A. 求一个触发电路,越简单越好
这个是三极管RC廷时电路,开关不按下时,电源通过电阻R给电容C充电导通Q1三极管,集电回极电流减小答Q3截止,按下开关在松开,Q2导通电容C经过Q2放电Uc下降并拉低Q1基极电流Q1截止集电极为高电平Q3导通LED亮,过一段时间后电源再给电容充电再次导通Q1,Q3截止LED不亮。(改变电阻R值就可以改变电容充电常数)
B. 触发电路的基本要求
触发电路对其 产生的要求: 1)触发信号可为直流、交流或脉冲电压. 2)触发信号应有足够的功率(触发电压和触发电流) . 3)触发脉冲应有一定的宽度,脉冲的前沿发生。
C. 单稳态触发电路工作原理及作用
1.
单稳态触发器
只有一个稳定状态,一个暂稳态。
2.在外加
脉冲
的作用下,单稳态触发器可以从一个稳定状态翻转到一个暂稳态。
3.由于
电路
中RC延时
环节
的作用,该
暂态
维持一段时间又
回到原来
的稳态,暂稳态维持的时间取决于RC的
参数值
。
电路组成
如图6-7所示,其中R、C为单稳态触发器的定时
元件
,它们的连接点Vc与
定时器
的
阀值
输入端(6脚)及输出端Vo'(7脚)相连。单稳态触发器输出
脉冲宽度
tpo=1.1RC。
Ri、Ci构成输入
回路
的
微分环节
,用以使
输入信号
Vi的负脉冲宽度tpi限制在允许的范围内,一般tpi>5RiCi,通过微分环节,可使Vi'的尖脉冲宽度小于单稳态触发器的输出脉冲宽度tpo。若输入信号的负脉冲宽度tpi本来就小于tpo,则微分环节可省略。
定时器复位输入端(4脚)接
高电平
,控制输入端Vm通过0.01uF接地,定时器输出端Vo(3脚)作为单稳态触发器的单稳信号输出端。
编辑本段工作原理
当输入Vi保持高电平时,Ci相当于断开。输入Vi'由于Ri的存在而为高电平Vcc。
此时
,①若定时器原始状态为0,则
集电极
输出(7脚)
导通
接地,使
电容
C放电、Vc=0,即输入6脚的
信号
低于2/3Vcc,此时定时器维持0不变。
②若定时器原始状态为1,则集电极输出(7脚)对地断开,Vcc经R向C充电,使Vc电位升高,待Vc值高于2/3Vcc时,定时器翻转为0态。
结论:单稳态触发器正常工作时,若未加输入负脉冲,即Vi保持高电平,则单稳态触发器的输出Vo一定是低电平。
单稳态触发器的工作过程分为下面三个阶段来分析,图6-8为其工作
波形图
:
①触发翻转阶段:
输入负脉冲Vi到来时,下降沿经RiCi微分环节在Vi'端产生下跳负向尖脉冲,其值低于负向阀值(1/3Vcc)。由于稳态时Vc低于正向阀值(2/3Vcc),固定时器翻转为1,输出Vo为高电平,集电极输出对地断开,此时单稳态触发器进入暂稳状态。
②暂态维持阶段:
由于集电极开路输出端(7脚)对地断开,Vcc通过R向C充电,Vc按指数规律上升并趋向于Vcc。从暂稳态开始到Vc值到达正向阀值(2/3Vcc)之前的这段时间就是暂态维持时间tpo
。
③返回恢复阶段:
当C充电使Vc值高于正向阀值(2/3Vcc)时,由于Vi'端负向尖脉冲已消失
,Vi'值高于负向阀值(1/3Vcc),定时器翻转为0,输出低电平,集电极输出端(7脚)对地导通,暂态阶段结束。C通过7脚放电,使Vc值低于正向阀值(2/3Vcc),使单稳态触发器恢复稳态。
编辑本段单稳态触发器应用举例
利用单稳态触发器的
特性
可以实现脉冲整形,脉冲定时等功能。
1.脉冲整形
利用单稳态触发器能产生一定
宽度
的脉冲这一特性,可以将过窄或过宽的输入脉冲整形成固定宽度的脉冲输出。
如图6-9所示的不规则输入
波形
,经单稳态触发器处理后,便可得到固定宽度、固定幅度,且上升、下降沿陡峭的规整
矩形波
输出。
2.脉冲定时:
若将单稳态触发器的输出Vo接至
与门
的一个输入脚,与门的另一个输入脚输入高频脉冲
序列
Vf。单稳态触发器在输入负向窄脉冲到来时开始翻转,与门开启,允许高频脉冲序列通过与门从其输出端VAND输出。经过tpo定时时间后,单稳态触发器恢复稳态,与门关闭,禁止高频脉冲序列输出。由此实现了高频脉冲序列的定时选通功能。
D. 什么叫触发线路
触发电路是具有一些稳态的或非稳态的电路,其中至少有一个是稳态的,并设内计成在施加一适当容脉冲时即能启动所需的转变。就是电力电子里给 全控器件 施加触发脉冲的电路,触发电路的作用在,触发脉冲何时输出是由电脑控制的,触发电路可以将电脑发出的信号进行放大,再施加到 全控桥上,就是功率放大的作用
E. 触发电路与触发电路芯片的关系是什么
触发电路芯片就是把触发电路集成到一个芯片里面,提高了它的稳定性。外部配线也简单了很多。使用都是有技术手册参考的。
F. 可控硅触发电路的触发方式有哪些
可控硅抄的4种触发方式:
1、强电触发: 采用MOC3061、MOC3021等高压光耦,从可控硅的A极引入触发电压,这种触发不需要其他触发电源,电路非常简单,主要元器件工作在400V强脉冲环境,可靠性最差。 采用触发二极管(DB3)电路与这种结构相似。
2、变压器隔离触发: 这是工业上最常用结构,优点是强弱电隔离触发波形好,缺点是长脉冲触发时变压器体积太大,成本高电路复杂。元器件工作在100V脉冲环境,可靠性一般。
3、隔离电源直流触发: 图片上的这种触发结构,缺点是功耗较大,发热量大。优点是强弱隔离触发电流大,低频长脉冲、高频脉冲串等都适用,电路简单成本低,元器件工作在20V脉冲环境。可靠性好。这种机构的移相触发器经半年多实际使用(10kw变压器负载,镀铝机蒸发舟加热),极少出现烧保险丝和烧可控硅现象,原来是采用变压器触发结构,经常烧保险丝,可控硅也有损坏。
4、其过零触发控制方式由于对电网无污染 ,在许多调功设备中都采用这种触发方式。可控硅作为大功率电子器件在工程中得到广泛应用 ,
G. 单稳态触发电路工作原理及作用是什么
单稳态触发器只有一个稳定状态,一个暂稳态。
在外加脉冲的作用下,单稳态触发器可以从一个稳定状态翻转到一个暂稳态。
由于电路中RC延时环节的作用,该暂态维持一段时间又回到原来的稳态,暂稳态维持的时间取决于RC的参数值。
电路组成:
其中R、C为单稳态触发器的定时元件,它们的连接点Vc与定时器的阀值输入端(6脚)及输出端Vo'(7脚)相连。单稳态触发器输出脉冲宽度tpo=1.1RC。 Ri、Ci构成输入回路的微分环节,用以使输入信号Vi的负脉冲宽度tpi限制在允许的范围内,一般tpi>5RiCi,通过微分环节,可使Vi'的尖脉冲宽度小于单稳态触发器的输出脉冲宽度tpo。若输入信号的负脉冲宽度tpi本来就小于tpo,则微分环节可省略。 定时器复位输入端(4脚)接高电平,控制输入端Vm通过0.01uF接地,定时器输出端Vo(3脚)作为单稳态触发器的单稳信号输出端。
编辑本段工作原理:
当输入Vi保持高电平时,Ci相当于断开。输入Vi'由于Ri的存在而为高电平Vcc。此时,①若定时器原始状态为0,则集电极输出(7脚)导通接地,使电容C放电、Vc=0,即输入6脚的信号低于2/3Vcc,此时定时器维持0不变。 ②若定时器原始状态为1,则集电极输出(7脚)对地断开,Vcc经R向C充电,使Vc电位升高,待Vc值高于2/3Vcc时,定时器翻转为0态。 结论:单稳态触发器正常工作时,若未加输入负脉冲,即Vi保持高电平,则单稳态触发器的输出Vo一定是低电平。 单稳态触发器的工作过程分为下面三个阶段来分析,图6-8为其工作波形图:
①触发翻转阶段: 输入负脉冲Vi到来时,下降沿经RiCi微分环节在Vi'端产生下跳负向尖脉冲,其值低于负向阀值(1/3Vcc)。由于稳态时Vc低于正向阀值(2/3Vcc),固定时器翻转为1,输出Vo为高电平,集电极输出对地断开,此时单稳态触发器进入暂稳状态。 ②暂态维持阶段: 由于集电极开路输出端(7脚)对地断开,Vcc通过R向C充电,Vc按指数规律上升并趋向于Vcc。从暂稳态开始到Vc值到达正向阀值(2/3Vcc)之前的这段时间就是暂态维持时间tpo 。 ③返回恢复阶段: 当C充电使Vc值高于正向阀值(2/3Vcc)时,由于Vi'端负向尖脉冲已消失 ,Vi'值高于负向阀值(1/3Vcc),定时器翻转为0,输出低电平,集电极输出端(7脚)对地导通,暂态阶段结束。C通过7脚放电,使Vc值低于正向阀值(2/3Vcc),使单稳态触发器恢复稳态。
编辑本段单稳态触发器应用举例:
利用单稳态触发器的特性可以实现脉冲整形,脉冲定时等功能。
1.脉冲整形 利用单稳态触发器能产生一定宽度的脉冲这一特性,可以将过窄或过宽的输入脉冲整形成固定宽度的脉冲输出。 如图6-9所示的不规则输入波形,经单稳态触发器处理后,便可得到固定宽度、固定幅度,且上升、下降沿陡峭的规整矩形波输出。
2.脉冲定时: 若将单稳态触发器的输出Vo接至与门的一个输入脚,与门的另一个输入脚输入高频脉冲序列Vf。单稳态触发器在输入负向窄脉冲到来时开始翻转,与门开启,允许高频脉冲序列通过与门从其输出端VAND输出。经过tpo定时时间后,单稳态触发器恢复稳态,与门关闭,禁止高频脉冲序列输出。由此实现了高频脉冲序列的定时选通功能。
H. 可控硅的触发电路的原理
双向可控硅触发电路工作原理与可控硅的结构和工作特性有着密切的联系,它是由版四层半导体材料组成的,权有三个pn结,对外有三个电极:第一层p型半导体引出的电极叫阳极a,第三层p型半导体引出的电极叫控制极g,第四层n型半导体引出的电极叫阴极k。我们可以看到,它和二极管一样是一种单方向导电的器件,但关键是它多了一个控制极g,这就使它具有与二极管完全不同的工作特性。具体工作原理你可参考如下网址资料:
http://www.cntronics.com/public/tool/kbview/kid/720/cid/13