導航:首頁 > 電器電路 > DNA電路

DNA電路

發布時間:2021-12-14 08:40:18

❶ 什麼是DNA電路及其潛在應用

最簡單的就是雜交水稻哦~
_(:зゝ∠)_DNA的分離定律!嗯…似乎也不大算吧。
那就是的親子鑒定。
因為孩子是父母兩者的精子和卵細胞結合形成的受精卵發育而成。所以DNA和父母是一樣的,嗯…不能說是100%,但基本不發生突變情況下是99%。
還有就是……基因工程!不過這個似乎不是特別的廣泛吧。

❷ 電路板上D|M和DnA是什麼意思

DIM 是調光的縮寫。 目前很多電視都支持智能背光調節功能,也就是背光源的亮度隨著圖像的亮度變化而變化。畫面的亮度低,背光源亮度也相應降低,畫面亮度高,則背光源也相應變亮,這樣有利於改善畫面的動態對比度,增強畫質。 電源板上的DIM Pin,是用來接收視頻處理主板發送來的亮度控制信號,根據此控制信號,電源板會實時調節LED或者CCFL的電流輸出,達到動態調光的作用。 一般來說,DIM信號是一種PWM信號,通過占空比(DUTY)的變化控制電源板的輸出電流。 這種DIM,稱為PWM 調光。 早期的液晶電視,使用模擬調光(Analog Dimming),也就是DIM信號是一個模擬電壓。電流表 PA 電壓表 PV 有功電度表 PJ 無功電度表 PJR 頻率表 PF 相位表 PPA 最大需量表(負荷監控儀) PM 功率因數表 PPF 有功功率表 PW 無功功率表 PR 無功電流表 PAR 聲信號 HA 光信號 HS 指示燈 HL 紅色燈 HR 綠色燈 HG 黃色燈 HY 藍色燈 HB 白色燈 HW 連接片 XB 插頭 XP 插座 XS 端子板 XT 電線,電纜,母線 W 直流母線 WB 插接式(饋電)母線 WIB 電力分支線 WP 照明分支線 WL 應急照明分支線 WE 電力干線 WPM 照明干線 WLM 應急照明干線 WEM 滑觸線 WT 合閘小母線 WCL 控制小母線 WC。

❸ 電路圖中cds是代表什麼元件/

你好。
CDS是相關雙取樣電路(Correlated Double Sampling), CCD感測器的每個像素的輸出波形只在一部分時間內是圖像信號, 其餘時間內是復位電平和干擾。 為了取出圖像信號並消除干擾, 要採用取樣保持電路。 每個像素信號被取樣後, 由一電容把信號保持下來, 直到取樣下一個像素信號。
驅動脈沖產生電路產生CCD感測器所需的垂直CCD移位寄存器多相時鍾驅動信號, 水平CCD讀出寄存器多相時鍾驅動信號等各種脈沖信號和視頻通道所需的箝位和取樣?脈沖。
同步信號產生電路產生行推動、 場推動、 復合消隱、 復合同步等各種電視信號脈沖。 信號放大處理電路包括AGC放大、γ校正、 白電平限幅、 黑電平箝位等電路。
疊加電路將經過處理的視頻信號與復合同步、 復合消隱信號疊加成全電視信號。
輸出驅動電路則將全電視信號進行驅動, 適配75 Ω電纜。 除上述電路外, 黑白攝像機還可能會有自動光圈介面電路、 電源同步介面電路、 外同步介面電路、 亮度控制電路等附加電路。

CDS是Coding sequence的縮寫,是編碼一段蛋白產物的序列,是結構基因組學術語。

與開放讀碼框ORF的區別

(1)開放讀碼框是從一個起始密碼子開始到一個終止密碼子結束的一段序列;不是所有讀碼框都能被表達出蛋白產物,或者能表達出佔有優勢或者能產生生物學功能的蛋白。
(2) CDS,是編碼一段蛋白產物的序列。
(3) cds必定是一個orf。但也可能包括很多orf。
(4)反之,每個orf不一定都是cds。
(5)Open reading frame (ORF) - a reading frame that does not contain a nucleotide triplet which stops translation before formation of a complete polypeptide.
Coding sequence (CDS) - The portion of DNA that codes for transcription of messenger RNA
ORF-----translation, CDS----trancription
translation 是理論上的,而transcription則顯然是事實存在的。

.

❹ 組織晶元與DNA晶元和蛋白質晶元比較有哪些異同

組織晶元與DNA晶元和蛋白質晶元比較異同:
1、組織晶元與基因晶元和蛋白質晶元一起構成了生物晶元系列。
2、DNA
晶元比較簡單,就是在晶元上事先印上含有目標基因序列的核苷酸片段,然後把標記好的樣本與之進行雜交。
3、蛋白晶元有好幾種,如果要研究DNA-蛋白質間的結合,那麼事先點在上面的就是DNA片段.如果要研究蛋白質間的結合,那麼點在上面的就是蛋白質.如果要鑒定蛋白,那點在上面的就是抗體。
4、組織晶元就是將大量組織(或細胞、微生物蛋白質、RNA)樣品有序地組合在一個微小基片表面,藉助免疫組織化學、原位雜交、原位PCR等方法進行檢測。
晶元(chip)、或稱微電路(microcircuit)、
微晶元(microchip)、集成電路(英語:integrated
circuit,
IC)在電子學中是一種把電路(主要包括半導體設備,也包括被動組件等)小型化的方式,並通常製造在半導體晶圓表面上。在電子學中是一種把電路(主要包括半導體設備,也包括被動組件等)小型化的方式,並通常製造在半導體晶圓表面上。前述將電路製造在半導體晶元表面上的集成電路又稱薄膜(thin-film)集成電路。

❺ 誰可以簡單的解釋一下生物晶元和電子晶元

基因晶元,也叫DNA晶元,是在90年代中期發展出來的高科技產物.基因晶元大小如指甲蓋一般,其基質一般是經過處理後的玻璃片.每個晶元的基面上都可劃分出數萬至數百萬個小區.在指定的小區內,可固定大量具有特定功能、長約20個鹼基序列的核酸分子(也叫分子探針).
由於被固定的分子探針在基質上形成不同的探針陣列,利用分子雜交及平行處理原理,基因晶元可對遺傳物質進行分子檢測,因此可用於進行基因研究、法醫鑒定、疾病檢測和葯物篩選等.基因晶元技術具有無可比擬的高效、快速和多參量特點,是在傳統的生物技術如檢測、雜交、分型和DNA測序技術等方面的一次重大創新和飛躍.
基因晶元在生命科學、醫葯研究、環境保護和農業等領域有極其重要的應用價值.在基因晶元的驅動下,人類正進入一個嶄新的生物信息時代.
基因破譯
目前,由多國科學家參與的「人類基因組計劃」,正力圖在21世紀初繪制出完整的人類染色體排列圖.眾所周知,染色體是DNA的載體,基因是DNA上有遺傳效應的片段,構成DNA的基本單位是四種鹼基.由於每個人擁有30億對鹼基,破譯所有DNA的鹼基排列順序無疑是一項巨型工程.與傳統基因序列測定技術相比,基因晶元破譯人類基因組和檢測基因突變的速度要快數千倍.
基因晶元的檢測速度之所以這么快,主要是因為基因晶元上有成千上萬個微凝膠,可進行並行檢測;同時,由於微凝膠是三維立體的,它相當於提供了一個三維檢測平台,能固定住蛋白質和DNA並進行分析.
美國正在對基因晶元進行研究,已開發出能快速解讀基因密碼的「基因晶元」,使解讀人類基因的速度比目前高1000倍.圖1所示為一種內嵌基因晶元的基因檢測裝置.
圖1 內嵌基因晶元的基因檢測裝置
基因診斷
通過使用基因晶元分析人類基因組,可找出致病的遺傳基因.癌症、糖尿病等,都是遺傳基因缺陷引起的疾病.醫學和生物學研究人員將能在數秒鍾內鑒定出最終會導致癌症等的突變基因.藉助一小滴測試液,醫生們能預測葯物對病人的功效,可診斷出葯物在治療過程中的不良反應,還能當場鑒別出病人受到了何種細菌、病毒或其他微生物的感染.利用基因晶元分析遺傳基因,將使10年後對糖尿病的確診率達到50%以上.
未來人們在體檢時,由搭載基因晶元的診斷機器人對受檢者取血,轉瞬間體檢結果便可以顯示在計算機屏幕上.利用基因診斷,醫療將從千篇一律的「大眾醫療」的時代,進步到依據個人遺傳基因而異的「定製醫療」的時代.
基因環保
基因晶元在環保方面也大有可為.基因晶元可高效地探測到由微生物或有機物引起的污染,還能幫助研究人員找到並合成具有解毒和消化污染物功能的天然酶基因.這種對環境友好的基因一旦被發現,研究人員將把它們轉入普通的細菌中,然後用這種轉基因細菌清理被污染的河流或土壤.
基因計算
DNA分子類似「計算機磁碟」,擁有信息的保存、復制、改寫等功能.將螺旋狀的DNA的分子拉直,其長度將超過人的身高,但若把它折疊起來,又可以縮小為直徑只有幾微米的小球.因此,DNA分子被視為超高密度、大容量的分子存儲器.
基因晶元經過改進,利用不同生物狀態表達不同的數字後還可用於製造生物計算機.基於基因晶元和基因演算法,未來的生物信息學領域,將有望出現能與當今的計算機業硬體巨頭――英特爾公司、軟體巨頭――微軟公司相匹敵的生物信息企業.
基因晶元(Gene Chip)准確的講(或者說是狹義的基因晶元)是指DNA晶元(DNA Chip),其原理是指利用現代探針固相原位合成技術、照相平板印刷技術、高分子合成技術等微電子技術把大量分子生物學技術(包括南北印跡技術、探針雜交技術、PCR等)具體而微的固定在一定狹小的空間內,以實現高速度、高通量、集約化和低成本的分析技術.基因晶元的概念現已泛化到生物晶元(biochip)、微陣列(Microarray)、DNA晶元(DNA chip),甚至蛋白晶元.
由於基因晶元高速度、高通量、集約化和低成本的特點,基誕生以來就受到科學界的廣泛關注,正如晶體管電路向集成電路發展的經歷一樣,分子生物學技術的集成化正在使生命科學的研究和應用發生一場革命.

❻ DNA存儲的信息是如何工作的,比如電腦的是集成電路,數字電路模擬電路,邏輯門

通過所謂的鹼基對編碼,這個過程類似於搭積木。
比如你有四種形狀的積木,但是每種積木的數量是無限的,於是你就可以用這四種積木一個接一個的排列成一個長串,長串中的每一個位置你都可以從這四種積木里選一個,不同的選擇就包含了不同的信息。
DNA就是用四種核苷酸組成鹼基對以類似搭積木的方式組成的。

❼ 有關DNA!!

DNADNA(為英文Deoxyribonucleic acid的縮寫),又稱脫氧核糖核酸,是染色體的主要化學成分,同時也是基因組成的,有時被稱為「遺傳微粒」。DNA是一種分子,可組成遺傳指令,以引導生物發育與生命機能運作。主要功能是長期性的資訊儲存,可比喻為「藍圖」或「食譜」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與RNA所需。帶有遺傳訊息的DNA片段稱為基因,其他的DNA序列,有些直接以自身構造發揮作用,有些則參與調控遺傳訊息的表現。
單體脫氧核糖核酸聚合而成的聚合體——脫氧核糖核酸鏈,也被稱為DNA。在繁殖過程中,父代把它們自己DNA的一部分(通常一半,即DNA雙鏈中的一條)復制傳遞到子代中,從而完成性狀的傳播。因此,化學物質DNA會被稱為「遺傳微粒」。原核細胞的擬核是一個長DNA分子。真核細胞核中有不止一個染色體,每條染色體上含有一個或兩個DNA。不過它們一般都比原核細胞中的DNA分子大而且和蛋白質結合在一起。DNA分子的功能是貯存決定物種性狀的幾乎所有蛋白質和RNA分子的全部遺傳信息;編碼和設計生物有機體在一定的時空中有序地轉錄基因和表達蛋白完成定向發育的所有程序;初步確定了生物獨有的性狀和個性以及和環境相互作用時所有的應激反應.除染色體DNA外,有極少量結構不同的DNA存在於真核細胞的線粒體和葉綠體中。DNA病毒的遺傳物質也是DNA,極少數為RNA.
DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸分子藉由酯鍵相連,組成其長鏈骨架。每個糖分子都與四種鹼基里的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列復制出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如rRNA、snRNA與siRNA。
四鏈體DNA
Sundpuist和Klug在模擬1種原生動物棘毛蟲的端粒DNA時,人工合成了1段DNA序列,發現在一定條件下模擬的富G單鏈DNA可形成四鏈體DNA結構。由此推測染色體端粒尾的單鏈之間也形成了四鏈體。Kang等人分別用實驗證實在晶體和溶液中,富G DNA也能夠形成四鏈體DNA結構。
四鏈體DNA的基本結構單位是G-四聯體,即在四聯體的中心有1個由4個帶負電荷的羧基氧原子圍成的「口袋」通過G-四聯體的堆積可以形成分子內或分子間的右手螺旋,與DNA雙螺旋結構比較,G-四聯體螺旋有2個顯著的特點:1、它的穩定性決定於口袋內所結合的陽離子種類,已知k離子的結合使四聯體螺旋最穩定;2、它的熱力學和動力學性質都很穩定。
就目前對一些生物的DNA序列分析得知,富鳥嘌呤的DNA序列多見於一些在功能上及進化上都相當保守的基因組區域,許多研究表明,富鳥嘌呤DNA鏈所形成的G-DNA可能是作為分子之間相互識別的元件之一,在生物體細胞中起著一些特殊作用
[編輯本段]【DNA的復制】
DNA是遺傳信息的載體,故親代DNA必須以自身分子為模板准確的復製成兩個拷貝,並分配到兩個子細胞中去,完成其遺傳信息載體的使命。而DNA的雙鏈結構對於維持這類遺傳物質的穩定性和復制的准確性都是極為重要的。
(一)DNA的半保留復制
Waston和Click在提出DNA雙螺旋結構模型時曾就DNA復制過程進行過研究,發現DNA在復制過程中鹼基間的氫鍵首先斷裂(通過解旋酶),雙螺旋結構解旋分開,每條鏈分別作模板合成新鏈。由於每個子代DNA的一條鏈來自親代,另一條則是新合成的,故稱之為半保留式復制(semiconservative replication)。
(二)DNA復制過程
1.DNA雙螺旋的解旋
(1)單鏈DNA結合蛋白(single—stranded DNA binding protein, ssbDNA蛋白)
(2)DNA解鏈酶(DNA helicase)
(3)DNA解鏈
2.岡崎片段與半不連續復制
3.復制的引發和終止
(三)端粒和端粒酶
1941年美籍印度人麥克林托克(Mc Clintock)就提出了端粒(telomere)的假說,認為染色體末端必然存在一種特殊結構——端粒。現在已知染色體端粒的作用至少有二:① 保護染色體末端免受損傷,使染色體保持穩定;② 與核纖層相連,使染色體得以定位。
[編輯本段]【DNA的理化性質】
DNA是大分子高分子聚合物,DNA溶液為高分子溶液,具有很高的粘度。DNA對紫外線有吸收作用,當核酸變性時,吸光值升高;當變性核酸可復性時,吸光值又會恢復到原來水平。溫度、有機溶劑、酸鹼度、尿素、醯胺等試劑都可以引起DNA分子變性,即使得DNA雙鍵間的氫鍵斷裂,雙螺旋結構解開。
DNA(deoxyribonucleic acid)指脫氧核糖核酸(染色體和基因的組成部分) 脫氧核苷酸的高聚物,是染色體的主要成分。遺傳信息的絕大部分貯存在DNA分子中。
[編輯本段]【DNA的酶催化活性】
20世紀90年代,Cuenoud等發現DNA也有酶催化活性,他們根據共有序列設計並合成了由47個核苷酸組成的單鏈DNA——E47,它可以催化兩個底物DNA片段之間的連接。DNA的雙功能性對「RNA世界」的進化觀點提出了挑戰。
[編輯本段]【分布和功能】
原核細胞的染色體是一個長DNA分子。真核細胞核中有不止一個染色體,每個染色體也只含一個DNA分子。不過它們一般都比原核細胞中的DNA分子大而且和蛋白質結合在一起。DNA分子的功能是貯存決定物種的所有蛋白質和RNA結構的全部遺傳信息;策劃生物有次序地合成細胞和組織組分的時間和空間;確定生物生命周期自始至終的活性和確定生物的個性。除染色體DNA外,有極少量結構不同的DNA存在於真核細胞的線粒體和葉綠體中。DNA病毒的遺傳物質也是DNA。
[編輯本段]【DNA的發現】
自從孟德爾的遺傳定律被重新發現以後,人們又提出了一個問題:遺傳因子是不是一種物質實體?為了解決基因是什麼的問題,人們開始了對核酸和蛋白質的研究。

遺傳學創始人孟德爾早在1868年,人們就已經發現了核酸。在德國化學家霍佩·賽勒的實驗室里,有一個瑞士籍的研究生名叫米歇爾(1844--1895),他對實驗室附近的一家醫院扔出的帶膿血的綳帶很感興趣,因為他知道膿血是那些為了保衛人體健康,與病菌「作戰」而戰死的白細胞和被殺死的人體細胞的「遺體」。於是他細心地把綳帶上的膿血收集起來,並用胃蛋白酶進行分解,結果發現細胞遺體的大部分被分解了,但對細胞核不起作用。他進一步對細胞核內物質進行分析,發現細胞核中含有一種富含磷和氮的物質。霍佩·賽勒用酵母做實驗,證明米歇爾對細胞核內物質的發現是正確的。於是他便給這種從細胞核中分離出來的物質取名為 「核素」,後來人們發現它呈酸性,因此改叫「核酸」。從此人們對核酸進行了一系列卓有成效的研究。
20世紀初,德國科賽爾(1853--1927)和他的兩個學生瓊斯(1865--1935)和列文(1869--1940)的研究,弄清了核酸的基本化學結構,認為它是由許多核苷酸組成的大分子。核苷酸是由鹼基、核糖和磷酸構成的。其中鹼基有4種(腺瞟吟、鳥嘌吟、胸腺嘧啶和胞嘧啶),核糖有兩種(核糖、脫氧核糖),因此把核酸分為核糖核酸(RNA)和脫氧核糖核酸(DNA)。
列文急於發表他的研究成果,錯誤地認為4種鹼基在核酸中的量是相等的,從而推導出核酸的基本結構是由4個含不同鹼基的核苷酸連接成的四核苷酸,以此為基礎聚合成核酸,提出了"四核苷酸假說"。這個錯誤的假說,對認識復雜的核酸結構起了相當大的阻礙作用,也在一定程度上影響了人們對核酸功能的認識。人們認為,雖然核酸存在於重要的結構--細胞核中,但它的結構太簡單,很難設想它能在遺傳過程中起什麼作用。

美國遺傳學家摩爾根蛋白質的發現比核酸早30年,發展迅速。進入20世紀時,組成蛋白質的20種氨基酸中已有12種被發現,到1940年則全部被發現。
1902年,德國化學家費歇爾提出氨基酸之間以肽鏈相連接而形成蛋白質的理論,1917年他合成了由15個甘氨酸和3個亮氨酸組成的18個肽的長鏈。於是,有的科學家設想,很可能是蛋白質在遺傳中起主要作用。如果核酸參與遺傳作用,也必然是與蛋白質連在一起的核蛋白在起作用。因此,那時生物界普遍傾向於認為蛋白質是遺傳信息的載體。
1928年,美國科學家格里菲斯(1877--1941)用一種有莢膜、毒性強的和一種無莢膜、毒性弱的肺炎雙球菌對老鼠做實驗。他把有莢病菌用高溫殺死後與無莢的活病菌一起注人老鼠體內,結果他發現老鼠很快發病死亡,同時他從老鼠的血液中分離出了活的有莢病菌。這說明無莢菌竟從死的有莢菌中獲得了什麼物質,使無莢菌轉化為有莢菌。這種假設是否正確呢?格里菲斯又在試管中做實驗,發現把死了的有美菌與活的無莢菌同時放在試管中培養,無莢菌全部變成了有莢菌,並發現使無莢菌長出蛋白質莢的就是已死的有莢菌殼中遺留的核酸(因為在加熱中,莢中的核酸並沒有被破壞)。格里菲斯稱該核酸為"轉化因子"。
1944年,美國細菌學家艾弗里(1877--1955)從有美菌中分離得到活性的「轉化因子」,並對這種物質做了檢驗蛋白質是否存在的試驗,結果為陰性,並證明「轉化因子」是DNA。但這個發現沒有得到廣泛的承認,人們懷疑當時的技術不能除凈蛋白質,殘留的蛋白質起到轉化的作用。
美籍德國科學家德爾布呂克(1906--1981)的噬菌體小組對艾弗里的發現堅信不移。因為他們在電子顯微鏡下觀察到了噬菌體的形態和進入大腸桿菌的生長過程。噬菌體是以細菌細胞為寄主的一種病毒,個體微小,只有用電子顯微鏡才能看到它。它像一個小蝌蚪,外部是由蛋白質組成的頭膜和尾鞘,頭的內部含有DNA,尾鞘上有尾絲、基片和小鉤。當噬菌體侵染大腸桿菌時,先把尾部末端扎在細菌的細胞膜上,然後將它體內的DNA全部注人到細菌細胞中去,蛋白質空殼仍留在細菌細胞外面,再沒有起什麼作用了。進入細菌細胞後的噬菌體DNA,就利用細菌內的物質迅速合成噬菌體的DNA和蛋白質,從而復制出許多與原噬菌體大小形狀一模一樣的新噬菌體,直到細菌被徹底解體,這些噬菌體才離開死了的細菌,再去侵染其他的細菌。
1952年,噬菌體小組主要成員赫爾希(1908一)和他的學生蔡斯用先進的同位素標記技術,做噬菌體侵染大腸桿菌的實驗。他把大腸桿菌T2噬菌體的核酸標記上32P,蛋白質外殼標記上35S。先用標記了的T2噬菌體感染大腸桿菌,然後加以分離,結果噬菌體將帶35S標記的空殼留在大腸桿菌外面,只有噬菌體內部帶有32P標記的核酸全部注人大腸桿菌,並在大腸桿菌內成功地進行噬菌體的繁殖。這個實驗證明DNA有傳遞遺傳信息的功能,而蛋白質則是由 DNA的指令合成的。這一結果立即為學術界所接受。
幾乎與此同時,奧地利生物化學家查加夫(1905--)對核酸中的4種鹼基的含量的重新測定取得了成果。在艾弗里工作的影響下,他認為如果不同的生物種是由於DNA的不同,則DNA的結構必定十分復雜,否則難以適應生物界的多樣性。因此,他對列文的"四核苷酸假說"產生了懷疑。在1948- 1952年4年時間內,他利用了比列文時代更精確的紙層析法分離4種鹼基,用紫外線吸收光譜做定量分析,經過多次反復實驗,終於得出了不同於列文的結果。實驗結果表明,在DNA大分子中嘌吟和嘧啶的總分子數量相等,其中腺嘌吟A與胸腺嘧啶T數量相等,鳥嘌吟G與胞嘧啶C數量相等。說明DNA分子中的鹼基A 與T、G與C是配對存在的,從而否定了"四核苷酸假說",並為探索DNA分子結構提供了重要的線索和依據。
1953年4月25日,英國的《自然》雜志刊登了美國的沃森和英國的克里克在英國劍橋大學合作的研究成果:DNA雙螺旋結構的分子模型,這一成果後來被譽為20世紀以來生物學方面最偉大的發現,標志著分子生物學的誕生。
沃森(1928一)在中學時代是一個極其聰明的孩子,15歲時便進入芝加哥大學學習。當時,由於一個允許較早人學的實驗性教育計劃,使沃森有機會從各個方面完整地攻讀生物科學課程。在大學期間,沃森在遺傳學方面雖然很少有正規的訓練,但自從閱讀了薛定愕的《生命是什麼?--活細胞的物理面貌》一書,促使他去"發現基因的秘密"。他善於集思廣益,博取眾長,善於用他人的思想來充實自己。只要有便利的條件,不必強迫自己學習整個新領域,也能得到所需要的知識。沃森22歲取得博士學位,然後被送往歐洲攻讀博士後研究員。為了完全搞清楚一個病毒基因的化學結構,他到丹麥哥本哈根實驗室學習化學。有一次他與導師一起到義大利那不勒斯參加一次生物大分子會議,有機會聽英國物理生物學家威爾金斯(1916--)的演講,看到了威爾金斯的DNAX射線衍射照片。從此,尋找解開DNA結構的鑰匙的念頭在沃森的頭腦中索回。什麼地方可以學習分析X射線衍射圖呢?於是他又到英國劍橋大學卡文迪什實驗室學習,在此期間沃森認識了克里克。
克里克(1916一2004)上中學時對科學充滿熱情,1937年畢業於倫敦大學。1946年,他閱讀了《生命是什麼?-活細胞的物理面貌》一書,決心把物理學知識用於生物學的研究,從此對生物學產生了興趣。1947年他重新開始了研究生的學習,1949年他同佩魯茲一起使用X射線技術研究蛋白質分子結構,於是在此與沃森相遇了。當時克里克比沃森大12歲,還沒有取得博士學位。但他們談得很投機,沃森感到在這里居然能找到一位懂得DNA比蛋白質更重要的人,真是三生有幸。同時沃森感到在他所接觸的人當中,克里克是最聰明的一個。他們每天交談至少幾個小時,討論學術問題。兩個人互相補充,互相批評以及相互激發出對方的靈感。他們認為解決DNA分子結構是打開遺傳之謎的關鍵。只有藉助於精確的X射線衍射資料,才能更快地弄清DNA的結構。為了搞到DNAX射線衍射資料,克里克請威爾金斯到劍橋來度周末。在交談中威爾金斯接受了DNA結構是螺旋型的觀點,還談到他的合作者富蘭克林(1920一1958,女)以及實驗室的科學家們,也在苦苦思索著DNA結構模型的問題。從1951年11月至1953年4月的18個月中,沃森、克里克同威爾金斯、富蘭克林之間有過幾次重要的學術交往。
1951年11月,沃森聽了富蘭克林關於DNA結構的較詳細的報告後,深受啟發,具有一定晶體結構分析知識的沃森和克里克認識到,要想很快建立 DNA結構模型,只能利用別人的分析數據。他們很快就提出了一個三股螺旋的DNA結構的設想。1951年底,他們請威爾金斯和富蘭克林來討論這個模型時,富蘭克林指出他們把DNA的含水量少算了一半,於是第一次設立的模型宣告失敗。
有一天,沃森又到國王學院威爾金斯實驗室,威爾金斯拿出一張富蘭克林最近拍制的「B型」DNA的X射線衍射的照片。沃森一看照片,立刻興奮起來、心跳也加快了,因為這種圖像比以前得到的「A型」簡單得多,只要稍稍看一下「B型」的X射線衍射照片,再經簡單計算,就能確定DNA分子內多核苷酸鏈的數目了。
克里克請數學家幫助計算,結果表明源吟有吸引嘧啶的趨勢。他們根據這一結果和從查加夫處得到的核酸的兩個嘌吟和兩個嘧啶兩兩相等的結果,形成了鹼基配對的概念。
他們苦苦地思索4種鹼基的排列順序,一次又一次地在紙上畫鹼基結構式,擺弄模型,一次次地提出假設,又一次次地推翻自己的假設。

沃森(左)和克里克有一次,沃森又在按著自己的設想擺弄模型,他把鹼基移來移去尋找各種配對的可能性。突然,他發現由兩個氫鍵連接的腺膘吟一胸腺嘧啶對竟然和由3個氫鍵連接的鳥嘌吟一胞嘧啶對有著相同的形狀,於是精神為之大振。因為嘌吟的數目為什麼和嘧啶數目完全相同這個謎就要被解開了。查加夫規律也就一下子成了 DNA雙螺旋結構的必然結果。因此,一條鏈如何作為模板合成另一條互補鹼基順序的鏈也就不難想像了。那麼,兩條鏈的骨架一定是方向相反的。
經過沃森和克里克緊張連續的工作,很快就完成了DNA金屬模型的組裝。從這模型中看到,DNA由兩條核苷酸鏈組成,它們沿著中心軸以相反方向相互纏繞在一起,很像一座螺旋形的樓梯,兩側扶手是兩條多核苷酸鏈的糖一磷基因交替結合的骨架,而踏板就是鹼基對。由於缺乏准確的X射線資料,他們還不敢斷定模型是完全正確的。

威爾金斯
富蘭克林下一步的科學方法就是把根據這個模型預測出的衍射圖與X射線的實驗數據作一番認真的比較。他們又一次打電話請來了威爾金斯。不到兩天工夫,威爾金斯和富蘭克林就用X射線數據分析證實了雙螺旋結構模型是正確的,並寫了兩篇實驗報告同時發表在英國《自然》雜志上。1962年,沃森、克里克和威爾金斯獲得了諾貝爾醫學和生理學獎,而富蘭克林因患癌症於1958年病逝而未被授予該獎。
20世紀30年代後期,瑞典的科學家們就證明DNA是不對稱的。第二次世界大戰後,用電子顯微鏡測定出DNA分子的直徑約為2nm。
DNA雙螺旋結構被發現後,極大地震動了學術界,啟發了人們的思想。從此,人們立即以遺傳學為中心開展了大量的分子生物學的研究。首先是圍繞著4 種鹼基怎樣排列組合進行編碼才能表達出20種氨基酸為中心開展實驗研究。1967年,遺傳密碼全部被破解,基因從而在DNA分子水平上得到新的概念。它表明:基因實際上就是DNA大分子中的一個片段,是控制生物性狀的遺傳物質的功能單位和結構單位。在這個單位片段上的許多核苷酸不是任意排列的,而是以有含意的密碼順序排列的。一定結構的DNA,可以控制合成相應結構的蛋白質。蛋白質是組成生物體的重要成分,生物體的性狀主要是通過蛋白質來體現的。因此,基因對性狀的控制是通過DNA控制蛋白質的合成來實現的。在此基礎上相繼產生了基因工程、酶工程、發酵工程、蛋白質工程等,這些生物技術的發展必將使人們利用生物規律造福於人類。現代生物學的發展,愈來愈顯示出它將要上升為帶頭學科的趨勢。
[編輯本段]【DNA重組技術的發展】
20世紀50年代,DNA雙螺旋結構被闡明,揭開了生命科學的新篇章,開創了科學技術的新時代。隨後,遺傳的分子機理――DNA復制、遺傳密碼、遺傳信息傳遞的中心法則、作為遺傳的基本單位和細胞工程藍圖的基因以及基因表達的調控相繼被認識。至此,人們已完全認識到掌握所有生物命運的東西就是DNA和它所包含的基因,生物的進化過程和生命過程的不同,就是因為DNA和基因運作軌跡不同所致。
知道DNA的重大作用和價值後,生命科學家首先想到能否在某些與人類利益密切相關的方面打破自然遺傳的鐵律,讓患病者的基因改邪歸正以達治病目的,把不同來源的基因片段進行「嫁接」以產生新品種和新品質……於是,一個充滿了誘惑力的科學幻想奇跡般地成為現實。這是發生在20世紀70年代初的事情。
實現這一科學奇跡的科技手段就是DNA重組技術。1972年,美國科學家保羅?伯格首次成功地重組了世界上第一批DNA分子,標志著DNA重組技術――基因工程作為現代生物工程的基礎,成為現代生物技術和生命科學的基礎與核心。
DNA重組技術的具體內容就是採用人工手段將不同來源的含某種特定基因的DNA片段進行重組,以達到改變生物基因類型和獲得特定基因產物的目的的一種高科學技術。
到了20世紀70年代中後期,由於出現了工程菌以及實現DNA重組和後處理都有工程化的性質,基因工程或遺傳工程作為DNA重組技術的代名詞被廣泛使用。現在,基因工程還包括基因組的改造、核酸序列分析、分子進化分析、分子免疫學、基因克隆、基因診斷和基因治療等內容。可以說,DNA重組技術創立近 30多年來所獲得的豐碩成果已經把人們帶進了一個不可思議的夢幻般的科學世界,使人類獲得了打開生命奧秘和防病治病「魔盒」的金鑰匙。
目前,DNA重組技術已經取得的成果是多方面的。到20世紀末,DNA重組技術最大的應用領域在醫葯方面,包括活性多肽、蛋白質和疫苗的生產,疾病發生機理、診斷和治療,新基因的分離以及環境監測與凈化。
許多活性多肽和蛋白質都具有治療和預防疾病的作用,它們都是從相應的基因中產生的。但是由於在組織細胞內產量極微,所以採用常規方法很難獲得足夠量供臨床應用。
基因工程則突破了這一局限性,能夠大量生產這類多肽和蛋白質,迄今已成功地生產出治療糖尿病和精神分裂症的胰島素,對血癌和某些實體腫瘤有療效的抗病毒劑――干擾素,治療侏儒症的人體生長激素,治療肢端肥大症和急性胰腺炎的生長激素釋放抑制因子等100多種產品。
基因工程還可將有關抗原的DNA導入活的微生物,這種微生物在受免疫應激後的宿主體內生長可產生弱毒活疫苗,具有抗原刺激劑量大、且持續時間長等優點。目前正在研製的基因工程疫苗就有數十種之多,在對付細菌方面有針對麻風桿菌、百日咳桿菌、淋球菌、腦膜炎雙球菌等的疫苗;在對付病毒方面有針對甲型肝炎、乙型肝炎、巨細胞病毒、單純皰疹、流感、人體免疫缺陷病毒等的疫苗……。我國乙肝病毒攜帶者和乙肝患者多達一二億,這一情況更促使了我國科學家自行成功研製出乙肝疫苗,取得了巨大的社會效益和經濟效益。
抗體是人體免疫系統防病抗病的主要武器之一,20世紀70年代創立的單克隆抗體技術在防病抗病方面雖然發揮了重要作用,但由於人源性單抗很難獲得,使得單抗在臨床上的應用受到限制。為解決此問題,近年來科學家採用DNA重組技術已獲得了人源性抗體,這種抗體既可保證它與抗原結合的專一性和親合力,又能保證正常功能的發揮。目前,已有多種這樣的抗體進行了臨床試驗,如抗HER-2人源化單抗治療乳腺癌已進入Ⅲ期試驗,抗IGE人源化單抗治療哮喘病已進入Ⅱ期試驗。
抗生素在治療疾病上起到了重要作用,隨著抗生素數量的增加,用傳統方法發現新抗生素的幾率越來越低。為了獲取更多的新型抗生素,採用DNA重組技術已成為重要手段之一。目前人們已獲得數十種基因工程「雜合」的抗生素,為臨床應用開辟了新的治療途徑。
值得指出的是,以上所述基因工程多肽、蛋白質、疫苗、抗生素等防治葯物不僅在有效控制疾病,而且在避免毒副作用方面也往往優於以傳統方法生產的同類葯品,因而更受人們青睞。
人類疾病都直接或間接與基因相關,在基因水平上對疾病進行診斷和治療,則既可達到病因診斷的准確性和原始性,又可使診斷和治療工作達到特異性強、靈敏度高、簡便快速的目的。於基因水平進行診斷和治療在專業上稱為基因診斷和基因治療。目前基因診斷作為第四代臨床診斷技術已被廣泛應用於對遺傳病、腫瘤、心腦血管疾病、病毒細菌寄生蟲病和職業病等的診斷;而基因治療的目標則是通過DNA重組技術創建具有特定功能的基因重組體,以補償失去功能的基因的作用,或是增加某種功能以利對異常細胞進行矯正或消滅。
在理論上,基因治療是治本治癒而無任何毒副作用的療法。不過,盡管至今國際上已有100多個基因治療方案正處於臨床試驗階段,但基因治療在理論和技術上的一些難題仍使這種治療方法離大規模應用還有一段很長的距離。不論是確定基因病因還是實施基因診斷、基因治療、研究疾病發生機理,關鍵的先決條件是要了解特定疾病的相關基因。隨著「人類基因組計劃」的臨近完成,科學家們對人體全部基因將會獲得全面的了解,這就為運用基因重組技術造逼於人類健康事業創造了條件。
不過,雖然基因技術向人類展示了它奇妙的「魔術師」般的魅力,但也有大量的科學家對這種技術的發展予以人類倫理和生態演化的自然法則的沖擊表示出極大的擔憂。從理論上來講,這種技術發展的一個極致就是使人類擁有了創造任何生命形態或從未有過的生物的能力。人們能夠想像這將是怎樣的結果嗎?
科學家在DNA中發現除基因密碼之外的新密碼
據台灣媒體報道,美國與以色列科學家相信,他們已在DNA(去氧核醣核酸)之中找到除了基因密碼之外的第二種密碼。新發現的密碼負責決定核體—亦即DNA所環繞的微型蛋白質線軸—之位置。這些線軸同時保護與控制通往DNA本身的途徑。
這項發現若獲得證實,可能開啟有關控制基因更高位階的機制新知。譬如,每一種人體細胞得以激活其所需基因,卻又無法觸及其它種類細胞所使用的基因等既關鍵又神秘的過程。
以色列魏茲曼研究院的塞格爾與美國西北大學的威頓及其同僚,在這一期「自然」科學期刊中,撰文描述這種DNA新密碼。
每一個人體細胞里都有約三千萬個核體。之所以需要這么多的核體,是因為DNA線包覆每一個核體僅一.六五次,每個DNA螺旋就包含一百四十七個單位,而且單一染色體里的DNA分子在長度上可能就有高達二億二千五百萬個單位。
生物學家多年來一直懷疑,DNA上的某些位置,特別是DNA最容易彎曲的那些位置,可能比其它位置更有利於核體的存在,但整體模式並不顯而易見。如今,塞格爾與威頓博士分析了酵母菌基因內約二百個位置的序列,這些都是既知核體糾結在一起的地方,兩人發現其中確實隱含一個模式存在。
透過了解此一模式,他們成功預測其它有機體大約五成核體的位置。這個模式乃是能讓DNA更容易彎曲,以及緊密包復核體的兩種序列結合而成。但在此一模式中,每一個核體糾結的位置僅需若干序列出現即可,因此並不明顯。正由於其形成條件鬆散,因此並不與基因密碼沖突。

❽ 什麼是晶元

晶元是半導體元件產品的統稱,又稱微電路、微晶元、集成電路。是指內含集成回電路的矽片,體積很小答,常常是計算機或其他電子設備的一部分。

半導體是一類材料的總稱,集成電路是用半導體材料製成的電路的大型集合,晶元是由不同種類型的集成電路或者單一類型集成電路形成的產品。

(8)DNA電路擴展閱讀:

半導體材料的起源及早期發展:

英國科學家法拉第在電磁學方面擁有許多貢獻,但較不為人所知的是他在1833年發現的一種半導體材料硫化銀,它的電阻隨著溫度上升而降低。

對於一般材料來說,隨著溫度的提升,晶格震動越厲害,使得電阻增加;但對半導體而言,溫度上升使自由載子的濃度增加,反而有助於導電。這是半導體現象的首次發現。

20世紀20年代,固體物理、量子力學、能帶論等理論的不斷完善,使半導體材料中的電子態和電子輸運過程的研究更加深入,對半導體材料中的結構性能、雜質和缺陷行為有了更深刻的認識,提高半導體晶體材料的完整性和純度的研究。

20世紀50年代,為了改善晶體管特性,提高其穩定性,半導體材料的制備技術得到了迅速發展。硅材料在微電子技術應用方面應用廣泛,但在硅基發光器件的研究方面進展緩慢。

❾ 怎樣用歐拉迴路進行DNA測序

不理解哎~~~

閱讀全文

與DNA電路相關的資料

熱點內容
北京曲美家居電話 瀏覽:95
被撞後隔多久維修都可以 瀏覽:326
消防水泵保險絲怎麼查 瀏覽:391
畫家居物品 瀏覽:189
家電店過年為什麼不放假 瀏覽:181
防水貼紙貼到什麼程度 瀏覽:756
哪裡維修節氣門 瀏覽:200
酒店維修房如何操作流程 瀏覽:490
傢具表面光太亮怎麼處理 瀏覽:35
傢具光面好嗎 瀏覽:136
黃石松下電器維修部的電話 瀏覽:513
道路維修售後服務承諾保障 瀏覽:558
卷材防水搭接部位是什麼 瀏覽:671
家居外貌控 瀏覽:139
金華龍騰家居 瀏覽:749
坡屋面防水選用什麼材料 瀏覽:138
木頭門貼什麼防水 瀏覽:945
顯卡返廠維修後保修多久 瀏覽:801
怎麼去除新傢具的膠味 瀏覽:927
汽車售後維修流程 瀏覽:322