A. 上電復位的工作原理
其工作原理是:通電時,電容兩端相當於是短路,於是RST引腳上為高電平,然後電源通過電阻對電容充電,RST端電壓慢慢下降,降到一定程度,即為低電平,單片機開始正常工作。
首先RST保持兩個機器周期以上的高電平時自動復位
1、上電復位:上電瞬間,電容充電電流最大,電容相當於短路,RST端為高電平,自動復位;電容兩端的電壓達到電源電壓時,電容充電電流為零,電容相當於開路,RST端為低電平,程序正常運行。
2、手動復位:首先經過上電復位,當按下按鍵時,RST直接與VCC相連,為高電平形成復位,同時電解電容被短路放電;按鍵松開時,VCC對電容充電,充電電流在電阻上,RST依然為高電平,仍然是復位,充電完成後,電容相當於開路,RST為低電平,正常工作。
B. 這個復位電路的工作原理是什麼啊。。看不懂求大神
這個電路5腳作為復位信號輸入端的話,R23、C11就構成加電復位,低電平有效;
而K1、R25則構成手動復位,K1常態時斷開,R25右端懸空,手動閉合時,R23、R25構成的分壓電路,足以令5腳獲得低電平而產生復位效果;
C. 講述單片機主要組成部分。 簡述復位電路工作原理。
51為高電平復位,因此按照這個接法,在上電初期,電容還沒形成斷路時就會提供一個高電平來復位單片機
數碼管由P0跟P2口直接推動,數碼管為共陽,所以段碼要用共陽的
發光二極體也是結成共陽的,低電平就發光
蜂鳴器接了PNP三機管推動,B極接到P3,因此B極為低電平時發聲,高電平就不發聲
D. 單片機復位電路原理
51單片機復位電路工作原理之我理解
一、復位電路的用途
單片機復位電路就好比電腦的重啟部分,當電腦在使用中出現死機,按下重啟按鈕電腦內部的程序從頭開始執行。單片機也一樣,當單片機系統在運行中,受到環境干擾出現程序跑飛的時候,按下復位按鈕內部的程序自動從頭開始執行。
二、復位電路的工作原理
在書本上有介紹,51單片機要復位只需要在第9引腳接個高電平持續2US就可以實現,那這個過程是如何實現的呢?
在單片機系統中,系統上電啟動的時候復位一次,當按鍵按下的時候系統再次復位,如果釋放後再按下,系統還會復位。所以可以通過按鍵的斷開和閉合在運行的系統中控制其復位。
開機的時候為什麼為復位
在電路圖中,電容的的大小是10uF,電阻的大小是10k。所以根據公式,可以算出電容充電到電源電壓的0.7倍(單片機的電源是5V,所以充電到0.7倍即為3.5V),需要的時間是10K*10UF=0.1S。
也就是說在電腦啟動的0.1S內,電容兩端的電壓時在0~3.5V增加。這個時候10K電阻兩端的電壓為從5~1.5V減少(串聯電路各處電壓之和為總電壓)。所以在0.1S內,RST引腳所接收到的電壓是5V~1.5V。在5V正常工作的51單片機中小於1.5V的電壓信號為低電平信號,而大於1.5V的電壓信號為高電平信號。所以在開機0.1S內,單片機系統自動復位(RST引腳接收到的高電平信號時間為0.1S左右)。
按鍵按下的時候為什麼會復位
在單片機啟動0.1S後,電容C兩端的電壓持續充電為5V,這是時候10K電阻兩端的電壓接近於0V,RST處於低電平所以系統正常工作。當按鍵按下的時候,開關導通,這個時候電容兩端形成了一個迴路,電容被短路,所以在按鍵按下的這個過程中,電容開始釋放之前充的電量。隨著時間的推移,電容的電壓在0.1S內,從5V釋放到變為了1.5V,甚至更小。根據串聯電路電壓為各處之和,這個時候10K電阻兩端的電壓為3.5V,甚至更大,所以RST引腳又接收到高電平。單片機系統自動復位。
總結:
1、復位電路的原理是單片機RST引腳接收到2US以上的電平信號,只要保證電容的充放電時間大於2US,即可實現復位,所以電路中的電容值是可以改變的。
2、按鍵按下系統復位,是電容處於一個短路電路中,釋放了所有的電能,電阻兩端的電壓增加引起的。
E. 復位電路原理圖
(1)復位電路之一。所示是微控制器中的一種實用復位電路。電路中,A105是機芯微控制器集成電路,A101是主軸伺服控制和數字信號處理集成電路, A104是伺服控制集成電路。
微控制器實用復位電路之一
這一電路的工作原理是這樣:在電源接通後,+5 V直流電壓通過電阻R216和電容C128加到集成電路A105的復位信號輸入引腳⑨腳,開機瞬間由於電容C128兩端的電壓不能突變,所以A105的⑨腳上是高電平,隨著+5 V直流電壓對C128充電的進行,⑨腳的電壓下降。
由此可見,加到集成電路A105的復位引腳⑨腳上的復位觸發信號是一個正脈沖。這一正脈沖復位信號經集成電路⑨腳內電路反相處理,使內電路完成復位。
重要提示
這一復位電路在使集成電路A105復位的同時,A1的⑥腳還輸出一個低電平復位脈沖信號,分別加到集成電路A101的復位信號輸入端16腳和集成電路A104的復位信號輸入端①腳,使A101和A104兩個集成電路同時復位。
(2)復位電路之二。所示是微控制器中的另一種實用復位電路。電路中, A1是微控制器集成電路,其42腳是電源引腳,33腳是復位引腳。
這一電路的工作原理是這樣:在電源開關接通後,+5 V直流電壓給集成電路A1的電源引腳42腳供電,當電源開關剛接通時,+5 V 電壓還沒有上升到穩壓二極體VZ1 的擊穿電壓,所以VZ1處於截止狀態,此時VT1管截止,這樣+5 V電源電壓經電阻R3加到VT2管的基極,使VT2管飽和導通,其集電極為低電平,即使集成電路A1的復位引腳33腳為低電平。
實用復位電路之二
隨著 +5 V 電壓升到穩定的 +5 V 後,這一電壓使穩壓二極體VZ1擊穿,導通的VZ1和R1給VT1管的基極加上足夠的直流偏置電壓,使VT1飽和導通,其集電極為低電平,這一低電平加到VT2管的基極,使VT2 管處於截止狀態,這樣+5 V 電壓經電阻R4加到復位引腳33腳上,使33腳為高電平。
通過上述分析可知,在電源開關接通後,復位引腳33腳上的穩定直流電壓的建立滯後一段時間,這就是復位信號,使集成電路A1的內電路復位。
斷電後,電容C1充到的電荷通過二極體VD1放掉,因為在電容C1上的電壓為上正下負,+5 V 端相接於接地,C1 上的充電電壓加到VD1上的是正向偏置電壓,使VD1導通放電,將C1中的電荷放掉,以供下一次開機時能夠起到復位作用。
(3)復位電路之三。所示是微控制器中的另一種實用復位電路。電路中, A1是微控制器集成電路,其41腳是電源引腳, 24腳是復位引腳,VZ002是穩壓二極體,VT002是PNP型三極體。
F. 關於這個復位電路的原理
其實這個電路中三極體那部分(主要是Q2、C40、R33這三個元件)只在系統每次上電的一瞬間起到稍為延長C43低電平保持時間的作用,上電之後就完全無用了。D5的作用是在斷電時起到鉗位作用,避免在Q2基極出現過幅值過大的負電壓而保護Q2,與復位功能沒有直接關系。R34就是斷電後C40的放電通道。
對於上電之後的手動復位操作,實際上起作用的只是SW1、R30和C43組成的阻容復位電路。
也就是說Q2、C40、R33是上電復位電路,SW1、R30和C43是手動復位電路。
G. 這個復位電路的原理是什麼
1 按鈕S1是復位鍵,按下是RST 接地。給RST輸出復位電平。
2 上電時,由於電容C24的作用,會使RST在上電瞬間接地產生復位電平。
H. RC復位電路工作原理是什麼
先不管按鍵,看上電復位的情況:通電瞬間電容可以當短路所以RST腳為高電平。隨版著時間的飛逝(電容充電),穩定權後VCC的電壓實際上是加在電容上的。電容下極板也就是RST腳最終為0V。這樣RST持續一段時間高電平後最終穩定在低電平,高電平持續時間由RC時間常數決定。這就是上電高電平復位
在說按鍵。按鍵按下去就相當於上電那一瞬,讓電容短路。後面的事都一樣了。
再順便說下,大電容旁邊那個小電容一般是穩定電源電壓濾波用的
I. cpu復位電路工作原理
復位的原理,一般是指在復位引腳上RST上,持續一段時間的高電平或者低電平,會使系統進回入初始答化的狀態。
復位,從實現方式上,可以分為上電復位、手動復位、軟體復位等;
上電復位--系統上電時會發生;
手動復位--根據用戶需要,手動觸發復位;
軟體復位--根據需要,通過軟體可以復位
復位電路,是指復位的電路實現,實現復位引腳上的高低電平(要保持一段時間)。
RC電路,通過1個電阻和1電容可以實現復位;
按鍵復位,通過按鍵按下時接通高低電平來實現復位;
專用的復位晶元,為了增加可靠性,可以採用專門的復位晶元來實現。