導航:首頁 > 電器電路 > 集成電路晶元封裝技術

集成電路晶元封裝技術

發布時間:2021-11-27 06:28:30

1. 半導體封裝,半導體封裝是什麼意思

半導體封裝簡介:

半導體生產流程由晶圓製造、晶圓測試、晶元封裝和封裝後測試組成。半導體封裝是指將通過測試的晶圓按照產品型號及功能需求加工得到獨立晶元的過程。封裝過程為:來自晶圓前道工藝的晶圓通過劃片工藝後,被切割為小的晶片(Die),然後將切割好的晶片用膠水貼裝到相應的基板(引線框架)架的小島上,再利用超細的金屬(金、錫、銅、鋁)導線或者導電性樹脂將晶片的接合焊盤(Bond Pad)連接到基板的相應引腳(Lead),並構成所要求的電路;然後再對獨立的晶片用塑料外殼加以封裝保護,塑封之後,還要進行一系列操作,如後固化(Post Mold Cure)、切筋和成型(Trim&Form)、電鍍(Plating)以及列印等工藝。封裝完成後進行成品測試,通常經過入檢(Incoming)、測試(Test)和包裝(Packing)等工序,最後入庫出貨。典型的封裝工藝流程為:劃片 裝片 鍵合 塑封 去飛邊 電鍍 列印 切筋和成型 外觀檢查 成品測試 包裝出貨。
1 半導體器件封裝概述
電子產品是由半導體器件(集成電路和分立器件)、印刷線路板、導線、整機框架、外殼及顯示等部分組成,其中集成電路是用來處理和控制信號,分立器件通常是信號放大,印刷線路板和導線是用來連接信號,整機框架外殼是起支撐和保護作用,顯示部分是作為與人溝通的介面。所以說半導體器件是電子產品的主要和重要組成部分,在電子工業有「工業之米"的美稱。
我國在上世紀60年代自行研製和生產了第一台計算機,其佔用面積大約為100 m2以上,現在的攜帶型計算機只有書包大小,而將來的計算機可能只與鋼筆一樣大小或更小。計算機體積的這種迅速縮小而其功能越來越強大就是半導體科技發展的一個很好的佐證,其功勞主要歸結於:(1)半導體晶元集成度的大幅度提高和晶圓製造(Wafer fabrication)中光刻精度的提高,使得晶元的功能日益強大而尺寸反而更小;(2)半導體封裝技術的提高從而大大地提高了印刷線路板上集成電路的密集度,使得電子產品的體積大幅度地降低。
半導體組裝技術(Assembly technology)的提高主要體現在它的封裝型式(Package)不斷發展。通常所指的組裝(Assembly)可定義為:利用膜技術及微細連接技術將半導體晶元(Chip)和框架(Leadframe)或基板(Sulbstrate)或塑料薄片(Film)或印刷線路板中的導體部分連接以便引出接線引腳,並通過可塑性絕緣介質灌封固定,構成整體立體結構的工藝技術。它具有電路連接,物理支撐和保護,外場屏蔽,應力緩沖,散熱,尺寸過度和標准化的作用。從三極體時代的插入式封裝以及20世紀80年代的表面貼裝式封裝,發展到現在的模塊封裝,系統封裝等等,前人已經研究出很多封裝形式,每一種新封裝形式都有可能要用到新材料,新工藝或新設備。
驅動半導體封裝形式不斷發展的動力是其價格和性能。電子市場的最終客戶可分為3類:家庭用戶、工業用戶和國家用戶。家庭用戶最大的特點是價格便宜而性能要求不高;國家用戶要求高性能而價格通常是普通用戶的幾十倍甚至幾千倍,主要用在軍事和航天等方面;工業用戶通常是價格和性能都介於以上兩者之間。低價格要求在原有的基礎上降低成本,這樣材料用得越少越好,一次性產出越大越好。高性能要求產品壽命長,能耐高低溫及高濕度等惡劣環境。半導體生產廠家時時刻刻都想方設法降低成本和提高性能,當然也有其它的因素如環保要求和專利問題迫使他們改變封裝型式。
2 封裝的作用
封裝(Package)對於晶元來說是必須的,也是至關重要的。封裝也可以說是指安裝半導體集成電路晶元用的外殼,它不僅起著保護晶元和增強導熱性能的作用,而且還是溝通晶元內部世界與外部電路的橋梁和規格通用功能的作用。封裝的主要作用有:
(1)物理保護。因為晶元必須與外界隔離,以防止空氣中的雜質對晶元電路的腐蝕而造成電氣性能下降,保護晶元表面以及連接引線等,使相當柔嫩的晶元在電氣或熱物理等方面免受外力損害及外部環境的影響;同時通過封裝使晶元的熱膨脹系數與框架或基板的熱膨脹系數相匹配,這樣就能緩解由於熱等外部環境的變化而產生的應力以及由於晶元發熱而產生的應力,從而可防止晶元損壞失效。基於散熱的要求,封裝越薄越好,當晶元功耗大於2W時,在封裝上需要增加散熱片或熱沉片,以增強其散熱冷卻功能;5~1OW時必須採取強製冷卻手段。另一方面,封裝後的晶元也更便於安裝和運輸。
(2)電氣連接。封裝的尺寸調整(間距變換)功能可由晶元的極細引線間距,調整到實裝基板的尺寸間距,從而便於實裝操作。例如從以亞微米(目前已達到0.1 3μm以下)為特徵尺寸的晶元,到以10μm為單位的晶元焊點,再到以100μm為單位的外部引腳,最後劍以毫米為單位的印刷電路板,都是通過封裝米實現的。封裝在這里起著由小到大、由難到易、由復雜到簡單的變換作用,從而可使操作費用及材料費用降低,而且能提高工作效率和可靠性,特別是通過實現布線長度和阻抗配比盡可能地降低連接電阻,寄生電容和電感來保證正確的信號波形和傳輸速度。
(3)標准規格化。規格通用功能是指封裝的尺寸、形狀、引腳數量、間距、長度等有標准規格,既便於加工,又便於與印刷電路板相配合,相關的生產線及生產設備都具有通用性。這對於封裝用戶、電路板廠家、半導體廠家都很方便,而且便於標准化。相比之下,裸晶元實裝及倒裝目前尚不具備這方面的優勢。由於組裝技術的好壞還直接影響到晶元自身性能的發揮和與之連接的印刷電路板(PCB)的設計和製造,對於很多集成電路產品而言,組裝技術都是非常關鍵的一環。

3 封裝的分類
半導體(包括集成電路和分立器件)其晶元的封裝已經歷了好幾代的變遷,從DIP、SOP、QFP、PGA、BGA到MCP再到SIP,技術指標一代比一代先進,包括晶元面積與封裝面積之比越來越接近於1,適用頻率越來越高,耐溫性能越來越好,引腳數增多,引腳間距減小,重量減小,可靠性提高,使用更加方便等等。封裝(Package)可謂種類繁多,而且每一種封裝都有其獨特的地方,即它的優點和不足之處,當然其所用的封裝材料、封裝設備、封裝技術根據其需要而有所不同。

2. 晶元的封裝是怎麼區別的。

一、DIP雙列直插式封裝

DIP(DualIn- Package)是指採用雙列直插形式封裝的集成電路晶元,絕大多數中小規模集成電路(IC)均採用這種封裝形式,其引腳數一般不超過100個。採用DIP封裝的CPU晶元有兩排引腳,需要插入到具有DIP結構的晶元插座上。當然,也可以直接插在有相同焊孔數和幾何排列的電路板上進行焊接。DIP封裝的晶元在從晶元插座上插拔時應特別小心,以免損壞引腳。

DIP封裝具有以下特點:

1.適合在PCB(印刷電路板)上穿孔焊接,操作方便。
2.晶元面積與封裝面積之間的比值較大,故體積也較大。
Intel系列CPU中8088就採用這種封裝形式,緩存(Cache)和早期的內存晶元也是這種封裝形式。

二、PQFP塑料方型扁平式封裝和PFP塑料扁平組件式封裝

PQFP(Plastic Quad Flat Package)封裝的晶元引腳之間距離很小,管腳很細,一般大規模或超大型集成電路都採用這種封裝形式,其引腳數一般在100個以上。用這種形式封裝的晶元必須採用SMD(表面安裝設備技術)將晶元與主板焊接起來。採用SMD安裝的晶元不必在主板上打孔,一般在主板表面上有設計好的相應管腳的焊點。將晶元各腳對准相應的焊點,即可實現與主板的焊接。用這種方法焊上去的晶元,如果不用專用工具是很難拆卸下來的。

PFP(Plastic Flat Package)方式封裝的晶元與PQFP方式基本相同。唯一的區別是PQFP一般為正方形,而PFP既可以是正方形,也可以是長方形。

PQFP/PFP封裝具有以下特點:

1.適用於SMD表面安裝技術在PCB電路板上安裝布線。
2.適合高頻使用。
3.操作方便,可靠性高。
4.晶元面積與封裝面積之間的比值較小。

Intel系列CPU中80286、80386和某些486主板採用這種封裝形式。

三、PGA插針網格陣列封裝

PGA(Pin Grid Array Package)晶元封裝形式在晶元的內外有多個方陣形的插針,每個方陣形插針沿晶元的四周間隔一定距離排列。根據引腳數目的多少,可以圍成2-5圈。安裝時,將晶元插入專門的PGA插座。為使CPU能夠更方便地安裝和拆卸,從486晶元開始,出現一種名為ZIF的CPU插座,專門用來滿足PGA封裝的CPU在安裝和拆卸上的要求。

ZIF(Zero Insertion Force Socket)是指零插拔力的插座。把這種插座上的扳手輕輕抬起,CPU就可很容易、輕松地插入插座中。然後將扳手壓回原處,利用插座本身的特殊結構生成的擠壓力,將CPU的引腳與插座牢牢地接觸,絕對不存在接觸不良的問題。而拆卸CPU晶元只需將插座的扳手輕輕抬起,則壓力解除,CPU晶元即可輕松取出。

PGA封裝具有以下特點:

1.插拔操作更方便,可靠性高。
2.可適應更高的頻率。

Intel系列CPU中,80486和Pentium、Pentium Pro均採用這種封裝形式。

四、BGA球柵陣列封裝

隨著集成電路技術的發展,對集成電路的封裝要求更加嚴格。這是因為封裝技術關繫到產品的功能性,當IC的頻率超過100MHz時,傳統封裝方式可能會產生所謂的「CrossTalk」現象,而且當IC的管腳數大於208 Pin時,傳統的封裝方式有其困難度。因此,除使用QFP封裝方式外,現今大多數的高腳數晶元(如圖形晶元與晶元組等)皆轉而使用BGA(Ball Grid Array Package)封裝技術。BGA一出現便成為CPU、主板上南/北橋晶元等高密度、高性能、多引腳封裝的最佳選擇。

BGA封裝技術又可詳分為五大類:

1.PBGA(Plasric BGA)基板:一般為2-4層有機材料構成的多層板。Intel系列CPU中,Pentium II、III、IV處理器均採用這種封裝形式。

2.CBGA(CeramicBGA)基板:即陶瓷基板,晶元與基板間的電氣連接通常採用倒裝晶元(FlipChip,簡稱FC)的安裝方式。Intel系列CPU中,Pentium I、II、Pentium Pro處理器均採用過這種封裝形式。

3.FCBGA(FilpChipBGA)基板:硬質多層基板。

4.TBGA(TapeBGA)基板:基板為帶狀軟質的1-2層PCB電路板。

5.CDPBGA(Carity Down PBGA)基板:指封裝中央有方型低陷的晶元區(又稱空腔區)。

BGA封裝具有以下特點:

1.I/O引腳數雖然增多,但引腳之間的距離遠大於QFP封裝方式,提高了成品率。
2.雖然BGA的功耗增加,但由於採用的是可控塌陷晶元法焊接,從而可以改善電熱性能。
3.信號傳輸延遲小,適應頻率大大提高。
4.組裝可用共面焊接,可靠性大大提高。

BGA封裝方式經過十多年的發展已經進入實用化階段。1987年,***西鐵城(Citizen)公司開始著手研製塑封球柵面陣列封裝的晶元(即BGA)。而後,摩托羅拉、康柏等公司也隨即加入到開發BGA的行列。1993年,摩托羅拉率先將BGA應用於行動電話。同年,康柏公司也在工作站、PC電腦上加以應用。直到五六年前,Intel公司在電腦CPU中(即奔騰II、奔騰III、奔騰IV等),以及晶元組(如i850)中開始使用BGA,這對BGA應用領域擴展發揮了推波助瀾的作用。目前,BGA已成為極其熱門的IC封裝技術,其全球市場規模在2000年為12億塊,預計2005年市場需求將比2000年有70%以上幅度的增長。

五、CSP晶元尺寸封裝

隨著全球電子產品個性化、輕巧化的需求蔚為風潮,封裝技術已進步到CSP(Chip Size Package)。它減小了晶元封裝外形的尺寸,做到裸晶元尺寸有多大,封裝尺寸就有多大。即封裝後的IC尺寸邊長不大於晶元的1.2倍,IC面積只比晶粒(Die)大不超過1.4倍。

CSP封裝又可分為四類:

1.Lead Frame Type(傳統導線架形式),代表廠商有富士通、日立、Rohm、高士達(Goldstar)等等。
2.Rigid Interposer Type(硬質內插板型),代表廠商有摩托羅拉、索尼、東芝、松下等等。
3.Flexible Interposer Type(軟質內插板型),其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也採用相同的原理。其他代表廠商包括通用電氣(GE)和NEC。
4.Wafer Level Package(晶圓尺寸封裝):有別於傳統的單一晶元封裝方式,WLCSP是將整片晶圓切割為一顆顆的單一晶元,它號稱是封裝技術的未來主流,已投入研發的廠商包括FCT、Aptos、卡西歐、EPIC、富士通、三菱電子等。

CSP封裝具有以下特點:

1.滿足了晶元I/O引腳不斷增加的需要。
2.晶元面積與封裝面積之間的比值很小。
3.極大地縮短延遲時間。

CSP封裝適用於腳數少的IC,如內存條和便攜電子產品。未來則將大量應用在信息家電(IA)、數字電視(DTV)、電子書(E-Book)、無線網路WLAN/GigabitEthemet、ADSL/手機晶元、藍芽(Bluetooth)等新興產品中。

六、MCM多晶元模塊

為解決單一晶元集成度低和功能不夠完善的問題,把多個高集成度、高性能、高可靠性的晶元,在高密度多層互聯基板上用SMD技術組成多種多樣的電子模塊系統,從而出現MCM(Multi Chip Model)多晶元模塊系統。
MCM具有以下特點:

1.封裝延遲時間縮小,易於實現模塊高速化。
2.縮小整機/模塊的封裝尺寸和重量。
3.系統可靠性大大提高。

自己看吧。

3. 電子元器件里的封裝指的是什麼

封裝,就是指把矽片上的電路管腳,用導線接引到外部接頭處,以便與其它器件連接·封裝形式是指安裝半導體集成電路晶元用的外殼。

它不僅起著安裝、固定、密封、保護晶元及增強電熱性能等方面的作用,而且還通過晶元上的接點用導線連接到封裝外殼的引腳上,這些引腳又通過印刷電路板上的導線與其他器件相連接,從而實現內部晶元與外部電路的連接。

因為晶元必須與外界隔離,以防止空氣中的雜質對晶元電路的腐蝕而造成電氣性能下降。另一方面,封裝後的晶元也更便於安裝和運輸。

(3)集成電路晶元封裝技術擴展閱讀

封裝種類:

一、DIP雙列直插式封裝

DIP(DualIn-line Package)是指採用雙列直插形式封裝的集成電路晶元,絕大多數中小規模集成電路(IC)均採用這種封裝形式,其引腳數一般不超過100個。

採用DIP封裝的CPU晶元有兩排引腳,需要插入到具有DIP結構的晶元插座上。當然,也可以直接插在有相同焊孔數和幾何排列的電路板上進行焊接。DIP封裝的晶元在從晶元插座上插拔時應特別小心,以免損壞引腳。

二、QFP塑料方型扁平式封裝和PFP塑料扁平組件式封裝

QFP(Plastic Quad Flat Package)封裝的晶元引腳之間距離很小,管腳很細,一般大規模或超大型集成電路都採用這種封裝形式,其引腳數一般在100個以上。用這種形式封裝的晶元必須採用SMD(表面安裝設備技術)將晶元與主板焊接起來。

採用SMD安裝的晶元不必在主板上打孔,一般在主板表面上有設計好的相應管腳的焊點。將晶元各腳對准相應的焊點,即可實現與主板的焊接。用這種方法焊上去的晶元,如果不用專用工具是很難拆卸下來的。

三、PGA插針網格陣列封裝

PGA(Pin Grid Array Package)晶元封裝形式在晶元的內外有多個方陣形的插針,每個方陣形插針沿晶元的四周間隔一定距離排列。根據引腳數目的多少,可以圍成2-5圈。

安裝時,將晶元插入專門的PGA插座。為使CPU能夠更方便地安裝和拆卸,從486晶元開始,出現一種名為ZIF的CPU插座,專門用來滿足PGA封裝的CPU在安裝和拆卸上的要求。

四、BGA球柵陣列封裝

隨著集成電路技術的發展,對集成電路的封裝要求更加嚴格。這是因為封裝技術關繫到產品的功能性,當IC的頻率超過100MHz時,傳統封裝方式可能會產生所謂的「CrossTalk」現象,而且當IC的管腳數大於208 Pin時,傳統的封裝方式有其困難度。

因此,除使用QFP封裝方式外,現今大多數的高腳數晶元(如圖形晶元與晶元組等)皆轉而使用BGA(Ball Grid Array Package)封裝技術。BGA一出現便成為CPU、主板上南/北橋晶元等高密度、高性能、多引腳封裝的最佳選擇。

五、CSP晶元尺寸封裝

隨著全球電子產品個性化、輕巧化的需求蔚為風潮,封裝技術已進步到CSP(ChipSize Package)。它減小了晶元封裝外形的尺寸,做到裸晶元尺寸有多大,封裝尺寸就有多大。即封裝後的IC尺寸邊長不大於晶元的1.2倍,IC面積只比晶粒(Die)大不超過1.4倍。

六、MCM多晶元模塊

為解決單一晶元集成度低和功能不夠完善的問題,把多個高集成度、高性能、高可靠性的晶元,在高密度多層互聯基板上用SMD技術組成多種多樣的電子模塊系統,從而出現MCM(Multi Chip Model)多晶元模塊系統。

4. 晶元的封裝形式有那些

1、BGA(ball grid array)

球形觸點陳列,表面貼裝型封裝之一。在印刷基板的背面按陳列方式製作出球形凸點用以代替引腳,在印刷基板的正面裝配LSI 晶元,然後用模壓樹脂或灌封方法進行密封。也稱為凸點陳列載體(PAC)。引腳可超過200,是多引腳LSI 用的一種封裝。封裝本體也可做得比QFP(四側引腳扁平封裝)小。例如,引腳中心距為1.5mm 的360 引腳 BGA 僅為31mm 見方;而引腳中心距為0.5mm 的304 引腳QFP 為40mm 見方。而且BGA 不 用擔心QFP 那樣的引腳變形問題。該封裝是美國Motorola 公司開發的,首先在攜帶型電話等設備中被採用,今後在美國有可能在個人計算機中普及。最初,BGA 的引腳(凸點)中心距為1.5mm,引腳數為225。現在也有一些LSI 廠家正在開發500 引腳的BGA。BGA 的問題是迴流焊後的外觀檢查。現在尚不清楚是否有效的外觀檢查方法。有的認為,由於焊接的中心距較大,連接可以看作是穩定的,只能通過功能檢查來處理。美國Motorola 公司把用模壓樹脂密封的封裝稱為OMPAC,而把灌封方法密封的封裝稱為GPAC(見OMPAC 和GPAC)。

2、BQFP(quad flat package with bumper)

帶緩沖墊的四側引腳扁平封裝。QFP 封裝之一,在封裝本體的四個角設置突起(緩沖墊)以防止在運送過程中引腳發生彎曲變形。美國半導體廠家主要在微處理器和ASIC 等電路中採用此封裝。引腳中心距0.635mm,引腳數從84 到196 左右(見QFP)。

3、碰焊PGA(butt joint pin grid array)

表面貼裝型PGA 的別稱(見表面貼裝型PGA)。

4、C-(ceramic)

表示陶瓷封裝的記號。例如,CDIP 表示的是陶瓷DIP。是在實際中經常使用的記號。

5、Cerdip

用玻璃密封的陶瓷雙列直插式封裝,用於ECL RAM,DSP(數字信號處理器)等電路。帶有玻璃窗口的Cerdip 用於紫外線擦除型EPROM 以及內部帶有EPROM 的微機電路等。引腳中心距2.54mm,引腳數從8 到42。在日本,此封裝表示為DIP-G(G 即玻璃密封的意思)。

6、Cerquad

表面貼裝型封裝之一,即用下密封的陶瓷QFP,用於封裝DSP 等的邏輯LSI 電路。帶有窗口的Cerquad 用於封裝EPROM 電路。散熱性比塑料QFP 好,在自然空冷條件下可容許1.5~ 2W 的功率。但封裝成本比塑料QFP 高3~5 倍。引腳中心距有1.27mm、0.8mm、0.65mm、0.5mm、0.4mm 等多種規格。引腳數從32 到368。

7、CLCC(ceramic leaded chip carrier)

帶引腳的陶瓷晶元載體,表面貼裝型封裝之一,引腳從封裝的四個側面引出,呈丁字形。

帶有窗口的用於封裝紫外線擦除型EPROM 以及帶有EPROM 的微機電路等。此封裝也稱為QFJ、QFJ-G(見QFJ)。

8、COB(chip on board)

板上晶元封裝,是裸晶元貼裝技術之一,半導體晶元交接貼裝在印刷線路板上,晶元與基板的電氣連接用引線縫合方法實現,晶元與基板的電氣連接用引線縫合方法實現,並用樹脂覆蓋以確保可靠性。雖然COB 是最簡單的裸晶元貼裝技術,但它的封裝密度遠不如TAB 和倒片焊技術。

9、DFP(al flat package)

雙側引腳扁平封裝。是SOP 的別稱(見SOP)。以前曾有此稱法,現在已基本上不用。

10、DIC(al in-line ceramic package)

陶瓷DIP(含玻璃密封)的別稱(見DIP).

11、DIL(al in-line)

DIP 的別稱(見DIP)。歐洲半導體廠家多用此名稱。

12、DIP(al in-line package)

雙列直插式封裝。插裝型封裝之一,引腳從封裝兩側引出,封裝材料有塑料和陶瓷兩種。DIP 是最普及的插裝型封裝,應用范圍包括標准邏輯IC,存貯器LSI,微機電路等。引腳中心距2.54mm,引腳數從6 到64。封裝寬度通常為15.2mm。有的把寬度為7.52mm和10.16mm 的封裝分別稱為skinny DIP 和slim DIP(窄體型DIP)。但多數情況下並不加區分,只簡單地統稱為DIP。另外,用低熔點玻璃密封的陶瓷DIP 也稱為cerdip(見cerdip)。

13、DSO(al small out-lint)

雙側引腳小外形封裝。SOP 的別稱(見SOP)。部分半導體廠家採用此名稱。

14、DICP(al tape carrier package)

雙側引腳帶載封裝。TCP(帶載封裝)之一。引腳製作在絕緣帶上並從封裝兩側引出。由於利用的是TAB(自動帶載焊接)技術,封裝外形非常薄。常用於液晶顯示驅動LSI,但多數為定製品。另外,0.5mm 厚的存儲器LSI 簿形封裝正處於開發階段。在日本,按照EIAJ(日本電子機械工業)會標准規定,將DICP 命名為DTP。

15、DIP(al tape carrier package)

同上。日本電子機械工業會標准對DTCP 的命名(見DTCP)。

16、FP(flat package)

扁平封裝。表面貼裝型封裝之一。QFP 或SOP(見QFP 和SOP)的別稱。部分半導體廠家採用此名稱。

17、flip-chip

倒焊晶元。裸晶元封裝技術之一,在LSI 晶元的電極區製作好金屬凸點,然後把金屬凸點與印刷基板上的電極區進行壓焊連接。封裝的佔有面積基本上與晶元尺寸相同。是所有封裝技術中體積最小、最薄的一種。但如果基板的熱膨脹系數與LSI 晶元不同,就會在接合處產生反應,從而影響連接的可靠性。因此必須用樹脂來加固LSI 晶元,並使用熱膨脹系數基本相同的基板材料。

18、FQFP(fine pitch quad flat package)

小引腳中心距QFP。通常指引腳中心距小於0.65mm 的QFP(見QFP)。部分導導體廠家採用此名稱。

19、CPAC(globe top pad array carrier)

美國Motorola 公司對BGA 的別稱(見BGA)。

20、CQFP(quad fiat package with guard ring)

帶保護環的四側引腳扁平封裝。塑料QFP 之一,引腳用樹脂保護環掩蔽,以防止彎曲變形。在把LSI 組裝在印刷基板上之前,從保護環處切斷引腳並使其成為海鷗翼狀(L 形狀)。這種封裝在美國Motorola 公司已批量生產。引腳中心距0.5mm,引腳數最多為208 左右。

21、H-(with heat sink)

表示帶散熱器的標記。例如,HSOP 表示帶散熱器的SOP。

22、pin grid array(surface mount type)

表面貼裝型PGA。通常PGA 為插裝型封裝,引腳長約3.4mm。表面貼裝型PGA 在封裝的底面有陳列狀的引腳,其長度從1.5mm 到2.0mm。貼裝採用與印刷基板碰焊的方法,因而也稱為碰焊PGA。因為引腳中心距只有1.27mm,比插裝型PGA 小一半,所以封裝本體可製作得不怎麼大,而引腳數比插裝型多(250~528),是大規模邏輯LSI 用的封裝。封裝的基材有多層陶瓷基板和玻璃環氧樹脂印刷基數。以多層陶瓷基材製作封裝已經實用化。

23、JLCC(J-leaded chip carrier)

J 形引腳晶元載體。指帶窗口CLCC 和帶窗口的陶瓷QFJ 的別稱(見CLCC 和QFJ)。部分半導體廠家採用的名稱。

24、LCC(Leadless chip carrier)

無引腳晶元載體。指陶瓷基板的四個側面只有電極接觸而無引腳的表面貼裝型封裝。是高速和高頻IC 用封裝,也稱為陶瓷QFN 或QFN-C(見QFN)。

25、LGA(land grid array)

觸點陳列封裝。即在底面製作有陣列狀態坦電極觸點的封裝。裝配時插入插座即可。現已實用的有227 觸點(1.27mm 中心距)和447 觸點(2.54mm 中心距)的陶瓷LGA,應用於高速邏輯LSI 電路。LGA 與QFP 相比,能夠以比較小的封裝容納更多的輸入輸出引腳。另外,由於引線的阻抗小,對於高速LSI 是很適用的。但由於插座製作復雜,成本高,現在基本上不怎麼使用。預計今後對其需求會有所增加。

26、LOC(lead on chip)

晶元上引線封裝。LSI 封裝技術之一,引線框架的前端處於晶元上方的一種結構,晶元的中心附近製作有凸焊點,用引線縫合進行電氣連接。與原來把引線框架布置在晶元側面附近的結構相比,在相同大小的封裝中容納的晶元達1mm 左右寬度。

27、LQFP(low profile quad flat package)

薄型QFP。指封裝本體厚度為1.4mm 的QFP,是日本電子機械工業會根據制定的新QFP外形規格所用的名稱。

28、L-QUAD

陶瓷QFP 之一。封裝基板用氮化鋁,基導熱率比氧化鋁高7~8 倍,具有較好的散熱性。封裝的框架用氧化鋁,晶元用灌封法密封,從而抑制了成本。是為邏輯LSI 開發的一種封裝,在自然空冷條件下可容許W3的功率。現已開發出了208 引腳(0.5mm 中心距)和160 引腳(0.65mm中心距)的LSI 邏輯用封裝,並於1993 年10 月開始投入批量生產。

29、MCM(multi-chip mole)

多晶元組件。將多塊半導體裸晶元組裝在一塊布線基板上的一種封裝。根據基板材料可分為MCM-L,MCM-C 和MCM-D 三大類。MCM-L 是使用通常的玻璃環氧樹脂多層印刷基板的組件。布線密度不怎麼高,成本較低。MCM-C 是用厚膜技術形成多層布線,以陶瓷(氧化鋁或玻璃陶瓷)作為基板的組件,與使用多層陶瓷基板的厚膜混合IC 類似。兩者無明顯差別。布線密度高於MCM-L。MCM-D 是用薄膜技術形成多層布線,以陶瓷(氧化鋁或氮化鋁)或Si、Al 作為基板的組件。布線密謀在三種組件中是最高的,但成本也高。

30、MFP(mini flat package)

小形扁平封裝。塑料SOP 或SSOP 的別稱(見SOP 和SSOP)。部分半導體廠家採用的名稱。

31、MQFP(metric quad flat package)

按照JEDEC(美國聯合電子設備委員會)標准對QFP 進行的一種分類。指引腳中心距為

0.65mm、本體厚度為3.8mm~2.0mm 的標准QFP(見QFP)。

32、MQUAD(metal quad)

美國Olin 公司開發的一種QFP 封裝。基板與封蓋均採用鋁材,用粘合劑密封。在自然空冷條件下可容許2.5W~2.8W 的功率。日本新光電氣工業公司於1993 年獲得特許開始生產。

33、MSP(mini square package)

QFI 的別稱(見QFI),在開發初期多稱為MSP。QFI 是日本電子機械工業會規定的名稱。

34、OPMAC(over molded pad array carrier)

模壓樹脂密封凸點陳列載體。美國Motorola 公司對模壓樹脂密封BGA 採用的名稱(見

BGA)。

35、P-(plastic)

表示塑料封裝的記號。如PDIP 表示塑料DIP。

36、PAC(pad array carrier)

凸點陳列載體,BGA 的別稱(見BGA)。

37、PCLP(printed circuit board leadless package)

印刷電路板無引線封裝。日本富士通公司對塑料QFN(塑料LCC)採用的名稱(見QFN)。引腳中心距有0.55mm 和0.4mm 兩種規格。目前正處於開發階段。

38、PFPF(plastic flat package)

塑料扁平封裝。塑料QFP 的別稱(見QFP)。部分LSI 廠家採用的名稱。

39、PGA(pin grid array)

陳列引腳封裝。插裝型封裝之一,其底面的垂直引腳呈陳列狀排列。封裝基材基本上都採用多層陶瓷基板。在未專門表示出材料名稱的情況下,多數為陶瓷PGA,用於高速大規模邏輯LSI 電路。成本較高。引腳中心距通常為2.54mm,引腳數從64 到447 左右。了為降低成本,封裝基材可用玻璃環氧樹脂印刷基板代替。也有64~256 引腳的塑料PGA。

另外,還有一種引腳中心距為1.27mm 的短引腳表面貼裝型PGA(碰焊PGA)。(見表面貼裝

型PGA)。

40、piggy back

馱載封裝。指配有插座的陶瓷封裝,形關與DIP、QFP、QFN 相似。在開發帶有微機的設備時用於評價程序確認操作。例如,將EPROM 插入插座進行調試。這種封裝基本上都是定製品,市場上不怎麼流通。

41、PLCC(plastic leaded chip carrier)

帶引線的塑料晶元載體。表面貼裝型封裝之一。引腳從封裝的四個側面引出,呈丁字形,

是塑料製品。美國德克薩斯儀器公司首先在64k 位DRAM 和256kDRAM 中採用,現在已經普及用於邏輯LSI、DLD(或程邏輯器件)等電路。引腳中心距1.27mm,引腳數從18 到84。

J 形引腳不易變形,比QFP 容易操作,但焊接後的外觀檢查較為困難。PLCC 與LCC(也稱QFN)相似。以前,兩者的區別僅在於前者用塑料,後者用陶瓷。但現在已經出現用陶瓷製作的J 形引腳封裝和用塑料製作的無引腳封裝(標記為塑料LCC、PCLP、P-LCC 等),已經無法分辨。為此,日本電子機械工業會於1988 年決定,把從四側引出J 形引腳的封裝稱為QFJ,把在四側帶有電極凸點的封裝稱為QFN(見QFJ 和QFN)。

42、P-LCC(plastic teadless chip carrier)(plastic leaded chip currier)

有時候是塑料QFJ 的別稱,有時候是QFN(塑料LCC)的別稱(見QFJ 和QFN)。部分LSI 廠家用PLCC 表示帶引線封裝,用P-LCC 表示無引線封裝,以示區別。

43、QFH(quad flat high package)

四側引腳厚體扁平封裝。塑料QFP 的一種,為了防止封裝本體斷裂,QFP 本體製作得 較厚(見QFP)。部分半導體廠家採用的名稱。

44、QFI(quad flat I-leaded packgac)

四側I 形引腳扁平封裝。表面貼裝型封裝之一。引腳從封裝四個側面引出,向下呈I 字。

也稱為MSP(見MSP)。貼裝與印刷基板進行碰焊連接。由於引腳無突出部分,貼裝佔有面積小於QFP。日立製作所為視頻模擬IC 開發並使用了這種封裝。此外,日本的Motorola 公司的PLL IC也採用了此種封裝。引腳中心距1.27mm,引腳數從18 於68。

45、QFJ(quad flat J-leaded package)

四側J 形引腳扁平封裝。表面貼裝封裝之一。引腳從封裝四個側面引出,向下呈J 字形。是日本電子機械工業會規定的名稱。引腳中心距1.27mm。材料有塑料和陶瓷兩種。塑料QFJ 多數情況稱為PLCC(見PLCC),用於微機、門陳列、DRAM、ASSP、OTP 等電路。引腳數從18 至84。陶瓷QFJ 也稱為CLCC、JLCC(見CLCC)。帶窗口的封裝用於紫外線擦除型EPROM 以及帶有EPROM 的微機晶元電路。引腳數從32 至84。

46、QFN(quad flat non-leaded package)

四側無引腳扁平封裝。表面貼裝型封裝之一。現在多稱為LCC。QFN 是日本電子機械工業會規定的名稱。封裝四側配置有電極觸點,由於無引腳,貼裝佔有面積比QFP 小,高度比QFP低。但是,當印刷基板與封裝之間產生應力時,在電極接觸處就不能得到緩解。因此電極觸點難於作到QFP 的引腳那樣多,一般從14 到100 左右。材料有陶瓷和塑料兩種。當有LCC 標記時基本上都是陶瓷QFN。電極觸點中心距1.27mm。塑料QFN 是以玻璃環氧樹脂印刷基板基材的一種低成本封裝。電極觸點中心距除1.27mm 外,還有0.65mm 和0.5mm 兩種。這種封裝也稱為塑料LCC、PCLC、P-LCC 等。

47、QFP(quad flat package)

四側引腳扁平封裝。表面貼裝型封裝之一,引腳從四個側面引出呈海鷗翼(L)型。基材有陶瓷、金屬和塑料三種。從數量上看,塑料封裝占絕大部分。當沒有特別表示出材料時,多數情況為塑料QFP。塑料QFP 是最普及的多引腳LSI 封裝。不僅用於微處理器,門陳列等數字邏輯LSI 電路,而且也用於VTR 信號處理、音響信號處理等模擬LSI 電路。引腳中心距有1.0mm、0.8mm、0.65mm、0.5mm、0.4mm、0.3mm 等多種規格。0.65mm 中心距規格中最多引腳數為304。日本將引腳中心距小於0.65mm 的QFP 稱為QFP(FP)。但現在日本電子機械工業會對QFP的外形規格進行了重新評價。在引腳中心距上不加區別,而是根據封裝本體厚度分為QFP(2.0mm~3.6mm 厚)、LQFP(1.4mm 厚)和TQFP(1.0mm 厚)三種。另外,有的LSI 廠家把引腳中心距為0.5mm 的QFP 專門稱為收縮型QFP 或SQFP、VQFP。但有的廠家把引腳中心距為0.65mm 及0.4mm 的QFP 也稱為SQFP,至使名稱稍有一些混亂。QFP 的缺點是,當引腳中心距小於0.65mm 時,引腳容易彎曲。為了防止引腳變形,現已出現了幾種改進的QFP 品種。如封裝的四個角帶有樹指緩沖墊的BQFP(見BQFP);帶樹脂保護環覆蓋引腳前端的GQFP(見GQFP);在封裝本體里設置測試凸點、放在防止引腳變形的專用夾具里就可進行測試的TPQFP(見TPQFP)。在邏輯LSI 方面,不少開發品和高可靠品都封裝在多層陶瓷QFP 里。引腳中心距最小為0.4mm、引腳數最多為348 的產品也已問世。此外,也有用玻璃密封的陶瓷QFP(見Gerqad)。

48、QFP(FP)(QFP fine pitch)

小中心距QFP。日本電子機械工業會標准所規定的名稱。指引腳中心距為0.55mm、0.4mm、0.3mm 等小於0.65mm 的QFP(見QFP)。

49、QIC(quad in-line ceramic package)

陶瓷QFP 的別稱。部分半導體廠家採用的名稱(見QFP、Cerquad)。

50、QIP(quad in-line plastic package)

塑料QFP 的別稱。部分半導體廠家採用的名稱(見QFP)。

51、QTCP(quad tape carrier package)

四側引腳帶載封裝。TCP 封裝之一,在絕緣帶上形成引腳並從封裝四個側面引出。是利用TAB 技術的薄型封裝(見TAB、TCP)。

52、QTP(quad tape carrier package)

四側引腳帶載封裝。日本電子機械工業會於1993 年4 月對QTCP 所制定的外形規格所用的名稱(見TCP)。

53、QUIL(quad in-line)

QUIP 的別稱(見QUIP)。

54、QUIP(quad in-line package)

四列引腳直插式封裝。引腳從封裝兩個側面引出,每隔一根交錯向下彎曲成四列。引腳中心距1.27mm,當插入印刷基板時,插入中心距就變成2.5mm。因此可用於標准印刷線路板。是比標准DIP 更小的一種封裝。日本電氣公司在台式計算機和家電產品等的微機晶元中採用了些種封裝。材料有陶瓷和塑料兩種。引腳數64。

55、SDIP (shrink al in-line package)

收縮型DIP。插裝型封裝之一,形狀與DIP 相同,但引腳中心距(1.778mm)小於DIP(2.54mm),因而得此稱呼。引腳數從14 到90。也有稱為SH-DIP 的。材料有陶瓷和塑料兩種。

56、SH-DIP(shrink al in-line package)

同SDIP。部分半導體廠家採用的名稱。

57、SIL(single in-line)

SIP 的別稱(見SIP)。歐洲半導體廠家多採用SIL 這個名稱。

58、SIMM(single in-line memory mole)

單列存貯器組件。只在印刷基板的一個側面附近配有電極的存貯器組件。通常指插入插座的組件。標准SIMM 有中心距為2.54mm 的30 電極和中心距為1.27mm 的72 電極兩種規格。在印刷基板的單面或雙面裝有用SOJ 封裝的1 兆位及4 兆位DRAM 的SIMM 已經在個人計算機、工作站等設備中獲得廣泛應用。至少有30~40%的DRAM 都裝配在SIMM 里。

59、SIP(single in-line package)

單列直插式封裝。引腳從封裝一個側面引出,排列成一條直線。當裝配到印刷基板上時封裝呈側立狀。引腳中心距通常為2.54mm,引腳數從2 至23,多數為定製產品。封裝的形狀各異。也有的把形狀與ZIP 相同的封裝稱為SIP。

60、SK-DIP(skinny al in-line package)

DIP 的一種。指寬度為7.62mm、引腳中心距為2.54mm 的窄體DIP。通常統稱為DIP(見

DIP)。

61、SL-DIP(slim al in-line package)

DIP 的一種。指寬度為10.16mm,引腳中心距為2.54mm 的窄體DIP。通常統稱為DIP。

62、SMD(surface mount devices)

表面貼裝器件。偶而,有的半導體廠家把SOP 歸為SMD(見SOP)。

63、SO(small out-line)

SOP 的別稱。世界上很多半導體廠家都採用此別稱。(見SOP)。

64、SOI(small out-line I-leaded package)

I 形引腳小外型封裝。表面貼裝型封裝之一。引腳從封裝雙側引出向下呈I 字形,中心距1.27mm。貼裝佔有面積小於SOP。日立公司在模擬IC(電機驅動用IC)中採用了此封裝。引腳數26。

65、SOIC(small out-line integrated circuit)

SOP 的別稱(見SOP)。國外有許多半導體廠家採用此名稱。

66、SOJ(Small Out-Line J-Leaded Package)

J 形引腳小外型封裝。表面貼裝型封裝之一。引腳從封裝兩側引出向下呈J 字形,故此得名。通常為塑料製品,多數用於DRAM 和SRAM 等存儲器LSI 電路,但絕大部分是DRAM。用SOJ封裝的DRAM 器件很多都裝配在SIMM 上。引腳中心距1.27mm,引腳數從20 至40(見SIMM)。

67、SQL(Small Out-Line L-leaded package)

按照JEDEC(美國聯合電子設備工程委員會)標准對SOP 所採用的名稱(見SOP)。

68、SONF(Small Out-Line Non-Fin)

無散熱片的SOP。與通常的SOP 相同。為了在功率IC 封裝中表示無散熱片的區別,有意增添了NF(non-fin)標記。部分半導體廠家採用的名稱(見SOP)。

69、SOF(small Out-Line package)

小外形封裝。表面貼裝型封裝之一,引腳從封裝兩側引出呈海鷗翼狀(L 字形)。材料有塑料和陶瓷兩種。另外也叫SOL 和DFP。SOP 除了用於存儲器LSI 外,也廣泛用於規模不太大的ASSP 等電路。在輸入輸出端子不超過10~40 的領域,SOP 是普及最廣的表面貼裝封裝。引腳中心距1.27mm,引腳數從8~44。另外,引腳中心距小於1.27mm 的SOP 也稱為SSOP;裝配高度不到1.27mm 的SOP 也稱為TSOP(見SSOP、TSOP)。還有一種帶有散熱片的SOP。

70、SOW (Small Outline Package(Wide-Jype))

寬體SOP。部分半導體廠家採用的名稱.
以上是引用別人的。
三極體封裝:TO-92、TO-92S、TO-92NL、TO-126、TO-251、TO-251A、TO-252、TO-263(3線)、TO-220、T0-3、SOT-23、SOT-143、SOT-143R、SOT-25、SOT-26、TO-50。
電源晶元封裝:SOT-23、T0-220、TO-263、SOT-223。
以TO-92,T0-3,TO-220,TO-263,SOT-23最常用

5. 求一篇集成電路晶元封裝技術論文

集成電路晶元封裝技術淺談
自從美國Intel公司1971年設計製造出4位微處a理器晶元以來,在20多年時間內,CPU從Intel4004、80286、80386、80486發展到Pentium和PentiumⅡ,數位從4位、8位、16位、32位發展到64位;主頻從幾兆到今天的400MHz以上,接近GHz;CPU晶元里集成的晶體管數由2000個躍升到500萬個以上;半導體製造技術的規模由SSI、MSI、LSI、VLSI達到 ULSI。封裝的輸入/輸出(I/O)引腳從幾十根,逐漸增加到幾百根,下世紀初可能達2千根。這一切真是一個翻天覆地的變化。
對於CPU,讀者已經很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如數家珍似地列出一長串。但談到CPU和其他大規模集成電路的封裝,知道的人未必很多。所謂封裝是指安裝半導體集成電路晶元用的外殼,它不僅起著安放、固定、密封、保護晶元和增強電熱性能的作用,而且還是溝通晶元內部世界與外部電路的橋梁--晶元上的接點用導線連接到封裝外殼的引腳上,這些引腳又通過印製板上的導線與其他器件建立連接。因此,封裝對CPU和其他LSI集成電路都起著重要的作用。新一代CPU的出現常常伴隨著新的封裝形式的使用。
晶元的封裝技術已經歷了好幾代的變遷,從DIP、QFP、PGA、BGA到CSP再到MCM,技術指標一代比一代先進,包括晶元面積與封裝面積之比越來越接近於1,適用頻率越來越高,耐溫性能越來越好,引腳數增多,引腳間距減小,重量減小,可靠性提高,使用更加方便等等。
下面將對具體的封裝形式作詳細說明。
一、DIP封裝
70年代流行的是雙列直插封裝,簡稱DIP(Dual In-line Package)。DIP封裝結構具有以下特點:
1.適合PCB的穿孔安裝;
2.比TO型封裝(圖1)易於對PCB布線;
3.操作方便。
DIP封裝結構形式有:多層陶瓷雙列直插式DIP,單層陶瓷雙列直插式DIP,引線框架式DIP(含玻璃陶瓷封接式,塑料包封結構式,陶瓷低熔玻璃封裝式),如圖2所示。
衡量一個晶元封裝技術先進與否的重要指標是晶元面積與封裝面積之比,這個比值越接近1越好。以採用40根I/O引腳塑料包封雙列直插式封裝(PDIP)的CPU為例,其晶元面積/封裝面積=3×3/15.24×50=1:86,離1相差很遠。不難看出,這種封裝尺寸遠比晶元大,說明封裝效率很低,佔去了很多有效安裝面積。
Intel公司這期間的CPU如8086、80286都採用PDIP封裝。
二、晶元載體封裝
80年代出現了晶元載體封裝,其中有陶瓷無引線晶元載體LCCC(Leadless Ceramic Chip Carrier)、塑料有引線晶元載體PLCC(Plastic Leaded Chip Carrier)、小尺寸封裝SOP(Small Outline Package)、塑料四邊引出扁平封裝PQFP(Plastic Quad Flat Package),封裝結構形式如圖3、圖4和圖5所示。
以0.5mm焊區中心距,208根I/O引腳的QFP封裝的CPU為例,外形尺寸28×28mm,晶元尺寸10×10mm,則晶元面積/封裝面積=10×10/28×28=1:7.8,由此可見QFP比DIP的封裝尺寸大大減小。QFP的特點是:
1.適合用SMT表面安裝技術在PCB上安裝布線;
2.封裝外形尺寸小,寄生參數減小,適合高頻應用;
3.操作方便;
4.可靠性高。
在這期間,Intel公司的CPU,如Intel 80386就採用塑料四邊引出扁平封裝PQFP。
三、BGA封裝
90年代隨著集成技術的進步、設備的改進和深亞微米技術的使用,LSI、VLSI、ULSI相繼出現,硅單晶元集成度不斷提高,對集成電路封裝要求更加嚴格,I/O引腳數急劇增加,功耗也隨之增大。為滿足發展的需要,在原有封裝品種基礎上,又增添了新的品種--球柵陣列封裝,簡稱BGA(Ball Grid Array Package)。如圖6所示。
BGA一出現便成為CPU、南北橋等VLSI晶元的高密度、高性能、多功能及高I/O引腳封裝的最佳選擇。其特點有:
1.I/O引腳數雖然增多,但引腳間距遠大於QFP,從而提高了組裝成品率;
2.雖然它的功耗增加,但BGA能用可控塌陷晶元法焊接,簡稱C4焊接,從而可以改善它的電熱性能:
3.厚度比QFP減少1/2以上,重量減輕3/4以上;
4.寄生參數減小,信號傳輸延遲小,使用頻率大大提高;
5.組裝可用共面焊接,可靠性高;
6.BGA封裝仍與QFP、PGA一樣,佔用基板面積過大;
Intel公司對這種集成度很高(單晶元里達300萬只以上晶體管),功耗很大的CPU晶元,如Pentium、Pentium Pro、Pentium Ⅱ採用陶瓷針柵陣列封裝CPGA和陶瓷球柵陣列封裝CBGA,並在外殼上安裝微型排風扇散熱,從而達到電路的穩定可靠工作。
四、面向未來的新的封裝技術
BGA封裝比QFP先進,更比PGA好,但它的晶元面積/封裝面積的比值仍很低。
Tessera公司在BGA基礎上做了改進,研製出另一種稱為μBGA的封裝技術,按0.5mm焊區中心距,晶元面積/封裝面積的比為1:4,比BGA前進了一大步。
1994年9月日本三菱電氣研究出一種晶元面積/封裝面積=1:1.1的封裝結構,其封裝外形尺寸只比裸晶元大一點點。也就是說,單個IC晶元有多大,封裝尺寸就有多大,從而誕生了一種新的封裝形式,命名為晶元尺寸封裝,簡稱CSP(Chip Size Package或Chip Scale Package)。CSP封裝具有以下特點:
1.滿足了LSI晶元引出腳不斷增加的需要;
2.解決了IC裸晶元不能進行交流參數測試和老化篩選的問題;
3.封裝面積縮小到BGA的1/4至1/10,延遲時間縮小到極短。
曾有人想,當單晶元一時還達不到多種晶元的集成度時,能否將高集成度、高性能、高可靠的CSP晶元(用LSI或IC)和專用集成電路晶元(ASIC)在高密度多層互聯基板上用表面安裝技術(SMT)組裝成為多種多樣電子組件、子系統或系統。由這種想法產生出多晶元組件MCM(Multi Chip Model)。它將對現代化的計算機、自動化、通訊業等領域產生重大影響。MCM的特點有:
1.封裝延遲時間縮小,易於實現組件高速化;
2.縮小整機/組件封裝尺寸和重量,一般體積減小1/4,重量減輕1/3;
3.可靠性大大提高。
隨著LSI設計技術和工藝的進步及深亞微米技術和微細化縮小晶元尺寸等技術的使用,人們產生了將多個LSI晶元組裝在一個精密多層布線的外殼內形成MCM產品的想法。進一步又產生另一種想法:把多種晶元的電路集成在一個大圓片上,從而又導致了封裝由單個小晶元級轉向硅圓片級(wafer level)封裝的變革,由此引出系統級晶元SOC(System On Chip)和電腦級晶元PCOC(PC On Chip)。
隨著CPU和其他ULSI電路的進步,集成電路的封裝形式也將有相應的發展,而封裝形式的進步又將反過來促成晶元技術向前發展。

6. THT 和 DIP有什麼不同,DIP是指直插式封裝,THT是指通空插裝技術,為什麼有人要說DIP呢

THT是指through-hole technology通孔插裝技術
DIP是Dual In-line pin package指雙列直插式封裝技術,DIP封裝,雙入線封裝,DRAM的一種元件封裝形式。指採用雙列直插形式封裝的集成電路晶元,絕大多數中小規模集成電路均採用這種封裝形式,其引腳數一般不超過100。
所以從上來看,THT是指一種技術,而DIP是指需要用到這種封裝技術的一種晶元。 不知道我理解得對不對?

7. 集成電路是怎樣製造出來

集成電路是制復造過製程:
集成電路(integrated circuit)是一種微型電子器件或部件。採用一定的工藝,把一個電路中所需的晶體管、電阻、電容和電感等元件及布線互連一起,製作在一小塊或幾小塊半導體晶片或介質基片上,然後封裝在一個管殼內,成為具有所需電路功能的微型結構;其中所有元件在結構上已組成一個整體,使電子元件向著微小型化、低功耗、智能化和高可靠性方面邁進了一大步。它在電路中用字母「IC」表示。集成電路發明者為傑克·基爾比(基於鍺(Ge)的集成電路)和羅伯特·諾伊思(基於硅(Si)的集成電路)。當今半導體工業大多數應用的是基於硅的集成電路。

8. 跪求(集成電路晶元封裝技術的發展前景)

先進的晶元尺寸封裝(CSP)技術及其發展前景
2007/4/20/19:53 來源:微電子封裝技術

汽車電子裝置和其他消費類電子產品的飛速發展,微電子封裝技術面臨著電子產品「高性價比、高可靠性、多功能、小型化及低成本」發展趨勢帶來的挑戰和機遇。QFP(四邊引腳扁平封裝)、TQFP(塑料四邊引腳扁平封裝)作為表面安裝技術(SMT)的主流封裝形式一直受到業界的青睞,但當它們在0.3mm引腳間距極限下進行封裝、貼裝、焊接更多的I/O引腳的VLSI時遇到了難以克服的困難,尤其是在批量生產的情況下,成品率將大幅下降。因此以面陣列、球形凸點為I/O的BGA(球柵陣列)應運而生,以它為基礎繼而又發展為晶元尺寸封裝(ChipScalePackage,簡稱CSP)技術。採用新型的CSP技術可以確保VLSI在高性能、高可靠性的前提下實現晶元的最小尺寸封裝(接近裸晶元的尺寸),而相對成本卻更低,因此符合電子產品小型化的發展潮流,是極具市場競爭力的高密度封裝形式。

CSP技術的出現為以裸晶元安裝為基礎的先進封裝技術的發展,如多晶元組件(MCM)、晶元直接安裝(DCA),注入了新的活力,拓寬了高性能、高密度封裝的研發思路。在MCM技術面臨裸晶元難以儲運、測試、老化篩選等問題時,CSP技術使這種高密度封裝設計柳暗花明。

2CSP技術的特點及分類

2.1CSP之特點

根據J-STD-012標準的定義,CSP是指封裝尺寸不超過裸晶元1.2倍的一種先進的封裝形式[1]。CSP實際上是在原有晶元封裝技術尤其是BGA小型化過程中形成的,有人稱之為μBGA(微型球柵陣列,現在僅將它劃為CSP的一種形式),因此它自然地具有BGA封裝技術的許多優點。

(1)封裝尺寸小,可滿足高密封裝CSP是目前體積最小的VLSI封裝之一,引腳數(I/O數)相同的CSP封裝與QFP、BGA尺寸比較情況見表1[2]。

由表1可見,封裝引腳數越多的CSP尺寸遠比傳統封裝形式小,易於實現高密度封裝,在IC規模不斷擴大的情況下,競爭優勢十分明顯,因而已經引起了IC製造業界的關注。

一般地,CSP封裝面積不到0.5mm節距QFP的1/10,只有BGA的1/3~1/10[3]。在各種相同尺寸的晶元封裝中,CSP可容納的引腳數最多,適宜進行多引腳數封裝,甚至可以應用在I/O數超過2000的高性能晶元上。例如,引腳節距為0.5mm,封裝尺寸為40×40的QFP,引腳數最多為304根,若要增加引腳數,只能減小引腳節距,但在傳統工藝條件下,QFP難以突破0.3mm的技術極限;與CSP相提並論的是BGA封裝,它的引腳數可達600~1000根,但值得重視的是,在引腳數相同的情況下,CSP的組裝遠比BGA容易。

(2)電學性能優良CSP的內部布線長度(僅為0.8~1.0mm)比QFP或BGA的布線長度短得多[4],寄生引線電容(<0.001mΩ)、引線電阻(<0.001nH)及引線電感(<0.001pF)均很小,從而使信號傳輸延遲大為縮短。CSP的存取時間比QFP或BGA短1/5~1/6左右,同時CSP的抗噪能力強,開關雜訊只有DIP(雙列直插式封裝)的1/2。這些主要電學性能指標已經接近裸晶元的水平,在時鍾頻率已超過雙G的高速通信領域,LSI晶元的CSP將是十分理想的選擇。

(3)測試、篩選、老化容易MCM技術是當今最高效、最先進的高密度封裝之一,其技術核心是採用裸晶元安裝,優點是無內部晶元封裝延遲及大幅度提高了組件封裝密度,因此未來市場令人樂觀。但它的裸晶元測試、篩選、老化問題至今尚未解決,合格裸晶元的獲得比較困難,導致成品率相當低,製造成本很高[4];而CSP則可進行全面老化、篩選、測試,並且操作、修整方便,能獲得真正的KGD晶元,在目前情況下用CSP替代裸晶元安裝勢在必行。

(4)散熱性能優良CSP封裝通過焊球與PCB連接,由於接觸面積大,所以晶元在運行時所產生的熱量可以很容易地傳導到PCB上並散發出去;而傳統的TSOP(薄型小外形封裝)方式中,晶元是通過引腳焊在PCB上的,焊點和pcb板的接觸面積小,使晶元向PCB板散熱就相對困難。測試結果表明,通過傳導方式的散熱量可佔到80%以上。

同時,CSP晶元正面向下安裝,可以從背面散熱,且散熱效果良好,10mm×10mmCSP的熱阻為35℃/W,而TSOP、QFP的熱阻則可達40℃/W。若通過散熱片強製冷卻,CSP的熱阻可降低到4.2,而QFP的則為11.8[3]。

(5)封裝內無需填料大多數CSP封裝中凸點和熱塑性粘合劑的彈性很好,不會因晶片與基底熱膨脹系數不同而造成應力,因此也就不必在底部填料(underfill),省去了填料時間和填料費用[5],這在傳統的SMT封裝中是不可能的。

(6)製造工藝、設備的兼容性好CSP與現有的SMT工藝和基礎設備的兼容性好,而且它的引腳間距完全符合當前使用的SMT標准(0.5~1mm),無需對PCB進行專門設計,而且組裝容易,因此完全可以利用現有的半導體工藝設備、組裝技術組織生產。

2.2CSP的基本結構及分類

CSP的結構主要有4部分:IC晶元,互連層,焊球(或凸點、焊柱),保護層。互連層是通過載帶自動焊接(TAB)、引線鍵合(WB)、倒裝晶元(FC)等方法來實現晶元與焊球(或凸點、焊柱)之間內部連接的,是CSP封裝的關鍵組成部分。CSP的典型結構如圖1所示[6]。

目前全球有50多家IC廠商生產各種結構的CSP產品。根據目前各廠商的開發情況,可將CSP封裝分為下列5種主要類別[7、3]:

(1)柔性基板封裝(FlexCircuitInterposer)由美國Tessera公司開發的這類CSP封裝的基本結構如圖2所示。主要由IC晶元、載帶(柔性體)、粘接層、凸點(銅/鎳)等構成。載帶是用聚醯亞胺和銅箔組成。它的主要特點是結構簡單,可靠性高,安裝方便,可利用原有的TAB(TapeAutomatedBonding)設備焊接。

(2)剛性基板封裝(RigidSubstrateInterposer)由日本Toshiba公司開發的這類CSP封裝,實際上就是一種陶瓷基板薄型封裝,其基本結構見圖3。它主要由晶元、氧化鋁(Al2O3)基板、銅(Au)凸點和樹脂構成。通過倒裝焊、樹脂填充和列印3個步驟完成。它的封裝效率(晶元與基板面積之比)可達到75%,是相同尺寸的TQFP的2.5倍。

(3)引線框架式CSP封裝(CustomLeadFrame)由日本Fujitsu公司開發的此類CSP封裝基本結構如圖4所示。它分為Tape-LOC和MF-LOC

兩種形式,將晶元安裝在引線框架上,引線框架作為外引腳,因此不需要製作焊料凸點,可實現晶元與外部的互連。它通常分為Tape-LOC和MF-LOC兩種形式。

(4)圓片級CSP封裝(Wafer-LevelPackage)由ChipScale公司開發的此類封裝見圖5。它是在圓片前道工序完成後,直接對圓片利用半導體工藝進行後續組件封裝,利用劃片槽構造周邊互連,再切割分離成單個器件。WLP主要包括兩項關鍵技術即再分布技術和凸焊點製作技術。它有以下特點:①相當於裸片大小的小型組件(在最後工序切割分片);②以圓片為單位的加工成本(圓片成本率同步成本);③加工精度高(由於圓片的平坦性、精度的穩定性)。

(5)微小模塑型CSP(MinuteMold)由日本三菱電機公司開發的CSP結構如圖6所示。它主要由IC晶元、模塑的樹脂和凸點等構成。晶元上的焊區通過在晶元上的金屬布線與凸點實現互連,整個晶元澆鑄在樹脂上,只留下外部觸點。這種結構可實現很高的引腳數,有利於提高晶元的電學性能、減少封裝尺寸、提高可靠性,完全可以滿足儲存器、高頻器件和邏輯器件的高I/O數需求。同時由於它無引線框架和焊絲等,體積特別小,提高了封裝效率。

除以上列舉的5類封裝結構外,還有許多符合CSP定義的封裝結構形式如μBGA、焊區陣列CSP、疊層型CSP(一種多晶元三維封裝)等。

3CSP封裝技術展望

3.1有待進一步研究解決的問題

盡管CSP具有眾多的優點,但作為一種新型的封裝技術,難免還存在著一些不完善之處。

(1)標准化每個公司都有自己的發展戰略,任何新技術都會存在標准化不夠的問題。尤其當各種不同形式的CSP融入成熟產品中時,標准化是一個極大的障礙[8]。例如對於不同尺寸的晶元,目前有多種CSP形式在開發,因此組裝廠商要有不同的管座和載體等各種基礎材料來支撐,由於器件品種多,對材料的要求也多種多樣,導致技術上的靈活性很差。另外沒有統一的可靠性數據也是一個突出的問題。CSP要獲得市場准入,生產廠商必須提供可靠性數據,以盡快制訂相應的標准。CSP迫切需要標准化,設計人員都希望封裝有統一的規格,而不必進行個體設計。為了實現這一目標,器件必須規范外型尺寸、電特性參數和引腳面積等,只有採用全球通行的封裝標准,它的效果才最理想[9]。

(2)可靠性可靠性測試已經成為微電子產品設計和製造一個重要環節。CSP常常應用在VLSI晶元的制備中,返修成本比低端的QFP要高,CSP的系統可靠性要比採用傳統的SMT封裝更敏感,因此可靠性問題至關重要。雖然汽車及工業電子產品對封裝要求不高,但要能適應惡劣的環境,例如在高溫、高濕下工作,可靠性就是一個主要問題。另外,隨著新材料、新工藝的應用,傳統的可靠性定義、標准及質量保證體系已不能完全適用於CSP開發與製造,需要有新的、系統的方法來確保CSP的質量和可靠性,例如採用可靠性設計、過程式控制制、專用環境加速試驗、可信度分析預測等。

可以說,可靠性問題的有效解決將是CSP成功的關鍵所在[10,11]。
(3)成本價格始終是影響產品(尤其是低端產品)市場競爭力的最敏感因素之一。盡管從長遠來看,更小更薄、高性價比的CSP封裝成本比其他封裝每年下降幅度要大,但在短期內攻克成本這個障礙仍是一個較大的挑戰[10]。

目前CSP是價格比較高,其高密度光板的可用性、測試隱藏的焊接點所存在的困難(必須藉助於X射線機)、對返修技術的生疏、生產批量大小以及涉及局部修改的問題,都影響了產品系統級的價格比常規的BGA器件或TSOP/TSSOP/SSOP器件成本要高。但是隨著技術的發展、設備的改進,價格將會不斷下降。目前許多製造商正在積極採取措施降低CSP價格以滿足日益增長的市場需求。

隨著便攜產品小型化、OEM(初始設備製造)廠商組裝能力的提高及矽片工藝成本的不斷下降,圓片級CSP封裝又是在晶圓片上進行的,因而在成本方面具有較強的競爭力,是最具價格優勢的CSP封裝形式,並將最終成為性能價格比最高的封裝。

此外,還存在著如何與CSP配套的一系列問題,如細節距、多引腳的PWB微孔板技術與設備開發、CSP在板上的通用安裝技術[12]等,也是目前CSP廠商迫切需要解決的難題。

3.2CSP的未來發展趨勢

(1)技術走向終端產品的尺寸會影響攜帶型產品的市場同時也驅動著CSP的市場。要為用戶提供性能最高和尺寸最小的產品,CSP是最佳的封裝形式。順應電子產品小型化發展的的潮流,IC製造商正致力於開發0.3mm甚至更小的、尤其是具有盡可能多I/O數的CSP產品。據美國半導體工業協會預測,目前CSP最小節距相當於2010年時的BGA水平(0.50mm),而2010年的CSP最小節距相當於目前的倒裝晶元(0.25mm)水平。

由於現有封裝形式的優點各有千秋,實現各種封裝的優勢互補及資源有效整合是目前可以採用的快速、低成本的提高IC產品性能的一條途徑。例如在同一塊PWB上根據需要同時納入SMT、DCA,BGA,CSP封裝形式(如EPOC技術)。目前這種混合技術正在受到重視,國外一些結構正就此開展深入研究。

對高性價比的追求是圓片級CSP被廣泛運用的驅動力。近年來WLP封裝因其寄生參數小、性能高且尺寸更小(己接近晶元本身尺寸)、成本不斷下降的優勢,越來越受到業界的重視。WLP從晶圓片開始到做出器件,整個工藝流程一起完成,並可利用現有的標准SMT設備,生產計劃和生產的組織可以做到最優化;硅加工工藝和封裝測試可以在矽片生產線上進行而不必把晶圓送到別的地方去進行封裝測試;測試可以在切割CSP封裝產品之前一次完成,因而節省了測試的開支。總之,WLP成為未來CSP的主流已是大勢所驅[13~15]。

(2)應用領域CSP封裝擁有眾多TSOP和BGA封裝所無法比擬的優點,它代表了微小型封裝技術發展的方向。一方面,CSP將繼續鞏固在存儲器(如快閃記憶體、SRAM和高速DRAM)中應用並成為高性能內存封裝的主流;另一方面會逐步開拓新的應用領域,尤其在網路、數字信號處理器(DSP)、混合信號和RF領域、專用集成電路(ASIC)、微控制器、電子顯示屏等方面將會大有作為,例如受數字化技術驅動,便攜產品廠商正在擴大CSP在DSP中的應用,美國TI公司生產的CSP封裝DSP產品目前已達到90%以上。

此外,CSP在無源器件的應用也正在受到重視,研究表明,CSP的電阻、電容網路由於減少了焊接連接數,封裝尺寸大大減小,且可靠性明顯得到改善。
(3)市場預測CSP技術剛形成時產量很小,1998年才進入批量生產,但近兩年的發展勢頭則今非昔比,2002年的銷售收入已達10.95億美元,佔到IC市場的5%左右。國外權威機構「ElectronicTrendPublications」預測,全球CSP的市場需求量年內將達到64.81億枚,2004年為88.71億枚,2005年將突破百億枚大關,達103.73億枚,2006年更可望增加到126.71億枚。尤其在存儲器方面應用更快,預計年增長幅度將高達54.9%。

閱讀全文

與集成電路晶元封裝技術相關的資料

熱點內容
家用電器腳架 瀏覽:298
廣州尚豪傢具 瀏覽:104
雞西舊家電市場在哪裡 瀏覽:330
衛生間插座不帶防水罩怎麼辦 瀏覽:941
防水噴罐多少錢 瀏覽:690
愛仕達售後廈門維修點查詢 瀏覽:43
11件套傢具都有哪些 瀏覽:983
河北香合市雙葉實木傢具如何加盟 瀏覽:216
平台地磚下防水層用什麼好 瀏覽:802
石家莊傢具組裝工招聘 瀏覽:18
家電行業為什麼周期性行業嗎 瀏覽:990
F4星和原木傢具哪個環保 瀏覽:580
北京ipad售後維修地址 瀏覽:885
鐵床上的漆綉沒了怎麼翻新 瀏覽:52
活線電路 瀏覽:167
電子管話筒放大器電路圖 瀏覽:774
邵武市哪裡買傢具價格最低 瀏覽:322
明代傢具珍賞 瀏覽:347
寶馬8速變速箱維修視頻 瀏覽:704
胡桃色傢具怎麼染 瀏覽:819