❶ 直流電機可控硅調速電路圖
如圖所示:
可控硅是P1N1P2N2四層三端結構元件,共有三個PN結,分析原理時,可以把它看作由一個PNP管和一個NPN管所組成,其等效圖解如右圖所示。
雙向可控硅:雙向可控硅是一種硅可控整流器件,也稱作雙向晶閘管。這種器件在電路中能夠實現交流電的無觸點控制,以小電流控制大電流,具有無火花、動作快、壽命長、可靠性高以及簡化電路結構等優點。從外表上看,雙向可控硅和普通可控硅很相似,也有三個電極。
但是,它除了其中一個電極G仍叫做控制極外,另外兩個電極通常卻不再叫做陽極和陰極,而統稱為主電極Tl和T2。
晶閘管(即可控硅)調速技術在直流電動機調速系統的運用,逐漸發展成為一門高科技電子自動化控制學科,晶閘管(可控硅)直流調速系統的自動化程度越來越成熟。
這不僅是經濟性與可靠性的大大提高,而且使先進的自動化技術有了更廣闊的運用,大大促進了社會生產力的進步,簡單說來,主要由以下幾點:
1、首先是直流電動機的調速性能好,調速范圍廣,從零速到預定速度,非常易於平滑調速,即無極調速;
2、啟動、制動力矩大,易於快速啟動和制動,尤其是低速啟動效果非常好;
3、過載能力強,能承受較為頻繁、較大的沖擊載荷。
(1)可控硅整流電路圖擴展閱讀
直流電動機晶閘管(可控硅)調速裝置這些優點,是非常適合於客運索道的使用范疇,比如:低速大扭矩,客運索道的運載力是相當大的,尤其是在必要時刻要做出一定的速度調節。
在實際的運用中,無論是速度如何調節,客運索道的直流調速系統總是能夠使直流電動機輸出足夠的扭矩,使客運索道的速度都能夠平滑穩定地運行自如,這就足可見到晶閘管(可控硅)調速系統的可靠性,同時還可以滿足直流電動機的良好的啟動和制動性能。
晶閘管(可控硅)調速裝置的種類很多,在客運索道中直流電動機的可控硅直流調速裝置最為廣泛運用的是可編程式控制制晶閘管數字觸發器,是一種集成電路組成,可由用戶現場編程和配置內部參數。
從而獲得所需要的功能,輸出觸發脈沖安全可靠,電路響應速度快,可提高觸發脈沖的對稱性和穩定性。這種調速裝置的特點就是體積小,移相范圍寬,靈敏度高,操作簡單,安全可靠,控制精度高等優點,在業界受到很好的評價。
直流電動機盡管比交流電動機有著良好的調速性能,但是與交流電動機相比,它的一些缺點卻始終不能彌補的,比如:
1、直流電動機的結構復雜,具有碳刷和整流子,滑環和碳刷需要經常維護或更換,碳刷在運轉過程中還會產生火花。
這不僅僅是製造成本和維護成本的增加,電動機的容量都受到一定的限制,使用環境也不能在易爆氣體及塵埃較多的場合下使用;
2、由於直流電動機具有換向器的結構,所以它的結構強度上就受到了一定的約束,它的轉速一般僅為每分鍾幾百轉到一千轉,而交流電動機每分鍾最高可達幾千轉,在轉速上,交流電動機比直流電動機有著更絕對的優勢。
除此之外,直流電動機受換向的限制,電樞電壓也受到限制,最高只能做到一千多伏,而交流電動機可達10 千伏,甚至還高,所有的直流電動機的缺點,交流電動機幾乎都可以來彌補。
❷ 可控硅調壓電路原理
假設你可控來硅一直導通 那麼源還是正弦波
假設220v 一個周期內 導通了一半時間 那麼只剩下 半個周期的波形
但是你不知道什麼時候開始導通 所以是否把峰值給關斷了並不知道
所以要過零檢測 過零了再開始控制可控硅
它的本質是 控制通電時間例如百分百 變成了百分二十
❸ 求一張可控硅開關電路圖,用來控制電容放電(450V1000UF*4並聯)
可控硅是一種新型的半導體器件,它有體積小,重量輕,效率高,壽命長,動作快以及使用方便等優點。目前,交流調壓器多採用可控硅調壓。下面介紹的是一種用可控硅為主要器件來實現自動調壓的電路。 2 總體設計方案 2.1 可控硅交流調壓電路設計思路 (1)電網提供220伏(有效值)50赫茲,通過整流電路變成單向的脈動 電流。 (2)將單向脈動支流電送到可控硅,經電阻降壓,作為觸發電路的直流電源。 (3)通過對電容的沖放電來控制張弛振盪器。 (4)形成一個尖脈沖送到可控硅的控制極。 (5)調節電阻的阻值可改變電容的沖放電時間,來改變可控硅的導通時刻從而改變輸出電壓。 2.2 可控硅交流調壓電路的原理方框圖如圖1所示 圖1 可控硅交流調壓方框圖 (1)整流電路採用橋式整流,將220伏,50赫茲交流電壓變為脈動直流電。 (2)抗干擾電路為普通電源抗干擾電路。 (3)可控硅控制電路採用可控硅和降壓電阻組成。 (4)張弛振盪器由單結晶體管和電阻組成。 (5)沖放電電路有電阻和可變電阻及電容組成。 2.3 電路原理圖 圖2 交流調壓電路的原理圖 2.4 工作原理 圖中TVP抗干擾普通電源電路。採用雙向TVP管子。它對於電網的尖脈沖電壓和雷電疊加電壓等等干擾超過去額定的數值量,都能有效的吸 收。 整流電路採用橋式整流,由4隻二極體組成,D1,D2,D3,D4組成。雙基極二極體組成張弛真振盪器作為可控硅的同步觸發電路。當調壓器接上市電後220伏交流電通過負載電阻Rc,二極體D1到D4整流,在可控硅SCH的A ,K兩極形成一個脈動的直流電壓。該電壓由電阻R1降壓後作為觸發電路的直流電源。在交流的正半周時,整流電路通過電阻R1,可變電阻W1對電容充電。當充電電壓T1管的峰值電壓Up時,管子由截止變為導通。於是電容C通過T1管的e1,b1結和R2迅速的放電,結果在R2上獲得一個尖脈沖。這個脈沖作為控制信號送到可控硅SCR的控制極,使可控硅導通。可控硅導通後的管壓降很低,一般小於1伏,所以張弛振盪器停止工作。當交流電通過0點時,可控硅自行關斷。當交流電在負半周時C又重新充電…周而復始。改變可變電阻的阻值可改變電容的沖放電時間,從而改變可控硅的導通時刻,來改變負載上的的輸出電壓。 2.5 參數的選擇 (1)二極體D1,D2,D3,D4於300伏,整流電流大於0.3安的硅流二極體。型號2CZ21B, 2CZ83E。 (2)晶閘管選用正向與反向電壓大於300伏,額定平均電流大於1安的可控硅整流器件。型號 國產3CT。 (3)調壓電位器選用阻值圍470千歐的WH114—1型的合成炭膜電位器。 (4)電阻R1選用功率為1瓦的金屬膜電阻。 (5)電阻R2,R3,R4選用功率為1/8瓦的炭膜電阻。 參考文獻 [1] 崔體人.元器件選用大全 .杭州:浙江科學出版社 1998。 [2] 方德壽.實用電子技術手冊 .北京:國防工業出版社 1999。 [3] 謝自美.電子線路設計實驗測試 .武漢:華中理工大學出版社 1994。 [4] 電氣學會編.電工電子技術手冊.北京:科學出版社 2004。 心得體會 這次實習給我的最大感受就是自己的知識太貧乏。拿到這個題目後卻不知道如何下手了。平時學的知識都很零碎的存在腦袋裡。用的時候去不能系統的組織起來。還有就是自己的計算機知識太差勁了,連以前過的計算機基礎知識,由於經常不用而忘記了。所以設計這電路費了很大的勁。 剛開始對電路不很懂。不過通過這些實習。我理解了交流調壓電路的原理,功能,作用。還有許多參數,每一步都不好走。終於把它給弄明白了。 通過這次實習讓我學會了查資料。以前都沒怎麼進圖書館。開始設時,為了一個參數的選擇,不得不在圖書館翻一本又一本的厚厚的書。還有為了看論文的格式而瀏覽了很多的網頁。真的快達到廢寢忘食的地步了。 實習讓我明白了平常都是眼高手低。很多東西決的自己會,其實知道的只是一些皮毛。我想學任何東西都是要深入進去的,而不是只學到表面的。我對自己的專業知識也有了一個新的認識,我知道還有很多東西需要自己去努力,認真的學習。
❹ 單向晶閘管的可控整流電路原理圖
1,可控整流:使整流電路輸出直流電壓的大小可以調節。
2,橋式半控整流電路:兩個橋臂整流元件採用晶閘管,其餘採用二極體的整流電路。
3,單相橋式半控整流電路。
❺ 求教可控硅和IGBT整流的原理和電路實現方法
一種大容量IGBT整流器控制技術1引言隨著現代微電子、功率元件、計算機的發展,整流器結構及其控制技術也得到了迅猛的進步。從二極體整流、可控硅整流,再到大容量igbt整流器,各種整流器都得到實際的應用。針對不同的技術需求,選擇不同的整流結構,同時採納了各種先進的控制技術。因此基於功率元件的通流能力和耐壓水平,選擇某種結構的整流器在傳動系統中至關重要;而其軟體控制技術也保障了傳動設備在現場安全運行。2大容量igbt整流器在大型冷軋廠的應用某冷軋廠主軋機五機架,主馬達功率最大為5750kw。包括捲曲機在內,總共採用了6套大容量傳動系統。在大容量傳動系統中,採用日立矢量變頻調速控制系統,其中整流器和逆變器功率元件均採用三菱3.3kv/1.2ka規格的igbt。每台整流器採用獨立直流母線給逆變器供電,而中容量和小容量傳動系統則採用公共直流母線。在整流器中採用pwm控制方式以及igbt功率元件,一方面其高功率因數節省電能的同時,另一方面能夠減少諧波,因此省去部分svc裝置。這套變頻裝置具有輸出電壓諧波小,功率因數高,調速精度高,系統動態特性好等諸多優點。同時由於全數字控制方式,整套系統在工藝調整、日常維護等方面簡潔方便並能准確查找故障。3igbt整流器控制原理igbt整流器一方面用來將電網電壓整流成直流電壓送往逆變器;同時也可以將反向制動產生的能量通過igbt逆變成網側頻率電壓送往電網。在igbt模塊中,與igbt元件還並聯一個二極體。此二極體在逆變器中常作續流二極體,將馬達反向制動過程的機械能量反饋回逆變輸入側。而在igbt整流器中,整流過程主要是依靠二極體進行全波整流,並不是依靠igbt進行整流,也不進行調壓,調頻調壓主要由逆變器實現;igbt元件的功能主要體現在提高功率因數為1,同時將系統回饋能量逆變成工頻電壓反饋回電網,如圖1所示。圖1大容量igbt整流器主迴路3.1日立變頻器三電平pwm控制技術整流器採用三電平系統整流電路,它將輸出直流電壓為edc通過鉗位二極體分為+edc/2、0和-edc/2三電平。採用三電平系統,可以有效的降低每個igbt承受的壓降,從而提高整流器容量。在三電平控制系統中,門極指令邏輯見表1。圖2為整流器的控制信號和波形示意圖。通過雙極性載波信號與一同步交流電壓比較,輸出門極控制脈寬調制信號,按照表1的指令邏輯,來控制igbt的導通[1]。表1igbt控制指令邏輯圖2igbt控制指令及波形五機架中大馬達額定電壓達1750v,額定電流可達1553a。這么高的電壓和大電流,如果採用高頻載波頻率,igbt發熱量也較高,對igbt裝置的損傷就較大。為了減少igbt的發熱量以延長使用壽命,為此載波頻率採用相對較低至600hz。但是這種控制方式帶來的結果可能會使輸出的電壓波形失真較高,影響控制精度等問題。為解決這個問題,採用預見性pwm控制技術,即先預測採用600hz頻率的載波頻率會給輸出pwm波帶來多少誤差,然後通過控制迴路輸出的pwm波形對其進行補償,使輸出的電壓波形更接近正弦波[1]。3.2輸出電壓控制結構[1]圖3整流器數字控制系統框架圖圖3為整流器數字控制系統框架圖,其所含基本結構如下:(1)自動電壓調節器(avr)avr控制可以在負載或電網波動時,通過反饋電壓和和指令電壓進行比較控制,保證輸出直流電壓與指令一致。avr採用比例積分pi環節,avr的輸出作為整流器矢量控制中有功電流的給定。(2)負荷補償整流裝置採用負荷補償環節,當負荷變化引起直流電壓波動時,該環節通過反饋到輸入環節可以減小該波動。負荷補償計算逆變器側功率的消耗變換,將功率波動計算結果作為整流器控制輸入的一部分,改變有功電流的給定,減少直流電壓的變化。(3)同步電源與pwm同步電源通過將網側電源變壓後得到;同步電源與高頻載波信號通過比較結構產生pwm。由於該系統為數字系統,在pwm的產生過程中,考慮到高功率因數的控制,採用了矢量控制技術,將網側無功控制為0。3.3諧波控制技術pwm變頻器輸出波形以接近正弦為目的,但是其輸出電壓中不可避免存在著諧波。對於制動能量反饋回電網的波形中也一樣存在。產生諧波的主要原因是:(1)在工程應用中,對pwm波形的生成往往採用規則采樣法或者專用集成電路器件,並不能保證脈寬調制序列波的波形面積與各段正弦波面積相等;(2)在實現控制時,為了防止逆變器同一橋臂上、下兩器件的同時導通而導致直流側短路,設置了一個導通時滯環節,這些因素不可避免的造成輸出波形有所失真[2][3]。對pwm波形作傅氏級數分析,可求得其k次諧波相電壓幅值的表達式為:其中:us—變頻器直流電壓;αi—以相位角表示的第i個脈沖起始/終了時刻;m—同步電壓半個周期內pwm脈沖波的個數。從上述公式可以看出,pwm整流器所帶來高次諧波的數量與載波的相位有很大關系。對於同一電網下多組大容量整流器運行,採用控制每組間載波相位差相配合,可以很好的消除一些諧波。假設兩組整流器運行在同一電網下,圖4為載波相位關系。圖(a)中兩個整流器單元載波相位相同,所以兩整流器產生的諧波也同相,因此體現在該系統電網上的諧波為它們之和;圖(b)中兩整流器載波相位相差180o(假設一個載波周期對應360o),那麼兩個整流器系統產生的某次諧波相位也將相差180o,幅值相反,則產生在電網上的合成諧波幅值則接近0。因此,對於n次諧波來說,可以通過設置同一電網下不同整流器載波相位差δφ並配合,來減少系統所產生的諧波[1]。,其中m為整流器單元個數。圖4載波相位與諧波的關系原理圖圖5現場調整載波相位前後電壓波形圖圖5中所示的兩個現場測試波形圖,圖a為整流器控制中未調整載波相位配合時諧波對網側的影響;圖b為將酸軋、連退和鍍鋅三條機組的整流器的pwm載波相位調整配合後網側輸入點電壓波形。因為現場整流器數量較多且復雜,每個整流器組具體調整的相位差由日方進行模擬得出。可以看出,調整載波相位配合後,諧波對網側電壓的影響明顯減小。3.4高功率因數控制技術功率因數控制在變頻器控制中是一個重要課題,對於電機節能有重要意義。但是變頻器功率元件和控制方式的不同,其整流電路的功率因數也不盡相同。見表2。表2不同整流器的功率因數及特點[2][3]③功率可以雙向傳遞,具有再生能力對於功率因數高的要求,便選擇pwm了整流電路,其中功率元件採用了igbt功率元件。通過基於igbt的控制系統可以很好的將功率因數控制為1,將能量從網側幾乎全部傳遞到馬達,同時將在反向制動時將能量反饋回電網。在這個功率因數控制中,採用矢量控制技術。其中電流調節器檢出電源側電流,通過(u,v,w)到(dfb,qfb)變換,將它分解為與電源電壓同相的有功分量iqf和與電源電壓正交的無功分量idfb。而將給定id*設定為0,並控制參數使兩個反饋值與給定值iq*和id*一致。由此,可以使輸入電壓與電流同相,也就是功率因數為1。另外,將自動電壓調節器和負荷補償環節的輸出作為有功電流給定來控制整流器輸出。圖6為功率因數控制過程中整流器矢量圖,圖a為非高功率因數參數矢量圖,可見vs和is相位不一致,所以輸入功率因數小於1;圖b為對整流器矢量控制後的矢量圖,vs和is被控制到同一相位,使輸入功率因數為1。圖6整流器向量圖4結束語這套大容量高功率因數整流器在冷軋廠的成功應用,保證了生產的穩定運行。在試運行階段,系統運行穩定,操作維護方便簡潔。在其控制系統中,運用了大量的新技術,低載波頻率和載波相位配合等技術的應用有效降低了諧波對電網的影響;同時,矢量控制高功率因數技術,保證了網側輸入功率因數達到1.0。
❻ 可控硅調壓整流橋線路圖誰有請賜教
網上一搜一大堆,你試過沒有?
網頁鏈接,網頁鏈接。
❼ 可控硅無觸點開關電路圖
晶閘管特性
可控硅為了能夠直觀地認識晶閘管的工作特性,大家先看這塊示教板(圖3)。晶閘管VS與小燈泡EL串聯起來,通過開關S接在直流電源上。注意陽極A是接電源的正極,陰極K接電源的負極,控制極G通過按鈕開關SB接在1.5V直流電源的正極(這里使用的是KP1型晶閘管,若採用KP5型,應接在3V直流電源的正極)。晶閘管與電源的這種連接方式叫做正向連接,也就是說,給晶閘管陽極和控制極所加的都是正向電壓。合上電源開關S,小燈泡不亮,說明晶閘管沒有導通;再按一下按鈕開關SB,給控制極輸入一個觸發電壓,小燈泡亮了,說明晶閘管導通了。這個演示實驗給了我們什麼啟發呢?
這個實驗告訴我們,要使晶閘管導通,一是在它的陽極A與陰極K之間外加正向電壓,二是在它的控制極G與陰極K之間輸入一個正向觸發電壓。晶閘管導通後,松開按鈕開關,去掉觸發電壓,仍然維持導通狀態。
晶閘管特點
"一觸即發"。但是,如果陽極或控制極外加的是反向電壓,晶閘管就不能導通。控制極的作用是通過外加正向觸發脈沖使晶閘管導通,卻不能使它關斷。那麼,用什麼方法才能使導通的晶閘管關斷呢?使導通的晶閘管關斷,可以斷開陽極電源(圖3中的開關S)或使陽極電流小於維持導通的最小值(稱為維持電流)。如果晶閘管陽極和陰極之間外加的是交流電壓或脈動直流電壓,那麼,在電壓過零時,晶閘管會自行關斷。
典型應用電路
鎖存器電路;
單向可控硅SCR振盪器;
SCR半波整流穩壓電源;
SCR全波整流穩壓電源;
雙向可控硅和固體繼電器(SSR);
抑制RF干擾的輔助電路。