導航:首頁 > 電器電路 > 電路原理度

電路原理度

發布時間:2023-07-19 00:53:01

A. 高頻電路原理

高頻電路原理:
電路利用的就是高頻的線路連接,完成振盪頻率的調試,信息傳輸。

B. 充電寶內置電路原理

一、電路原理是:電磁轉換。

充電寶自身的充電插頭直接通過交流電源可以對移動設備充電且自身具有存電裝置,相當於一個充電器和備用電池的混合體,相比備用電源而言可以簡化一個充電插頭的裝置,而相比於充電器它又自身具有存電裝置,可以在沒有直電源或外出時給數碼產品提供備用電源。

二、物體組成:

1、鋰芯容量指示電路

鋰芯容量指示電路由 XC61CC 系列的電壓監控晶元組成。

2、電芯保護電路

電芯保護電路由過充保護、過放保護、過溫保護三部分組成,HAT2027、R5402、自恢復 保險絲構建了三重保護,使鋰芯安全性大大增強。

3、充電管理 電路

充電管理電路採用了 CN3066,將充電過程分為涓 流充電、恆流充電、恆壓充電和維護充電四個部分,使移動隨身電源能夠最大程度地儲備能量。

4、DC-DC 升壓電路

DC-DC 升壓電路採用了 MAX1771 集成晶元,可將鋰芯容量在安全范圍內最大限度釋放, 達到對多種數碼設備供電的目的。

5、功能擴展電路

功能擴展涵蓋了戶外活動所涉及的常見需求,具有應急夜 間高亮照、戶外防盜安全警報、野營驅蚊。

(2)電路原理度擴展閱讀:

對充電寶內置電路來講,一般由四個功能構成:

第一:保護

鋰電池相對於其他電池具備一些優勢,比如能量密度比較大,重量輕等。但也有缺點,其中最大的缺點就是容易過充或過放,如果一節鋰電池電壓放電放到2.7V以下那這個電池就屬於過放了。同樣的充電的時候要是鋰電池充到4.2V以上那也屬於過充了。

鋰電池過度充電和放電,這將對鋰離子電池的正負極造成永久的損壞。

第二:電量指示

充電寶的電量指示都是通過對電壓的採集來粗步判斷移動電源的剩餘電量的,隨著鋰電池的放電電壓會慢慢從最高的 4.2V(也就是滿電)到電壓最低的2.7V(也就是沒電),到2.7V的時候保護電路會起作用把電流掐斷。

第三:充電

一般鋰電池都有專門的充電IC來充的,先恆壓再恆流最後涓流充電。

但有些移動電源廠商為了節省成本,沒用鋰電池專門充電IC而是直接用保護板來實現這個功能,雖然用保護板可以做到不過充(電池到4.2V的時候保護板會把電流切斷),但對電流的壽命卻會有很大的影響,同時也不安全。

鋰電池充電IC裡面不僅集成了充電保護功能,還有溫度監測。如果溫度過高會起到保護作用,這樣充電的時候相對來說對電池有雙保護作用,一是充電IC達到4.2V左右會切斷電流,同時保護IC也會起作用。

第四:升壓

內置鋰電池要通過一個升壓電路經穩壓後才能支持對手機,PSP,IPHONE等數碼產品的充電。但升壓的話會牽涉到一個效率問題。例如,要集成保護板,指示燈等效率就會下降。

C. 電路原理

電路原理是電氣與電子工程專業的一門必修專業基礎核心課程。這門課程具有知識體系龐雜、學習內容抽象的特點。教師可在教學中引入合作學習的理念,加快課堂知識的內化,重構深度學習體驗。

課程特點

作為涉電類專業的必修課,「電路原理」最為重要的特點就是其具有基礎性。它不但為後續課程提供預備知識,還為學生科研實踐奠定理論基礎。如果不能熟練掌握「電路原理」中的基礎知識,學生將無法准確而迅速地完成對復雜電路的分析,從而在深入學習其它相關知識和課程時感覺障礙重重;此外,「電路原理」還有模型理想抽象的特點,在運用「電路原理」的知識進行分析時,無一不是首先進行了假設和簡化,這種理想化的處理方法縱然為學生理解理論知識提供了方便,但同時也給學生綜合分析電路問題帶來一定的困難;再有,「電路原理」也是一門綜合性非常強的課程,在完整地解決一個電路問題的過程中,常常要用到建模的思想、理想化的處理方法、電磁學知識以及相關的多種數學知識。如果有某一方面掌握不佳,則會相應加大學生學習「電路原理」課程的難度。

D. 電子控制的電冰箱電路的工作原理是怎樣的

我們以日本東芝GR型電冰箱電子控制電路為例,介紹電子控制電路的工作原理(圖3-22)。

圖3-22 東芝GR型電冰箱電路原理

A——溫度熔絲 B——化霜加熱器 C——冷藏室加熱器 D——流槽防凍加熱器

(1)主控制板

它是整個電路的核心,位於冰箱後台板處。

(2)操作面板

操作面板上安裝有手動操作按鈕,各按鈕的功能為:

①溫度調節按鈕。按下溫度調節按鈕,可在不同擋位,使冰箱獲得不同的使用溫度,如按下通常擋,可使冷藏室溫度約為3℃,冷凍室溫度約為-12℃。

②除霜指示燈。按下除霜按鈕後,除霜指示燈即亮。

③除霜開始按鈕。按下此按鈕後,壓縮機立即停機,除霜加熱器自動通電,開始工作。

④除霜中止按鈕。按下除霜中止按鈕,除霜加熱器立即斷電,停止除霜,同時壓縮機開始製冷運行。

(3)冷藏室溫度感測器

冷藏室溫度感測器是具有NTC特性的熱敏電阻,它的作用是將冷藏室的溫度變化,變成為電阻值的變化,再通過電源控制板來控制壓縮機的啟停,從而實現電冰箱的自動控溫。它安裝於冷藏室內的側壁,外形如同一個小鋁外殼電容器。

(4)冷凍室溫度感測器

冷凍室溫度感測器也是一隻具有NTC特性的熱敏電阻(室溫15℃時,其阻值為4.5kΩ),它的作用是在冷凍室化霜完成後,即當冷凍室蒸發器被加熱到8.5℃以上時,通過電源控制板的作用將化霜加熱電路斷開,停止加熱,並立刻接通壓縮機電源,重新恢復壓縮機製冷運行。冷凍室溫度感測器安裝於冷凍室內側壁,外形如同一個小鋁外殼電容器。

東芝GR型電冰箱通過冷藏室溫度感測器,檢測冷藏室蒸發器的本體溫度,控制壓縮機的啟停。當冷藏室蒸發器本體溫度上升到3.5℃時,溫度感測器就發出指令,使製冷壓縮機啟動運行,當冷藏室蒸發器的本體溫度下降到-19~-25℃時,溫度感測器即令壓縮機停止工作。

同其他直冷式雙門冰箱一樣,此種冰箱冷凍室的溫度隨同冷藏室溫度變化,這樣,只要控制了冷藏室的溫度,也就同時控制了冷凍室的溫度變化。

東芝GR型冰箱冷藏室除霜屬於半自然除霜,設有電加熱除霜裝置,當壓縮機停機進行除霜時,冷凍室溫度緩慢回升,其霜層也隨之融化。

E. 電路原理

電路,顧名思義就是指由基本元件組成的電流通路,它主要有兩個功能:一個是處理能量,包括能量的產生、傳輸、分配和使用等;另一個是處理電信號,包括信號的獲取、放大、濾波等。

電路的基本變數電壓、電流、電荷、磁鏈,四個基本變數之間又兩兩構成四個二端基本元件——電阻(U-I)、電容(Q-U)、電感(Ψ-I)、憶阻器(Ψ-Q)。根據電路中的激勵和響應是否呈線性關系,電路可分為線性電路和非線性電路;根據電路是否含有儲能元件(電感和電容),電路分為電阻電路和動態電路(動態電路研究其暫態過程和穩態過程)。如果電流的參考方向是從電壓的參考方向的正號流入,則說明電壓和電流具有關聯參考方向,否則說明電壓和電流具有非關聯參考方向。如果元件的U和I參考方向關聯,則得到的P=UI為吸收功率;如果元件的U和I參考方向非關聯,則得到的P=UI為發出功率;所以一般設電阻U I關聯參考方向,電源的U I非關聯參考方向。

電路的基本元件包括電阻、電容、電感、獨立源、受控源、二極體、理想變壓器等等。電阻R根據激勵與響應的關系分為線性電阻和非線性電阻,元件約束R=UI;電容C以電場形式儲存能量,具有儲存電荷的能力,元件約束Q=CU;電感L以磁場形式儲存能量,具有儲存磁鏈的能力,元件約束Ψ=LI;獨立源分為獨立電壓源(提供恆定電壓,U-I曲線為平行於I軸的直線)和獨立電流源(提供恆定電流,U-I曲線為平行於U軸的直線);受控源根據控制量和受控量的不同分為壓控電壓源、壓控電流源、流控電壓源、流控電流源;二極體只能通過正向電流而不能通過反向電流;變壓器是利用線圈的互感原理,而理想變壓器一種耦合系數為1,L1、L2、M都無窮大的變壓器。

電路受到兩類約束——元件約束和拓撲約束,元件約束與電路元件的自身性質有關,拓撲約束與電路元件無關,只與電路的結構有關。說到拓撲約束就不得不提到基爾霍夫定律,基爾霍夫定律是整個電路理論的基礎,它主要包括兩個部分——KCL和KVL,狹義KCL指對於電路的任一個節點而言,流入該節點的電流和一定等於流出該節點的電流和,廣義KCL指對於任何一個子電路而言,流入的電流和也一定等於流出的電流和;狹義KVL指對於電路的任一個迴路而言,其電壓降的代數和為零,廣義KVL指對於電路中的任一個節點到另一個任一節點,其電壓降始終相等,與路徑無關。對於一個電路,它有b個電路元件,n個節點,則一定會有b-n+1個獨立迴路,則一定會有b個元件約束方程,n-1個KCL方程,b-n+1個KVL方程,一共會出現2b個獨立方程,這就是電路求解的著名的「2b」法。

電阻和電源是可以實現等效變換的,所謂的等效變換並非替換,而是指兩者的UI特性一致,等效變換制後對整個電路的分析沒有影響。電阻的等效變換:①電阻的串並聯,電阻串聯起到分壓的作用,Req=R1+R2,電阻並聯起到分流的作用,Req= R1xR2/(R1+R2)。②平衡電橋,當電阻呈現「H」連接,如果兩個斜向電阻的乘積相等則流經中間電阻的電流為零。③Y-△變換,各個相上的電阻均相等,則連接成「Y」形的電阻和連接成「△」形的電阻可以相互轉換,Y→△,各電阻乘以3,反之,各電阻除以3。④加流求壓和加壓求流,對於含有受控源和電阻的一埠網路,可以虛擬一個埠電壓(或埠電流),然後用埠電壓(或埠電流)表示出埠電流(或埠電壓),比值則為等效電阻(或等效電導)。電源的等效變換:兩個獨立電壓源串聯為兩者相加之和,獨立電壓源與任何元件並聯都等於獨立電壓源本身,兩個獨立電壓源除非電壓相等,否則不能並聯;兩個獨立電流源並聯為兩者相加之和,獨立電流源與任何元件串聯都等於獨立電流源本身,兩個獨立電流源除非電流相等,否則不能串聯。獨立電壓源的實際模型為電壓源和其內阻串聯,獨立電流源的實際模型為電流源和其內阻的並聯,獨立電壓源等效轉換為獨立電流源時,內阻由串聯改為並聯,大小不變,轉換的獨立電流源電流為獨立電壓源電壓除以內阻阻值,電流方向不變,獨立電流源等效轉換為獨立電壓源時,則反之。

對一個網路而言,其中的兩個接線端,電流大小相等,方向相反,則成為一個埠。一埠網路即具有一個埠的網路,比如上面可以等效變換的電阻和獨立源等單個元件;二埠網路即具有兩個埠的網路,運算放大器和MOSFET都屬於二埠網路。二埠網路的參數有輸入端輸入電阻Ri,輸出端輸出電阻Ro,還有R參數(用I1、I2表示U1、U2,互易時R12=R21,對稱時R12=R21且R11=R22)、G參數(用U1、U2表示I1、I2,互易時G12=G21,對稱時G12=G21且G11=G22)、T參數(用U2、-I2表示U1、I1,互易時T11T22- T12T21,對稱時T11T22- T12T21且T11=T22)。互易二埠指將二埠網路的激勵和響應交換位置後,響應不變。對稱二埠指從二埠網路的任何一側看入,激勵在本側和對側引起的相應都是一樣的。二埠的連接方式有級聯(T=T1T2)、並聯(G=G1+G2)、串聯(R=R1+R2)。

運算放大器是一個集成電路,首先它的作用是放大信號,利用其信號放大的特性又可;以構成信號運算的功能,因此稱之為「運算放大器」。運算放大器有三個工作區:負向飽和區:Uo=—Usat,線性區:Uo=Aud,正向飽和區:Uo=Usat,其中A是運算放大器的(開環)放大倍數。運放的輸入電阻為Ri,輸出電阻為Ro,理想的運放滿足Ri→∞,為MΩ量級,Ro→0,為10Ω量級,A為∞,理想的運放滿足輸入端的「虛短」和「虛斷」,但鑒於放大倍數非常大,而輸出電壓Uo又是一個有限值,所以要求輸入電壓ud非常小,這是非常不經濟的,因此引入負反饋。反相輸入端供電Us,反相輸入端電阻為R1(為KΩ量級),負反饋電阻為Rf(為KΩ量級),可以實現Uo=-Rf/R1Xus,這就是反相比例放大器。此外,運用運放還可以構成正向比例放大器、加法器、減法器、微分器、積分器。

MOSFET,即金屬氧化物半導體場效應晶體管。MOSFET有三個極:G極為柵極、D極為源極、S極為漏極,A為(開環)放大倍數。MOSEF有三個工作區:①截止區:UGS UDS,DS為為電阻Ron。用MOSFET可以構成邏輯門電路——是門(緩沖器)和非門(反相器)、與非門和與門、或非門和或門。

分析電路的一般方法有兩種——節點電壓法和迴路電流法。對於一個有b個元件、n個節點、b-n+1個獨立迴路而言,節點電壓法的核心是以節點電壓為變數表示支路電流,進而列寫出n-1個KCL獨立方程,形式為(1/R1+1/R2)U1-1/R2U2=Is1+Is2。等式左邊(1/R1+1/R2)表示自電導;1/R2表示互電導,即公共電導,取負號;等式右邊Is1+Is2表示流入該節點的電流源的和。迴路電流法的核心是對每一個獨立迴路設置一個虛擬的迴路電流,以迴路電流為變數,表示出支路電壓進而列寫出b-n+1個KVL獨立方程,形式為R1I11+ R2(I11-I12)= Us1+Us2。等式左邊R1表示自電阻,R2表示互電阻,即公共電阻,當I11和I12同向取正號,反向取負號,等式右邊為沿迴路電流方向的電源的電壓升。

電路有三種比較常用的定理——疊加定理、戴維南定理、替代定理。疊加定理適用於線性電路,各獨立源共同作用時在任一支路的電流(或兩點間的電壓)等於各獨立源分別作用於該支路的電流(或兩點間的電壓)的代數和,由疊加定理推導出的齊性定理,即對於線性電路,電路中所有的獨立源變化K倍,各支路的電流(或兩點間的電壓)也變化K倍。戴維南定理對於任何線性電阻、線性受控源、獨立電源組成的一埠網路都可以等效為一個理想電壓源U0和電阻Req的串聯電路,其中U0為一埠網路的開路電壓,電阻Req為獨立源置零(獨立電壓源開路,獨立電流源短路)時的等效電阻。替代定理適用於線性電路和非線性電路,即對於一個兩端電壓為U,電流為I的支路而言,可以用一個電壓為U的獨立電壓源替代,也可以用一個電流為I的獨立電流源替代。

對於非線性電阻電路而言,我們一般研究有唯一解的電路,即電阻是單向遞增的。非線性電阻有兩部分組成,一部分為靜態電阻,這一段Rs= U0/I0,(U0I0)即為工作點,另一部分為動態電阻,這一段Rd=△U/△I|(U0I0)。對於非線性電路一般使用的方法有解析法(通過大量的數學計算)、圖解法(當電路中只有一非線性電阻時,將非線性電阻以外的電路進行戴維南等效,畫出其UI曲線,再畫出非線性電阻的UI曲線,兩線的交點即為工作點)、分段線性解法(把非線性電阻的非線性UI曲線分成不同的線性階段,通過分階段假設和驗證,求出工作點)。對於非線性電路而言還有一種比較特殊的電路,即電路激勵中含有小信號,分析的方法是小信號分析法,就是把激勵分為大信號(即直流穩定信號)和小信號,分別求出大信號和小信號單獨作用下的電路響應,然後得到響應和。求解步驟如下:忽略小信號,用解析法、圖解法、分段線性法求解出工作點,然後忽略大信號,求小信號激勵下的電路響應,元件的小信號模型為:非線性電阻為工作點下的動態電阻,非線性受控源為原來的非線性控制函數在工作點處線性化的值。對MOSFET施加小信號激勵可以實現放大器的作用。

無論是線性電阻電路或者是非線性電阻電路都是電阻電路,電路中還有一個重要的家族就是動態電路。動態電路即還有儲能元件的電路,主要指電容和電感。電路發生變化,即換路時,電阻的電壓和電流發生突變;電容具有儲能的作用,電壓不發生突變;電感具有儲能的作用,電流不發生突變。根據電容和電感的這一特性,總結出了換路定律,即Uc(0-)=Uc(0+), il(0-)=il(0+),這里有一個大前提即電容的電流和電感的電壓為有限值。同時,電容的UI關系如下:I=C/dt;電感的UI關系如下:U=LdI/dt。對於動態電路而言,根據換路定律和電容電感的UI關系,我們就可以列寫出非齊次一階常系數常微分方程,方程的解為特解+通解。動態電路的響應由兩部分組成——強制響應和自由響應,強制響應就是外加激勵在電路中產生的響應,對應著一階常系數常微分方程中的特解,也是電路達到穩態時的穩態響應;自由響應對應著一階常系數常微分方程中的通解。對一階常系數常微分方程的分析發現,電容的形式為Uc=US+(U0-US)e-t/τ,ic=Cc/dt,U0初始電壓,US穩態電壓,τ為RC;電感的形式為iL=iS+(i0-iS)e-R/τ,UL=LdiL/dt,i0初始電壓,iS穩態電壓,τ為L/R。以此可見,對於電容只需要知道初始電壓U0,穩態電壓US,τ(RC);對於電感只需要知道初始電壓i0,穩態電壓iS,τ(L/R);因此又叫三要素法。電路的響應又可以分為零狀態響應和零輸入響應,零輸入響應即沒有外加激勵,僅由動態元件的初始儲能引起的響應,零狀態響應即動態元件的初始儲能為零,外加激勵下引起的響應。對於零狀態響應有兩種比較特殊的外加激勵——單位階躍函數ε(t)和單位沖激函數δ(t),其對應的零狀態響應分別為s(t)、h(t),其中δ(t)=dε(t)/t,f(x)δ(t)=f(0)。因為有單位沖激函數的存在,電容的電流和電感的電壓不為有限值,換路定律的前提不存在,故電容的電壓和電感的電流在換路時發生了跳變。對於一個函數f(x)激勵的電路而言,其對應的零狀態響應為r(t)=∫f(τ)h(t-τ)dτ。利用一階電路(含有一種儲能元件的電路)的應用有①傳輸延遲:利用兩個MOSFET構成的邏輯門,因為有寄生電容的存在,形成的緩沖器具有傳輸延遲效果。②在負反饋的運放,在反相輸入端加入電容,形成積分器;在反饋線路上加入電容,形成微分器。此外還有滯回比較器、脈沖發生器、整流器、降壓斬波器。

含有兩種儲能元件的電路,求解時就需要列寫出二階常系數常微分方程,其特解為強制分量,通解為自由分量,求通解時,若電路特徵方程的特徵根為兩個不等實根P1、P2,則電路處於過阻尼的狀態,電路為無震盪衰減,其通解為A1ep1t+A2ep2t;若電路特徵方程的特徵根為兩個相等的實根P,則電路為臨界阻尼,電路為無震盪衰減,其通解為(A1+ A2t)ept;若電路特徵方程的特徵根為兩個共軛復根P1、P2,則電路為欠阻尼,電路為震盪衰減,α=R/2L,ωd=√ ̄[1/(LR)-α2]。其通解為ke-αtsin(ωdt+Ψ)。利用二階電路的應用有汽車點火器、脈沖電源、升壓斬波器(利用占空比的不同)。

以上研究的電阻電路和動態電路都是基於外加激勵為直流的情況下,接下來我們看一下當外加激勵為交流的情況下的電路分析。在交流電源中,正弦交流電源是最為常見的一種,正弦函數Asin(ωt+Ψ),A為幅值;ω為角速度,表徵頻率;Ψ為相位。正弦量相加減、積分和求導的過程中,其始終都是一個頻率相等的正弦量,故引入相量來表示正弦量,對於正弦量Asin(ωt+Ψ),可以用相量B∠Ψ,其中B為正弦量的有效值,也就是模,Ψ代表初相位。相量有兩種表示方法:①直角坐標表示形式:a+jb;②極坐標表示形式:c∠Ψ,兩種形式的相互轉換關系為:a=CcosΨ,b=CsinΨ;c2=a2+b2,Ψ=arctan(b/a)。一旦用相量表示正弦量後,就可以重新觀察元件特性的相量形式。對於電感而言,相量U=jωL乘以相量I;對於電容而言,相量I=1/(jωC)乘以相量U,j表示旋轉因子,一個j表示逆時針旋轉90度。把相量的邏輯代入到基爾霍夫定律中就可以得到阻礙電流的復阻抗(電阻+電抗,電抗包括容抗和感抗),導通電流的復導納(電導+電納,電納包括容納和感納)。電路的電壓為Usin(ωt),電流為Isin(ωt-Ψ),其中Ψ為電流落後電壓的相位,有功功率為P=UIcosΨ,cosΨ被稱為功率因數,有功功率其實也就是電路消耗在電阻上的功率;無功功率為Q=UIsinΨ,無功功率是指電感或電容等儲能元件與外電路發生的功率交換,電感是始終吸收功率的,而電容是始終發出功率的,故具有「互補」的作用,這種性質常被用來調整功率因數,被稱為無功補償。視在功率是S=√ ̄(P2+Q2),與有功功率和無功功率始終守恆不同,視在功率一般是不守恆的。

動態電路的電壓和電流會隨著激勵的頻率改變而變化,這叫做動態電路的頻率特性,主要包括幅頻特性和相頻特性。將正弦電壓源Us、電阻R、電容C串聯,以相量Us為輸入電壓,以電阻R上的電壓為輸出電壓,則Uo=jωCR/(1+ jωCR)Us,當ω→∞時,輸出電壓等於輸入電壓,當ω→0時,輸出電壓為零,這就是電容的隔直通交,這也就是高通濾波器,與微分器的原理一致;如果以電容C上的電壓為輸出電壓,則Uo=1/(1+ jωCR)Us,當ω→∞時,輸出電壓等於零,當ω→0時,輸出電壓等於輸入電壓,這就是低通濾波器,與積分器的原理一致。將正弦電壓源Us、電阻R、電容C、電感L串聯,以相量Us為輸入電壓,以電阻R上的電壓為輸出電壓,可以實現帶通濾波器,與高通、低通濾波器不同,帶通濾波器具有兩個截止頻率,兩個截止頻率的差值就是帶寬。利用頻率特性製成的全通濾波器,則是相頻特性,只移動相位。

電路中會出現諧振的情況,所謂諧振就是指埠的電壓和電流同相位,此時埠的入端電阻等效阻抗為純阻性。RLC串聯時,發生諧振,電抗為零,即jωL+1/(jωC)=0,則ω0=√ ̄(1/LC),此時電感上的電壓和電容上的電壓大小相等,相位差180度,方向相反,同時電感電壓和電容電壓發生放大,所以串聯諧振又被稱為電壓諧振,其電抗頻率(Xω)曲線為過(ω00)的單向遞增曲線;RLC並聯時,發生諧振,電納為零,即1/(jωL)+jωC=0,則ω0=√ ̄(1/LC),此時電感上的電流和電容上的電流大小相等,相位差180度,方向相反,同時電感電流和電容電流發生放大,所以並聯諧振又被稱為電流諧振,其電抗頻率(Xω)曲線是關於x=ω0的雙曲線,當ω<ω0,X>0,電路呈感性,當ω>ω0,X<0,電路呈容性。RLC串聯時,電感或電容的電壓與電阻電壓的比值就是品質因數,品質因數表徵了信號放大的能力,品質因數越高,信號放大能量越強;品質因數還表徵了能量效率,因為品質因數也可以看作是諧振時電路儲存的總能量除以周期內電路消耗的能量,品質因數越高,儲存能量越強;品質因數也表徵了電路的選擇性,品質因數越高,幅頻特性越尖銳,選擇性越高。當電路呈感性時,需要加入電容來補償,當電路呈容性時,需要加入電感來補償。

兩個鄰近的電感線圈,通過其中一個線圈的電流所產生的磁鏈不僅與自身交鏈,還和鄰近的線圈交鏈,這就是互感。相互之間有一個互感系數M,耦合系數K=M/√ ̄(L1L2)。為了更好地判斷線圈電壓,設置了同名端,對於兩個線圈而言,有這樣的一對端鈕,當電流分別從這兩個端鈕中流入各自線圈時,它們產生的自感磁通、互感磁通都是相互加強的,則稱這一對端鈕為同名端。我們可以通過串聯、並聯和具有一個公共端的兩線圈實現等效去耦。變壓器正是利用了互感的原理,有三種變壓器,分別是空心變壓器、全耦合變壓器和理想變壓器,空心變壓器是指以不導磁的材料作為芯柱的變壓器,原邊和副邊具有繞線電阻R。全耦合變壓器是指在空心變壓器的基礎上,忽略原邊和副邊的繞線電阻R,耦合系數K=1,也就是M=√ ̄(L1L2),可以得到U1/ U2=n,n=√ ̄(L1/L2),I1= U1/(jωL1)-1/n I2,n被稱為之全耦合變壓器的變比,等於原副線圈的匝數比。理想變壓器是在全耦合變壓器的基礎上,L1、L2、M均為無窮大,則得到:U1/ U2=n,I1= -1/n I2。只需要知道n即可。利用變壓器的應用有中間抽頭變壓器構成的全波整流器,中間抽頭變壓器實現的電話線路的二-四線轉換。

同電阻的「Y-△」變換一樣,三相電源也有Y-△的區分,Y三相電源為三相四線(中間為中性線),△三相電源為三相三線,不過其中每個相電壓大小相等,相位相互落後120度。Y電源連接,線電壓=√ ̄3相電壓,線電流=相電流;△電源連接,線電壓=相電壓,線電流=√ ̄3相電流,分析三相電路時,把電源轉換為Y三相電源,把負載轉化為Y三相負載,求解單一相等效電路,根據對稱性求出其他兩相。

最後對於周期性的非正弦激勵下的電路,可以利用傅里葉級數進行分析,但是使用的基本方法是與上面一致的。

F. 集成電路原理 集成電路的工作原理

1、集成電路的工作原理,簡單地說,就是三點:

(1)把晶體管直接製作在單晶硅上;

(2)把各元件高度密集地集成在一起,其連線越來越細,目前已經細到納米級;(3)把對外連接的線路引到管腳處。

2、集成電路(integrated circuit)是一種微型電子器件或部件。採用一定的工藝,把一個電路中所需的晶體管、電阻、電容和電感等元件及布線互連一起,製作在一小塊或幾小塊半導體晶片或介質基片上,然後封裝在一個管殼內,成為具有所需電路功能的微型結構;其中所有元件在結構上已組成一個整體,使電子元件向著微小型化、低功耗、智能化和高可靠性方面邁進了一大步。它在電路中用字母「ic」表示。集成電路發明者為傑克·基爾比(基於鍺(ge)的集成電路)和羅伯特·諾伊思(基於硅(si)的集成電路)。當今半導體工業大多數應用的是基於硅的集成電路。

G. 數字電路的原理是什麼數字電路原理圖






數字電路的基本工作原理
模擬電路處理的信號電壓變化是連續的,比如正弦波信號。數字電路處理的信號只有高電平和低電平,是數字脈沖信號。一般用高電平代表「1」 ,低電平代表「0」,用二進制數字的運算來表示各種邏輯關系。
電路的工作原理 是什麼
不管強電、弱電、模擬、數字,首先要明白各單位元器件的符號; 新、舊國標都要熟記;熟練掌握各種單位元器件的工作原理和特性以及作用 熟練掌握各種基本單元電路的工作原理,分析方法. 水利水電出版社的《實用電工典型線路圖例》,內有各種電工基本單元圖例詳解,和一些典型的整機、配電等方面的原理圖解析,對初、中級的學習者很有好處 配備一本集成電路手冊(內有常用集成電路方框圖、各引腳作用)各大書店均能買到。 初學者不宜先看整機電路圖,應該循序漸進 整機電路圖由於有許多單元電路的存在,有的單元電路中的元器件就比較散亂,或者離本單元較遠,初學者識圖時,很有難度。
從方框圖開始-單元電路圖、等效電路圖-整機電路圖 電路圖包含很廣,要想迅速看懂一張整機電路,需要長期的積累,這里是講不清的。 循序漸進的學習非常重要,電氣理論基礎非常重要 俗話說,專業好學,基礎難打 一開始的急功近利,不久就會遇到瓶頸。
如果你已有初步的電氣基礎 推薦先學習 高等教育出版社的《電工學》 數字電路是電路圖中的一個難點,我稍微講一下 要學數字電路以下知識必不可少,可按順序逐步學習:
1、二進制和二進制編碼,以及和十進制的轉換關系
2、脈沖電路(脈沖信號的產生、整形、交變。包括,微分電路、積分電路、限幅電路、多諧振振盪電路、單穩態和雙穩態電路等)
3、邏輯門電路(與、或、非、與非、或非門)
4、觸發器電路(RS觸發器、JK觸發器、D和T觸發器是必學的)
5、組合邏輯電路(基本運算器、比較器、判奇偶電路、編碼、解碼器、數據選擇器)
7、單片機8、模擬量與數字量之間的轉換
數字電路的很多功能是通過軟體來實現的,這已經超出了電子技術分析的范疇,識圖中,雖然不需要對軟體相當熟悉,但必須了解軟體處理信號的過程、目的、處理結果 單片機也是其中一個難點,具備系統的數字電路基本知識後,必須加以熟悉 數字電路的信號由於是各種脈沖串的數碼信號,這些數據流信號的波形不可能像模擬電路那樣,對電路的理解有太多幫助,這點要有心理准備。
數字電路原理大概是個什麼意義?
數字電路原理一般最通俗的說就是開關.就是電壓的高和低.一般是0V和5V這兩個變換也有12V的
如果出現問題那你要懂集成塊的每支腳的電位是多少是什麼用的.
請告訴我模電/數電工作原理,不勝感激!!!
1)、個人認為,在應用上兩者之間最主要的差別是兩者的工作邏輯不同。一般來說,數字電路設計做好數字邏輯就差不多了,----剩下和問題就交給模擬去辦了。打個比方說,一個純粹的數字電路設計完成,就是邏輯設計的完成,或者說,數字電路的設計大致上是個邏輯數學與電路程相結合的問題。但到PCB設計時,就得看你的模電功夫和耐心了。大家學習PCB設計時,可能都看到過74374之類的邏輯器件可能在布線時不一定要按照器件引腳名順序排列去和別的電路同序連接。原因在於追求布線簡練,這看上去似乎不是什麼事,其實這是模擬所要解決的電磁兼容問題。為了做好這點,將原來的邏輯連接做一些修改是常有的事。從這點上看,電路設計軟體分成logic(schematic)和PCB「兩個部分」不無道理。
2)、模電呢?說大了是個全局的問題(從學習上說就是基礎問題)。說簡單點,是個基本功問題。
數字電路的模擬「部分」可以從外圍元件設計和PCB設計上得以體現。模擬則遠不止於此,特別是一個系統的電磁兼容,是極其重要的。而元件間、電路板間、設備間、主控室(器)與現場間、通訊線路的電磁兼容以及外來電磁場所的干擾、系統對環境的電磁「污染」都要考慮其中,甚至雷電、靜電問題也不能稍有忽略。這些都是模擬所要解決的問題。
就說單板子的裝置,到了PCB設計階段,元件間的引腳連接、排列、整體布局、散熱設計、電源、強電弱電元件(功率元件與信號元件)安置、出入埠、人性化設計、機殼設計甚至多方案(備用方案)融合的考慮等等都會立馬突現出來。這些問題的解決,決不是數字功夫到家就能解決的,必須建立在適當的模擬功底為基礎的下進行。
數字電路總結
模擬部分 一、非單一參數的交流電路(5分,一道選擇,一道大題) 通過上面2個圖我就總結出,非單一參數電路的基本特性,如果個組件串聯,那麼他們的電流就是相同的,而電壓呢?因為根據單一參數的交流通路可知,電感的電壓超前點流90度,電容的電壓邂逅點流90度,因此如圖a的坐標軸可以知道各個元件之間的關系,然後根據這個公式,就可以求出每個點流、點壓、電阻、阻抗得值來(有些條件是給定的)。對於並聯電路同理可知。 提出幾個注意的地方: 1、並聯電路電壓固定,串聯電路電流固定
2、當Xl>Xc時,成感性;Xl
3、有功功率的求法。 二、戴維南定理的應用(8分) 對於這個是第二章的重點,具體的內容請大家自己看書吧!做幾道題就全明白了。掌握的內容是:
1、負載開路後的兩端電壓(選擇會有一個求電位的題:1分)
2、等效電阻的求法,電流源開了,電壓源短路(選擇會有一道求等效電阻的題:1分)
3、會畫等效電路 三、單管放大電路 這里提出3個重點:(具體內容看第5章)
1、共發射極交流放大電路,p91頁;
2、分壓式偏置共射極放大電路,p102頁;
3、共集電極放大電路(設計輸出器),p104頁。 對於這三個放大電路的靜態工作點,和Au、ro和ri的求法一定要會。不要混淆,主要是掌握各個的微變等效電路和支流通路的畫法,然後進行總結,看看你對他有什麼見解,提示:最好搞明白他們的關系是怎麼出來的,這樣記憶會比較容易。 四、集成運放(12分,兩道題)
對於這12芬我覺得是最容易的了,這是第7章的內容,見意大家把書上各個電路的放大公式記下來,然後就沒問題了。 基本的就4個:
1、反相輸入比例運算;
2、同相輸入比例運算;
3、積分運算電路;
4、電壓比較器(知道什麼是參考電壓)。
這是我認為最基本的4個,其它的可以是他們的結合,還有加入穩壓管和二極體的電路需要大家進行分析。 五、用卡諾圖化檢邏輯函數(4分) 沒什麼可說的,不會就不要考了。提出一點注意,就是四個角有1的直可以畫成一個大圈。 六、對於放大電路的分析(4分) 這個基本上都比較容易,有這樣的可能:
1、沒有偏置電阻,也就是說Ib=0,沒有電流。
2、沒有輸出電壓,可能被電容短路掉。
數字部分 七、組合邏輯電路的分析(4-8分) 這是第三章的內容,主要是知道分析電路的步驟,會設計簡單的邏輯電路,不要忘記對邏輯表達式進行畫簡,要求會寫出電路的真值表,基本就沒什麼問題了。 八、寫出ROM陣列邏輯和PLA陣列邏輯的函數表達式(4分) 這個容易,知道概念就成了,沒問題的,書上p308和310頁。 九、分析時序電路(8分) 這可是數字電路的重頭戲,其實也沒什麼可說的,就是要把那4中基本觸發器記下來,特徵方程不要忘記(選擇題有一道,填空一道,2分),然後知道分析的步驟,一步一步來,就ok了。 對於各個小題的補充: 有幾個選擇題我已在上邊的內容中提到了,就不再重復了。還有幾個一定會考的我說一下:
1、555定時器;
2、OCL互補對稱電路; 好了基本就這些吧,總共80分的題,要是把握住了,模擬電路數字電路你說難么?
閱讀全文

與電路原理度相關的資料

熱點內容
今盡海信家電股吧說些什麼 瀏覽:263
美的冰箱抽屜壞了保修嗎 瀏覽:937
阿克蘇舊傢具批發市場在哪裡 瀏覽:867
家電排名前十該怎麼介紹呢 瀏覽:111
通遼學修家電在哪裡 瀏覽:358
傢具廠用什麼口罩最好 瀏覽:924
優質互聯家居廠家 瀏覽:155
在美團里做家電維修效果怎麼樣 瀏覽:325
哪裡有綦江六檔變速箱維修視頻 瀏覽:302
張家港西門子維修中心 瀏覽:371
天龍音響維修點 瀏覽:195
艾華電路板 瀏覽:515
如何維修音樂盒 瀏覽:80
我家電視多少寸 瀏覽:431
碳膜電位器維修視頻 瀏覽:321
家用電器的數字化 瀏覽:210
浙江德家電子科技有限公司怎麼樣啊 瀏覽:128
軟木打磨翻新清潔多少錢一平 瀏覽:744
京東防水一般多少錢 瀏覽:131
小米簡訊查詢保修 瀏覽:461