Ⅰ 试设计三相异步电动机的正反转控制电路(画出主电路和控制电路);并写出工作原理
电路图和控制电路综合图:
原理:
图中使用了2个分别用于正转和反转的电磁接触器KM1、KM2,对这个电动机进行电源电压相的调换。此时,如果正转用电磁接触器KM1,电源和电动机通过接触器KM1主触头,使L1相和U相、L2相和V相、L3相和W相对应连接,所以电动机正向转动。
如果接触器KM2动作,电源和电动机通过KM2主触头,使L1相和W相、L2相和V相、L3相和U相分别对应连接,因为L1相和L3相交换,所以电动机反向转动。
三相异步电动机正反转控制:
主要电气元件:按钮开关3个,接触器2个,热过载1个,最好加3个熔断器为保护3条火线用。
电机要实现正反转控制,将其电源的相序中任意两相对调即可(我们称为换相),通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序。
接线时应使接触器的上口接线保持一致,在接触器的下口调相。由于将两相相序对调,故须确保二个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。
三相异步电动机正反转控制的安全措施:
电动机的正反转控制操作中,如果错误地使正转用电磁接触器和反转用电磁接触器同时动作,三相电源的L1相和L3相的线间电压,通过反转电磁接触器的主触头,形成了完全短路的状态。
所以会有大的短路电流流过,烧坏电路。所以,为了防止两相电源短路事故,接触器KM1和KM2的主触头决不允许同时闭合。
Ⅱ 双重联锁正反转控制电路的工作原理是什么
电机正反转接线法,加上图贴是为了有需要的好友在工作中所遇到问题时有所帮助,下面版是双重联锁的正反转控制权的工作原理和双重联锁的正反转控制线路原理图.
一.双重联锁的正反转控制的工作原理
将火线接进热继电器(FR),然后出来接入总停开关(SB3),出来一分为四条导线.
第一条导线接入正转的常开开关(SB1)出来再接入反转的常闭开关出来接入(KM2交流接触器的常闭接线端)出来接入(KM1)线圈构成回路.
第二条导线接入(KM1交流接触器的常开接线端)出来再接入反转的常闭开关出来接入(KM2交流接触器的常闭接线端)出来接入(KM1)线圈构成了自锁正转和反锁反转的回路.
第三条导线接入反转的常开开关(SB2)出来再接入正转的常闭开关出来接入(KM1交流接触器的常闭接线端)出来接入(KM2)线圈构成回路.
第四条导线接入(KM2交流接触器的常开接线端)出来再接入正转的常闭开关出来接入(KM1交流接触器的常闭接线端)出来接入(KM2)线圈构成了自锁反转和反锁正转的回路.
Ⅲ 各种正反转控制电路有哪些优缺点
双重联锁:按钮和接触器各有一个常闭触点串联在另外一个接触器控制回路里。具有双重专安全保证及换属向迅速简便。
接触器连锁:实质上是接触器的互锁功能,只有接触器的一个常闭触点串联在另一个接触器控制回路里。一单接触器卡住或触头粘连就会发生相间短路,换向麻烦,要先按一次停止按钮。
Ⅳ 求 正反转控制电路的工作原理
正反转原理:抄
1.当电机正转时袭,按下正转按钮SB3,其常闭触点先断开,切断反转控制回路,然后其常开触点闭合。接通正转控制回路,正转接触器KM1得电吸合并自锁,电源接触器KM也得电吸合,电动机正序接入三相电源,正向起动运转。
2.当正转变反转时,按下反转按钮SB2,其常闭触点先断开,切断正转控制回路,使正转接触器KMl断电释放,电源接触器KM也随着断电释放,然后其常开触点闭合,接通反转控制回路,使反转接触器KM2得电吸合并自锁,电源接触器KM也得电吸合,电动机反序接入三相电源,反向起动运转。
3.可见在正转换接时,由于KM1和KM两个接触器主触点形成4断点灭弧电路,可有效地熄灭电弧,防止相问短路。反转变正转亦然。
Ⅳ 正反转控制电路原理图
朋友、正转图和反转图是一样的。只需在三项中任意改掉2项的接法就可以改掉方向。还有带自锁的正反转控制原理图给你一张吧
Ⅵ 正反转控制线路的工作原理是什么
机床工作台的前进和后退其本质就是电动机正转。只要将接至电动机三版相电源进线中的任意权两相对调接线,即可达到反转的目的。
电机正反转是将其电源的相序中任意两相对调即可,通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。由于将两相相序对调,须确保二个KM线圈不能同时得电。
(6)正反转控制电路扩展阅读:
电机的正反转伴随着电子技术的发展,相继出现了PLC、单片机等也有了进一步的电路改善。并且在实际应用电路中增加了一些接近开关、光电开关等实现了双向自动控制,为工业机器人的发展奠定了基础。
为了使电动机能够正转和反转,可采用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能同时吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在电路中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向运行的控制电路。
Ⅶ 双重联锁的正反转控制线路怎么接
具体回答如图:
正转控制:按下正转按钮SB1→接触器KM1线圈得电→KM1主触头闭合→电动机正转,同时KM1的自锁触头闭合,KM1的互锁触头断开。
反转控制:按下反转按钮SB2→接触器KM1线圈失电→KM1的互锁触头闭合→接触器KM2线圈得电→从而KM2主触头闭合,电动机开始反转,同时KM2的自锁触头闭合,KM2的互锁触头断开。
(7)正反转控制电路扩展阅读:
电机要实现正反转控制,将其电源的相序中任意两相对调即可(我们称为换相),通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。
由于将两相相序对调,故须确保二个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。
当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。
为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两正向启动过程对辅助常闭触头就叫联锁或互锁触头。
Ⅷ 按钮连锁正反转控制电路工作原理
如图,KM1,KM2为下反转接触器,SB1是停止按钮,SB2是正向启动,版SB3是反向启动,SB2与SB3的常闭触点分别串入相应权启动线路中,防止两个按扭同时按下,当正向按扭SB2按下时,此时SB2的常闭触点断开,SB3这路线路断开,这样反向运转是无法启动的。
同时,KM1,KM2还通过辅助的常闭触点组成互锁电路。即KM1吸合时,KM2无法吸合,反之亦然。电机的正反转运转是通过换相来实现的。
优化改进方案
单联锁控制电路结构简单安全可靠,但要改变电机方向,必须要先按下停止按钮,不是很方便。只适用于电机换向要求不严的场合。
再说说双重联锁控制电路,其中正反转控制回路除了接触器互相联锁控制外,在启动按钮上也加了互相联锁控制。
正转启动按钮SB1的常闭触点是串联在反转控制回路中,按下正转启动按钮时 ,会先断开按钮常闭触点,使反转控制回路断电。也就是说,无论电机是停止状态,还是反转状态,只要按下正转启动按钮SB1都能使电机正转启动。
同理,反转启动按钮也是一样,只要按下反转启动按钮,电机立刻反转。就不需要先按停止按钮,这样操作就更加方便、快捷。
Ⅸ 电机正反转电路图详解
电机正反转电路抄图:袭
主要电气元件:按钮开关3个,接触器2个,热过载1个,最好加3个熔断器为保护3条火线用。
在梯形图中,将Y0和Y1的常闭触点分别与对方的线圈串联,可以保证它们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮联锁”,即将反转起动按钮X1的常闭触点与控制正转的Y0的线圈串联,将正转起动按钮X0的常闭触点与控制反转的Y1的线圈串联。设Y0为ON,电动机正转,这时如果想改为反转运行,可以不按停止按钮SB1,直接按反转起动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的常开触点接通,使Y1的线圈“得电”,电机由正转变为反转。