量。
按电路联接的不同,有串联谐振和并联谐振两种。
(5)高压谐振电路扩展阅读:
特点
谐振电路都有一个特点,容抗等于感抗,电路呈阻性:
那么就有ωL=1/ωC
因为LC都是已知条件,那么可以把谐振的频率点算出来。
品质因数Q=ωL/R,所谓品质因数如果为28,那么并联的谐振电路就是电流增大了28倍;如果是串联的谐振电路,那么就是电压增加了28倍。
那么现在串联谐振点下的电压为施加的电压乘以品质因数。
如果已知条件告诉你的施加电压为峰值,那么就直接相乘;如果已知条件告诉你的施加电压为有效值,那么还需要将算出来的电压再乘以1.414得出峰值。
F. 谐振电路为什么会出现高压击穿器件
谐振,在电容及电感上都会产生Q倍输入电压的高电压。原因是因为容抗与感抗相互抵消,回路电阻很小电流很大,所以在容抗和感抗上的压降自然就高。
G. 什么叫串联谐振、并联谐振,各有何特点
一、串联谐振和并联谐振的电路特点
串联谐振的电路特点
1.总阻抗值最小:Z=R+j(wl-1/wc)=R;
2.电源电压一定时,电流最大;I=I0=U/|Z|=U /R;
3.电路成电阻性,电容或电感的电压可能高于电源电压。
并联谐振的电路特点
1.电压一定时,谐振时电流最小;
2.总阻抗最大;
3.电路成电阻性,支路电流可能会大于总电流。
通过对电路谐振的分析,掌握谐振电路的特点,再生产实践中,应该用其所长,避其所短。
二、串联谐振和并联谐振的产品特点
串联谐振产品的主要特点
1.所需电源容量大大减小
串联谐振试验装置是利用谐振电抗器和被试品电容产生谐振,从而得到所需高电压和大电流的,在整个系统中,电源只需要提供系统中有功消耗的部分,因此,试验所需的电源功率只有试验容量的1/Q倍(Q为品质因素)。
2. 设备的重量和体积大大减小
串联谐振电源中,不但省去了笨重的大功率调压装置和普通的大功率工频试验变压器,而且,谐振激磁电源只需试验容量的1/Q,使得系统重量和体积大大减小,一般为普通试验装置的1/5~1/10。
3. 改善输出电压波形
谐振电源是谐振式滤波电路,能改善输出电压的波形畸变,获得很好的正弦波,有效地防止了谐波峰值引起的对被试品的误击穿。
4. 防止大的短路电流烧伤故障点
在谐振状态,当被试品的绝缘弱点被击穿时,电路立即脱谐(电容量变化,不满足谐振条件),回路电流迅速下降为正常试验电流的1/Q。而采用并联谐振或者传统试验变压器的方式进行交流耐压试验时,击穿电流立即上升几十倍,两者相比,短路电流与击穿电流相差数百倍。所以,串联谐振能有效地找到绝缘弱点,又不存在大的短路电流烧伤故障点的忧患。
5. 不会出现任何恢复过电压
被试品发生击穿闪络时,因失去谐振条件,高电压也立即消失,电弧立刻熄灭,装置的保护回路动作,切断输出。
并联谐振产品的主要特点
用并联谐振调谐与升压十分稳定,在低电压下进行调谐,调谐过程依据升压变压器高压侧电流的大小,调谐至电流最小时即为谐振点,然后升压至需要的电压,对于自动调谐来说,也容易控制,可以避免串联线路调谐过程中的电压震荡。
H. RLC串联电路中谐振的条件和现象是什么
谐振的条件:即为X=WL-1/WC=0。
解释:
由电感L和电容C串联而组成的谐振电路称为串联谐振电路。其中R为电路的总电阻,即R=RL+RC,RL和RC分别为电感元件与电容元件的电阻;Us 为电压源电压,ω为电源角频率。其中X=WL-1/WC。故得Z的模和幅角分别为当X=WL-1/WC=0时,即有φ=0,即XL与XC相同。
现象:
谐振的现象是电流增大和电压减小,越接近谐振中心,电流表电压表功率表转动变化快,但是和短路的区别是不会出现零序量。
(8)高压谐振电路扩展阅读:
谐振又称“共振”。振荡系统在周期性外力作用下,当外力作用频率与系统固有振荡频率相同或很接近时,振幅急剧增大的现象。产生谐振时的频率称“谐振频率”。电工技术中,振荡电路的共振现象。电感与电容串联电路发生诸振称“串联谐振”,或“电压谐振”;两者并联电路发生谐振称“并联谐振”,或“电流谐振” 。
由电感L和电容C组成的,可以在一个或若干个频率上发生谐振现象的电路,统称为谐振电路。在电子和无线电工程中,经常要从许多电信号中选取出我们所需要的电信号,而同时把我们不需要的电信号加以抑制或滤除,为此就需要有一个选择电路,即谐振电路。
另一方面,在电力工程中,有可能由于电路中出现谐振而产生某些危害,例如过电压或过电流。所以,对谐振电路的研究,无论是从利用方面,或是从限制其危害方面来看,都有重要意义。
I. 电路为什么会出现谐振
机械或电路的自有谐振频率相同于外加振荡源而产生的共振被称为谐振!
因同频共振有自反馈循环加强的特性!因而失控造成的破坏力很强!