❶ 常見的主板開機電路的類型
主板的開機電路主要由主板ATX電源插座、晶元組(雙晶元架構為南橋晶元)、前端控制面板接腳、I/O晶元以及電阻器、電容器、二極體、晶體管、穩壓器晶元等電子元器件和相關硬體設備組成。如圖4-1所示為主板開機電路實物圖。
圖4-1主板開機電路實物圖
主板ATX電源插座
目前主板上常用的ATX電源插座為24針,在一些舊主板上還可以看到20針的ATX電源插座,但是基本上20針的ATX電源插座已經被淘汰了。
主板ATX電源插座的第9引腳為待機供電輸出端。當電腦主機有220V市電輸入時,主板ATX電源插座的第9引腳就會給主板輸送5V的供電,為主板上需要待機電壓的硬體設備或電路提供供電。
主板ATX電源插座的第16引腳(20針的ATX電源插座為第14引腳)為開機控制引腳,在整個開機過程中,具有十分重要的作用。
如圖4-2所示為主板20針ATX電源插座框圖及實物圖,如圖4-3所示為主板24針ATX電源插座框圖及實物圖。
晶元組
晶元組在開機啟動時,負責重要信號的檢測和發送,是主板開機電路中的核心部件,一旦其出現問題,就可能造成無法正常開機啟動的故障。
圖4-2主板20針ATX電源插座框圖及實物
圖4-3主板24針ATX電源插座框圖及實物
在北橋晶元和南橋晶元組成的晶元組中,南橋晶元主要負責開機啟動的控制工作。
晶元組能夠正常工作的條件包括:32.768kHz實時時鍾晶振為晶元組提供時鍾信號、3.3V待機供電正常、CMOS電池供電正常、CMOS跳線連接正常等。如圖4-4所示為開機電路重要組成部分晶元組的實物圖。
圖4-4開機電路重要組成部分晶元shi'wu
I/O晶元
I/O晶元是很多主板開機電路的重要組成部分,其在開機過程中的主要功能是接收主機電源開關(前端控制面板接腳)輸送的開機信號,然後給晶元組(雙晶元架構中為南橋晶元)一個開機信號,在得到晶元組的開機反饋信號後,I/O晶元輸送給主板ATX電源插座的第16引腳或第14引腳(20針ATX電源插座)主板供電開啟信號。如圖4-5所示為主板上常見的I/O晶元。
圖4-5主板上常見的I/O晶元
前端控制面板接腳
主板的前端控制面板接腳用於連接電腦主機機箱的電源開關、系統重置開關、揚聲器及系統運行指示燈等,從而實現開機啟動、重新啟動等操作。
當按下電腦主機機箱的電源開關時,主板的前端控制面板接腳會發送一個觸發信號,用來觸發主板開機電路開始工作。
如圖4-6所示為主板的前端控制面板接腳實物圖。
❷ 主板電路組成—六大核心電路#22
計算機主板埋廳主要 由三類構件 組成:電路元器件(包括集成電路、電阻、電容等)、各種插槽插座介面和多層電路板。
另外 主板的電路 又由軟開機電路、供電電路、時鍾電路、復位電路、BIOS和CMOS電路和介面電路等組成。
1.主板開機電路
主板開機電路主要是控制計算機的開啟與關閉,主板開機電路以南橋晶元或I/O晶元內部的電源管理控制器為核心, 結合開機鍵及外圍門電路觸發器來控制電路的觸發信號,再由南橋晶元或I/O晶元向末慧液瞎級執行三極體發出的控制信號,使三極體導通,ATX電源向主板及其他負載供電。
圖1:開機電路組成
2.主扳供電電路
主板供電電路的最終目的就是在負載(如CPU) 電涌輸入端達到負載對電圧和電流的要求,滿足正常工作的需要。主板供電電路主要包括CPU供電電路、晶元組供電電路、內存供電電路等幾種。
圖2:CPU供電電路組成
3.主扳時鍾電路
主板時鍾電路用於給CPU、主板晶元組和各級匯流排(CPU匯流排、AGP匯流排、PCI匯流排、PCI-E匯流排等)和主板各個介面部分提供基本工作頻率。有了它,計算機才能在CPU的控制下,按步就班,協調地完成各項功能。
圖3:時鍾電路組成
4.主板復位電路
主板復位的主要目的是使主板及其他部件進入初始化狀態,對主板進行復位的過程就是對主板及其他部件進行初始化的過程,它是在供電、時鍾正常時才開始工作的。
5.主板BIOS和CMOS電路
主板BIOS是硬體與軟體之間的一個橋梁,是位於南橋晶元與I/O晶元之間的一個固件。 BIOS電路主要負責解決硬體的即時需求,並按軟體對硬體的操作要求具體執行任務。在計算機的使用過程中,BIOS 為計算機提供最低級的、最直接的硬體控制。如果BIOS 晶元損壞將無法啟動計算機。
CMOS電路集成在南橋內部,CMOS電路給CMOS存儲器提供待機電壓,使CMOS存儲器一直保持工作狀態,可隨時參與喚醒任務。
圖4:CMOS電路組成
6.主扳介面電路
主板介面電前空路主要包括鍵盤滑鼠介面電路、串口並口電路(很少用到這種介面)、USB介面電路、硬碟介面電路等,它們分別為自己的連接設備提供服務。
圖5:滑鼠、鍵盤介面電路組成
❸ 求詳細解說主板開機電路
有興趣的朋友可以看看。。全部靠本人打字喔。如果覺得的不好可以跟我建議一下。謝謝!
主板的開機電路一般都是通過南橋或者I/O或者門電路。無疑它們的功能都是一樣。都是通過去觸發開關針來實現開機。
主板開機電路的功能。既是通過去出發開關針。然後通過南橋。或者I/O電源管理晶元。最後電源的第14針腳由原來的3。5V到5V電壓轉換為0V就實現主板的開機。。
主板開機電路組成部分一般有南橋。I/O。門電路還有一些電容。電阻。三極體。二極體等。
下面我們詳細解說主板的電源插座。。一般我們的電源插座都是20腳或者24腳的
第9號腳屬於待命電壓5V。無論主板是否開機。他都有5V的電源存在相關電路上。
第14號腳屬於高電壓不開機。。低電壓開機。什麼是高電壓就是4。5V以上的電源。。低電壓就是0V
既是點機開關針。。然後通過南橋或者I/O。最後觸發Q21來實現第14腳高電壓拉低。就實現主板的開機了
為什麼說有通過南橋或者I。O或者門電路呢??????
是這樣INTEL晶元組一般都是通過I/O來實現開機的。既I/O晶元裡面有個電源開機。。你給它一個觸發信號。它就輸出一個高電壓去觸發第14號腳。來實現開機。
南橋晶元。既VIA晶元組一般都是南橋晶元來實現開機。。道理和I/O一樣。
門電路也是一樣。呵呵
等下回詳細解說這3個電路的開機過程加流程圖。謝謝
如果覺得那裡不正確就留言批評呵呵!~
❹ 主板中主要電路有哪些
主板的核心電抄路有2塊,一是供襲電電路,二是聯結電路。這也是主板的2大功能。
目前需要特別供電的設備主要有CPU、內存、PCI-E,明顯的標志是線圈、大電容與MOS管。
聯結電路的用途是物理連接各模塊,提供通信基礎,也是主板設計優劣的評判標准,好的主板多層走線順暢,間距合理,具備良好的電磁性能,誤碼率低,速度與穩定性自然也就越好。
當然還有時序電路,主板的心臟,但技術含量很低,一般較少關注。
評判主板的好壞,雖然大多數人將注意力放在了電容、MOS管上,但實際上這些並不是核心。目前國產主板已基本實現全固態電容,但看看Intel原廠主板,一水的電解質電容,有人說Intel不厚道,但論品質、穩定,還是Intel最好,走線才是關鍵。
判斷品質最簡單的方法,其實還是看品牌,一分錢一分貨是有道理的。
❺ 主板中主要的電路有哪些
南橋晶元(South Bridge)是主板晶元組的重要組成部分,一般位於主板上離CPU插槽較遠的下方,PCI插槽的附近,這種布局是考慮到它所連接的I/O匯流排較多,離處理器遠一點有利於布線。相對於北橋晶元來說,其數據處理量並不算大,所以南橋晶元一般都沒有覆蓋散熱片。南橋晶元不與處理器直接相連,而是通過一定的方式(不同廠商各種晶元組有所不同,例如英特爾的英特爾Hub Architecture以及SIS的Multi-Threaded「妙渠」)與北橋晶元相連。
南橋晶元負責I/O匯流排之間的通信,如PCI匯流排、USB、LAN、ATA、SATA、音頻控制器、鍵盤控制器、實時時鍾控制器、高級電源管理等,這些技術一般相對來說比較穩定,所以不同晶元組中可能南橋晶元是一樣的,不同的只是北橋晶元。所以現在主板晶元組中北橋晶元的數量要遠遠多於南橋晶元。例如早期英特爾不同架構的晶元組Socket 7的430TX和Slot 1的440LX其南橋晶元都採用82317AB,而近兩年的晶元組Intel945系列晶元組都採用ICH7或者ICH7R南橋晶元,但也能搭配ICH6南橋晶元。更有甚者,有些主板廠家生產的少數產品採用的南北橋是不同晶元組公司的產品。
南橋晶元的發展方向主要是集成更多的功能,例如網卡、RAID、IEEE 1394、甚至WI-FI無線網路等等。
北橋晶元(North Bridge)是主板晶元組中起主導作用的最重要的組成部分,也稱為主橋(Host Bridge)。一般來說,晶元組的名稱就是以北橋晶元的名稱來命名的,例如英特爾 845E晶元組的北橋晶元是82845E,875P晶元組的北橋晶元是82875P等等。北橋晶元負責與CPU的聯系並控制內存、AGP數據在北橋內部傳輸,提供對CPU的類型和主頻、系統的前端匯流排頻率、內存的類型(SDRAM,DDR SDRAM以及RDRAM等等)和最大容量、AGP插槽、ECC糾錯等支持,整合型晶元組的北橋晶元還集成了顯示核心。北橋晶元就是主板上離CPU最近的晶元,這主要是考慮到北橋晶元與處理器之間的通信最密切,為了提高通信性能而縮短傳輸距離。因為北橋晶元的數據處理量非常大,發熱量也越來越大,所以現在的北橋晶元都覆蓋著散熱片用來加強北橋晶元的散熱,有些主板的北橋晶元還會配合風扇進行散熱。因為北橋晶元的主要功能是控制內存,而內存標准與處理器一樣變化比較頻繁,所以不同晶元組中北橋晶元是肯定不同的,當然這並不是說所採用的內存技術就完全不一樣,而是不同的晶元組北橋晶元間肯定在一些地方有差別。
由於已經發布的AMD K8核心的CPU將內存控制器集成在了CPU內部,於是支持K8晶元組的北橋晶元變得簡化多了,甚至還能採用單晶元晶元組結構。這也許將是一種大趨勢,北橋晶元的功能會逐漸單一化,為了簡化主板結構、提高主板的集成度,也許以後主流的晶元組很有可能變成南北橋合一的單晶元形式(事實上SIS老早就發布了不少單晶元晶元組)。
❻ 台式機主板開機啟動過程中使用到哪些電路,簡述各電路工作的時序! 求告知啊
主板開機電路工作原理
由於主板廠商的設計不同,主板開機電路會有所不同,但基本電路原理相同,即經過主板開機鍵觸發主板開機電路工作,開機電路將觸發信號進行處理,最終向電源第14腳發出低電平信號,將電源的第14腳的高電平拉低,觸發電源工作,使電源各引腳輸出相應的電壓,為各個設備供電(即電源開始工作的條件是電源介面的第14腳變為低電平)。
主板開機電路的工作條件是:為開機電路提供供電、時鍾信號和復位信號,具備這三個條件,開機電路就開始工作。其中供電由ATX電源的第9腳提供,時鍾信號由南橋的實時時鍾電路提供,復位信號由電源開關、南橋內部的觸發電路提供。
下面根據開機電路的結構分別講解開機電路的詳細工作原理。
1.經過門電路的開機電路
經過門電路的開機電路的電路原理圖如圖7-7所示。
圖中,1117為穩壓三級管,作用是將電源的SB5V電壓變成+3.3V電壓,Q21為三極體,它的作用是控制電源第14腳的電壓,當它導通時,電源第14腳的電壓變為低電平。74門電路是一個雙上升沿D觸發器,此觸發器在時鍾信號輸入端(第3腳CP端)得到上升沿信號時觸發,觸發後它的輸出端的狀態就會翻轉,即由高電平變為低電平或由低電平變為高電平。74觸發器的時鍾信號輸入端(CP端)和電源開關相連,接收電源開關送來的觸發信號,輸出端直接連接到南橋的觸發電路中,向南橋發送觸發信號。它的作用是代替南橋內部的觸發器發出觸發信號,使南橋向電源輸出高電平或低電平。
當電腦的主機通電後,ATX電源的第14腳輸出+5V電壓,ATX電源的第14腳通過一個末級控制三極體和一個二極體連接到南橋的觸發電路中,由於74觸發器沒有被觸發,南橋沒有向三極體Q21輸出高電平,因此三極體Q21的b極為低電平,三極體Q21處於截至,電源的各個針腳沒有輸出電壓。
同時ATX電源的第9腳輸出+5V待命電壓。+5V待命電壓通過穩壓三極體(1117)或電阻後,產生+3.3V電壓,此電壓分開成兩條路,一條直接通向南橋內部,為南橋提供主供電,而另一條通過二極體或三極體,再通過COMS的跳線針(必須插上跳線帽將他們連接起來)進入南橋,為CMOS電路提供供電,這時南橋外的32.768KHz晶振向南橋提供32.768KHz頻率的時鍾信號。
另外,ATX電源的待命電壓又分別連接到74觸發器(為觸發器供電)和電源開關的其中一個針腳上(電源開關的另一個針腳接地),使開機鍵的電壓為高電平。
在按下電源開關鍵的瞬間,開機鍵的電壓變為低電平,此時74觸發器沒有被觸發,其輸出端保持原狀態不變(輸出高電平),南橋內部的觸發電路沒有工作。
在松開開機鍵的瞬間,開機鍵的電壓變為高電平,此時開機鍵的電壓由低變高,向74觸發器的時鍾信號輸入端(CP端)輸送一個上升沿觸發信號,74觸發器被觸發,輸出端向南橋輸出低電平信號,這時南橋接到觸發信號後向三極體Q21輸出高電平,三極體Q21導通,由於三極體的e極接地,因此ATX電源第14腳的電壓由高電平變為低電平,ATX電源開始工作,電源的其它針腳分別向主板輸送相應電壓,主板處於啟動狀態。
當關閉計算機時,在按下開機鍵的瞬間,開機鍵再次變為低電平,各個電路保持原狀態不變。
在松開開機鍵的瞬間,開機鍵的電壓變為高電平,此時74觸發器再次被觸發,觸發器的輸出端向南橋發送一個高電平信號,這時觸發電路向三極體Q21輸出低電平,三極體Q21截止,這時ATX電源第14腳的電壓變為+5V,ATX電源停止工作,主板處於停止狀態。
2.經過南橋的開機電路。
3.經過I/O晶元的開機電路。
4.經過開機復位晶元的開機電路。
❼ 主板主要由那六大電路組成
cmos電路
開機電路
cpu供電電路
晶元組供電電路
內存供電電路
時鍾電路
復位電路
音頻電路
網路電路
匯流排電路(pci匯流排
fsb匯流排等等)
等等........