Ⅰ 邏輯門電路的詳細介紹
CMOS門電路
由單極型MOS管構成的門電路稱為Mos門電路。MOS電路具有製造工藝簡單、功耗低、集成度高、電源電壓使用范圍寬、抗干擾能力強等優點,特別適用於大規模集成電路。MOS門電路按所用MOS管的不同可分為三種類型:第一種是由PMOS管構成的PMOS門電路,其工作速度較低;第二種是由NMOS管構成的NMOS門電路,工作速度比PMOS電路要高,但比不上TTL電路;第三種是由PMOS管和NMOS管兩種管子共同組成的互補型電路,稱為CMOS電路,CMOS電路的優點突出,其靜態功耗極低,抗干擾能力強,工作穩定可靠且開關速度也大大高於NMOS和PMOS電路,故得到了廣泛應用。
MOS管主要參數
1、開啟電壓VT
·開啟電壓(又稱閾值電壓):使得源極S和漏極D之間開始形成導電溝道所需的柵極電壓;
·標準的N溝道MOS管,VT約為3~6V;
·通過工藝上的改進,可以使MOS管的VT值降到2~3V。
2、直流輸入電阻RGS
·即在柵源極之間加的電壓與柵極電流之比
·這一特性有時以流過柵極的柵流表示
·MOS管的RGS可以很容易地超過1010Ω。
3、漏源擊穿電壓BVDS
·在VGS=0(增強型)的條件下,在增加漏源電壓過程中使ID開始劇增時的VDS稱為漏源擊穿電壓BVDS
·ID劇增的原因有下列兩個方面:(1)漏極附近耗盡層的雪崩擊穿,(2)漏源極間的穿通擊穿。
·有些MOS管中,其溝道長度較短,不斷增加VDS會使漏區的耗盡層一直擴展到源區,使溝道長度為零,即產生漏源間的穿通,穿通後,源區中的多數載流子,將直接受耗盡層電場的吸引,到達漏區,產生大的ID4、柵源擊穿電壓BVGS
·在增加柵源電壓過程中,使柵極電流IG由零開始劇增時的VGS,稱為柵源擊穿電壓BVGS。
5、低頻跨導gm
·在VDS為某一固定數值的條件下,漏極電流的微變數和引起這個變化的柵源電壓微變數之比稱為跨導
·gm反映了柵源電壓對漏極電流的控制能力
·是表徵MOS管放大能力的一個重要參數
·一般在十分之幾至幾mA/V的范圍內
6、導通電阻RON
·導通電阻RON說明了VDS對ID的影響,是漏極特性某一點切線的斜率的倒數
·在飽和區,ID幾乎不隨VDS改變,RON的數值很大,一般在幾十千歐到幾百千歐之間
·由於在數字電路中,MOS管導通時經常工作在VDS=0的狀態下,所以這時的導通電阻RON可用原點的RON來近似
·對一般的MOS管而言,RON的數值在幾百歐以內
7、極間電容
·三個電極之間都存在著極間電容:柵源電容CGS、柵漏電容CGD和漏源電容CDS
·CGS和CGD約為1~3pF
·CDS約在0.1~1pF之間
8、低頻雜訊系數NF
·雜訊是由管子內部載流子運動的不規則性所引起的
·由於它的存在,就使一個放大器即便在沒有信號輸人時,在輸出端也出現不規則的電壓或電流變化
·雜訊性能的大小通常用雜訊系數NF來表示,它的單位為分貝(dB)
·這個數值越小,代表管子所產生的雜訊越小
·低頻雜訊系數是在低頻范圍內測出的雜訊系數
·場效應管的雜訊系數約為幾個分貝,它比雙極性三極體的要小
CMOS反相器
CMOS邏輯門電路是在TTL電路問世之後,所開發出的第二種廣泛應用的數字集成器件,從發展趨勢來看,由於製造工藝的改進,CMOS電路的性能有可能超越TTL而成為佔主導地位的邏輯器件。CMOS電路的工作速度可與TTL相比較,而它的功耗和抗干擾能力則遠優於TTL。此外,幾乎所有的超大規模存儲器件,以及PLD器件都採用CMOS藝製造,且費用較低。早期生產的CMOS門電路為4000系列,隨後發展為4000B系列。當前與TTL兼容的CMO器件如74HCT系列等可與TTL器件交換使用。MOSFET有P溝道和N溝道兩種,每種中又有耗盡型和增強型兩類。由N溝道和P溝道兩種MOSFET組成的電路稱為互補MOS或CMOS電路。CMOS反相器電路,由兩只增強型MOSFET組成,其中一個為N溝道結構,另一個為P溝道結構。為了電路能正常工作,要求電源電壓VDD大於兩個管子的開啟電壓的絕對值之和,即VDD>(VTN+|VTP|)。
CMOS門電路
1、與非門電路:包括兩個串聯的N溝道增強型MOS管和兩個並聯的P溝道增強型MOS管。每個輸入端連到一個N溝道和一個P溝道MOS管的柵極。當輸入端A、B中只要有一個為低電平時,就會使與它相連的NMOS管截止,與它相連的PMOS管導通,輸出為高電平;僅當A、B全為高電平時,才會使兩個串聯的NMOS管都導通,使兩個並聯的PMOS管都截止,輸出為低電平。因此,這種電路具有與非的邏輯功能,即n個輸入端的與非門必須有n個NMOS管串聯和n個PMOS管並聯。
2.或非門電路:包括兩個並聯的N溝道增強型MOS管和兩個串聯的P溝道增強型MOS管。當輸入端A、B中只要有一個為高電平時,就會使與它相連的NMOS管導通,與它相連的PMOS管截止,輸出為低電平;僅當A、B全為低電平時,兩個並聯NMOS管都截止,兩個串聯的PMOS管都導通,輸出為高電平。因此,這種電路具有或非的邏輯功能,其邏輯表達式為。顯然,n個輸入端的或非門必須有n個NMOS管並聯和n個PMOS管並聯。比較CMOS與非門和或非門可知,與非門的工作管是彼此串聯的,其輸出電壓隨管子個數的增加而增加;或非門則相反,工作管彼此並聯,對輸出電壓不致有明顯的影響。因而或非門用得較多。
3、異或門電路:它由一級或非門和一級與或非門組成。或非門的輸出。而與或非門的輸出L即為輸入A、B的異或如在異或門的後面增加一級反相器就構成異或非門,由於具有的功能,因而稱為同或門。
CMOS傳輸門
MOSFET的輸出特性在原點附近呈線性對稱關系,因而它們常用作模擬開關。模擬開關廣泛地用於取樣——保持電路、斬波電路、模數和數模轉換電路等。下面著重介紹CMOS傳輸門。所謂傳輸門(TG)就是一種傳輸模擬信號的模擬開關。CMOS傳輸門由一個P溝道和一個N溝道增強型MOSFET並聯而成,如上圖所示。TP和TN是結構對稱的器件,它們的漏極和源極是可互換的。設它們的開啟電壓|VT|=2V且輸入模擬信號的變化范圍為-5V到+5V。為使襯底與漏源極之間的PN結任何時刻都不致正偏,故TP的襯底接+5V電壓,而TN的襯底接-5V電壓。兩管的柵極由互補的信號電壓(+5V和-5V)來控制,分別用C和表示。傳輸門的工作情況如下:當C端接低電壓-5V時TN的柵壓即為-5V,vI取-5V到+5V范圍內的任意值時,TN均不導通。同時、TP的柵壓為+5V,TP亦不導通。可見,當C端接低電壓時,開關是斷開的。為使開關接通,可將C端接高電壓+5V。此時TN的柵壓為+5V,vI在-5V到+3V的范圍內,TN導通。同時TP的棚壓為-5V,vI在-3V到+5V的范圍內TP將導通。由上分析可知,當vI<-3V時,僅有TN導通,而當vI>+3V時,僅有TP導通當vI在-3V到+3V的范圍內,TN和TP兩管均導通。進一步分析還可看到,一管導通的程度愈深,另一管的導通程度則相應地減小。換句話說,當一管的導通電阻減小,則另一管的導通電阻就增加。由於兩管系並聯運行,可近似地認為開關的導通電阻近似為一常數。這是CMOS傳輸門的優點。在正常工作時,模擬開關的導通電阻值約為數百歐,當它與輸入阻抗為兆歐級的運放串接時。可以忽略不計。CMOS傳輸門除了作為傳輸模擬信號的開關之外,也可作為各種邏輯電路的基本單元電路。
Ⅱ 邏輯電路
是一種離散信號的傳遞和處理,以二進制為原理、實現數字信號邏輯運算和操作的版電權路。分組合邏輯電路和時序邏輯電路。前者由最基本的「與門」電路、「或門電路」和「非門」電路組成,其輸出值僅依賴於其輸入變數的當前值,與輸入變數的過去值無關—即不具記憶和存儲功能;後者也由上述基本邏輯門電路組成,但存在反饋迴路—它的輸出值不僅依賴於輸入變數的當前值,也依賴於輸入變數的過去值。由於只分高、低電平,抗干擾力強,精度和保密性佳。廣泛應用於計算機、數字控制、通信、自動化和儀表等方面。最基本的有與電路、或電路和非電路。
Ⅲ 基本邏輯門電路,邏輯功能有什麼
定義:
最基本的邏輯關系是與、或、非,最基本的邏輯門是與門、或門和非門。
實現「與」運算的叫 與門,實現「或」運算的叫 或門,實現「非」運算的叫非門,也叫做反相器,等等。
邏輯門是在集成電路(也稱:集成電路)上的基本組件。
邏輯功能:
高、低電平可以分別代表邏輯上的「真」與「假」或二進制當中的1和0,從而實現邏輯運算。常見的邏輯門包括「與」門,「或」門,「非」門,「異或」門(也稱:互斥或)等等。
邏輯門可以組合使用實現更為復雜的邏輯運算。
Ⅳ 邏輯門電路的基本概念
解: ,A輸入低電平0.3V,B、C均輸入高電平3.6V 時
由電路圖可知,這是3輸入與非門電路。輸入、輸出埠的邏輯表達式: F= ̄ABC(即ABC乘積後取反)
當A=0(按照邏輯門分析,低電平都=0,高電平=1),那麼只要ABC任意為0,輸出肯定可以為1。
具體分析:A=0,輸入A*B*C=0(低電平),那麼三極體T1 因為基極高電平、發射極低電平而飽和導通(T1為npn型)! T2 由於T1集電極低電平(原因的明白?)導致基極低電平,所以T2截止!T2截止導致T2發射極低電平,那麼T5基極也低電平,T5基極低電平必然會截止(npn三極體是基極高電平導通!低電平截止。T5是 NPN型)。
T1因發射極低電平導通,那麼基極必然由於基極—發射極關系,基極電位高於發射極0.6v(npn型硅三極體基極-發射極電壓關系)。因此有:0.6+0.3(注意條件:發射極低電平=0.3)=1V
輸出因為T2、T5截止(那麼相對於斷開了)T3、T4 因為基極高電平,必然導通!因此輸出F=+5v -(T3+T4的基極-發射極結壓0.6v)=3.6V
2, ABC均輸入高電平3.6V
那麼輸入T1發射極高電平,必然截止。截止必然其集電極是高電平,那麼T2因為基極高電平必然導通!
T2導通,集電極低電平,相對於拉低了T3的基極,T3基極低電平必然截止,T3發射極低電平導致T4基極低電平也截止!
Ⅳ 簡單的邏輯門電路 判斷各門電路輸出是什麼狀態(高電平,低電平還是高阻態)。已知這些都是74型TTL電路
1、高電平,有關。
2、低電平。
3、輸入端接電源,懸空或高阻(10k以上)相當於接高電平,接地為低電平,通過低阻接入電平信號則認為輸入信號與接入電平相同。則為OC門。
圖中的第一個輸入為高電平,電路為與非門,則輸出端電平為低電平;
第二圖輸入為低電平,在輸入端串聯了高阻值電阻,則輸出端為高阻狀態;
第三圖輸入為高電平,電路為與非門,則輸出端電平為低電平。
(5)邏輯們電路擴展閱讀:
與模擬電路相比,它主要進行數字信號的處理(即信號以0與1兩個狀態表示),因此抗干擾能力較強。數字集成電路有各種門電路、觸發器以及由它們構成的各種組合邏輯電路和時序邏輯電路。
一個數字系統一般由控制部件和運算部件組成,在時脈的驅動下,控制部件控制運算部件完成所要執行的動作。通過模擬數字轉換器、數字模擬轉換器,數字電路可以和模擬電路互相連接。
簡單的邏輯門可由晶體管組成。這些晶體管的組合可以使代表兩種信號的高低電平在通過它們之後產生高電平或者低電平的信號。
高、低電平可以分別代表邏輯上的「真」與「假」或二進制當中的1和0,從而實現邏輯運算。常見的邏輯門包括「與」閘,「或」閘,「非」閘,「異或」閘(也稱:互斥或)等等。
邏輯門是組成數字系統的基本結構,通常組合使用實現更為復雜的邏輯運算。一些廠商通過邏輯門的組合生產一些實用、小型、集成的產品,例如可編程邏輯器件等。
Ⅵ 基本邏輯門電路邏輯功能
基本邏輯門電路
1、三種基本的邏輯關系
1)、與邏輯(AND)
決定某一事件的所有條件都滿足時,結果才會發回生,這種條件和結果之間的關系稱為與邏輯關系。
2)、或邏輯(OR)
在決定某一事件的各個條件中,只要有一個或一個以上的條件具備,結果就會發生,這種條件與結果之間的關系稱為或邏輯關系。
3)、非邏輯(NOT)
當決定某一事件的條件不成立時,結果就會發生,條件成立時結果反而不會發生,這種條件和結果之間的關系稱為非邏輯關系。(相反)
2、邏輯變數
用來表示條件或事件的變數。常用大寫英文字母表示,如A、B、C、D…….
有0和1兩種取值。
1表示條件具備或事件發生
0表示條件不具備或事件不發生
3、門電路:
1)、門電路是數字電路的基本組成單元,它有一個或多個輸入端和一個輸出端,輸入和輸出為低電平和高電平,又稱為邏輯門電路。
2)、門電路分為
a、基本邏輯門電路:與門電路、答或門電路、非門電路
b、復合邏輯門電路
Ⅶ 基本的邏輯電路有哪些
邏輯電路按其邏輯功能和結構特點可分為組合邏輯電路和時序邏輯電路。
單一的與門回、或門、與非門答、或非門、非門等邏輯門不足以完成復雜的數字系統設計要求。組合邏輯電路是採用兩個或兩個以上基本邏輯門來實現更實用、復雜的邏輯功能。
一、組合邏輯電路的基本特點
組合邏輯電路是由與門、或門、非門、與非門、或非門等邏輯門電路組合而成的,組合邏輯電路不具有記憶功能,它的某一時刻的輸出直接由該時刻電路的輸入狀態所決定,與輸入信號作用前的電路狀態無關。
二、組合邏輯電路的分析方法
組合邏輯電路的分析方法一般按以下步驟進行:
1. 根據邏輯電路圖,由輸入到輸出逐級推導出輸出邏輯函數式。
2. 對邏輯函數式進行化簡和變換,得到最簡式。
3. 由化簡的邏輯函數式列出真值表。
4. 根據真值表分析、確定電路所完成的邏輯功能。
例1 分析如圖所示電路的邏輯功能。
Ⅷ 基本邏輯門電路邏輯功能是什麼
基本邏輯門電路有 與門 或門 非門
與門的邏輯關系式 F=A * B 其邏輯功能是輸入全1輸出為1 否則為0
或門的邏回輯關系答式 F=A+B 其邏輯功能是輸入全0輸出為0 否則為1
非門的邏輯關系式 F=A的非 其邏輯功能是輸入為0輸出為1 輸入為1輸出為0
Ⅸ 邏輯門電路的簡介
最基本的邏輯關系是與、或、非,最基本的邏輯門是與門、或門和非門。
實現「與」運算的叫 與門,實現「或」運算的叫 或門,實現「非」運算的叫非門,也叫做反相器,等等。
邏輯門是在集成電路(也稱:集成電路)上的基本組件。 邏輯門可以用電阻、電容、二極體、三極體等分立原件構成,成為分立元件門。也可以將門電路的所有器件及連接導線製作在同一塊半導體基片上,構成集成邏輯門電路。
簡單的邏輯門可由晶體管組成。這些晶體管的組合可以使代表兩種信號的高低電平在通過它們之後產生高電平或者低電平的信號。 高、低電平可以分別代表邏輯上的「真」與「假」或二進制當中的1和0,從而實現邏輯運算。常見的邏輯門包括「與」門,「或」門,「非」門,「異或」門(也稱:互斥或)等等。
邏輯門可以組合使用實現更為復雜的邏輯運算。 邏輯門電路是數字電路中最基本的邏輯元件。所謂門就是一種開關,它能按照一定的條件去控制信號的通過或不通過。門電路的輸入和輸出之間存在一定的邏輯關系(因果關系),所以門電路又稱為邏輯門電路。基本邏輯關系為「與」、「或」、「非」三種。邏輯門電路按其內部有源器件的不同可以分為三大類。第一類為雙極型晶體管邏輯門電路,包括TTL、ECL電路和I2L電路等幾種類型;第二類為單極型MOS邏輯門電路,包括NMOS、PMOS、LDMOS、VDMOS、VVMOS、IGT等幾種類型;第三類則是二者的組合BICMOS門電路。常用的是CMOS邏輯門電路。
1、TTL全稱Transistor-Transistor Logic,即BJT-BJT邏輯門電路,是數字電子技術中常用的一種邏輯門電路,應用較早,技術已比較成熟。TTL主要有BJT(Bipolar Junction Transistor 即雙極結型晶體管,晶體三極體)和電阻構成,具有速度快的特點。最早的TTL門電路是74系列,後來出現了74H系列,74L系列,74LS,74AS,74ALS等系列。但是由於TTL功耗大等缺點,正逐漸被CMOS電路取代。 TTL門電路有74(商用)和54(軍用)兩個系列,每個系列又有若干個子系列。TTL電平信號被利用的最多是因為通常數據表示採用二進制規定,+5V等價於邏輯「1」,0V等價於邏輯「0」,這被稱做TTL(晶體管-晶體管邏輯電平)信號系統,這是計算機處理器控制的設備內部各部分之間通信的標准技術。
TTL電平信號對於計算機處理器控制的設備內部的數據傳輸是很理想的,首先計算機處理器控制的設備內部的數據傳輸對於電源的要求不高以及熱損耗也較低,另外TTL電平信號直接與集成電路連接而不需要價格昂貴的線路驅動器以及接收器電路;再者,計算機處理器控制的設備內部的數據傳輸是在高速下進行的,而TTL介面的操作恰能滿足這個要求。TTL型通信大多數情況下,是採用並行數據傳輸方式,而並行數據傳輸對於超過10英尺的距離就不適合了。這是由於可靠性和成本兩面的原因。因為在並行介面中存在著偏相和不對稱的問題,這些問題對可靠性均有影響。
2、CMOS邏輯門電路功耗極低,成本低,電源電壓范圍寬,邏輯度高,抗干擾能力強,輸入阻抗高,扇出能力強。邏輯門電路按其集成度又可分為:SSI(小規模集成電路,每片組件包含10~20個等效門)。MAI(中規模集成電路,每個組件包含20~100個等效門)。LAI(大規模集成電路,每組件內含100~1000個等效門)。VLSI(超大規模集成電路,每片組件內含1000個以上等效門)。常用的MOS門電路有NMOS,PMOS,CMOS,LDMOS,VDMOS等5種。用N溝通增強型場效應管構成的邏輯電路稱為NMOS電路;用P溝道場效應管構成的邏輯電路稱為PMOS電路;CMOS電路則是NMOS和PMOS的互補型電路,用橫向雙擴散MOS管構成的邏輯電路稱為LDMOS電路;用垂直雙擴散MOS管構成的邏輯電路稱為VDMOS電路。
3、ECL(Emitter Coupled Logic)即發射極耦合邏輯電路,也稱電流開關型邏輯電路。它是利用運放原理通過晶體管射極耦合實現的門電路。在所有數字電路中,它工作速度最高,其平均延遲時間tpd可小至1ns。ECL電路是由一個差分對管和一對射隨器組成的,所以輸入阻抗大,輸出阻抗小,驅動能力強,信號檢測能力高,差分輸出,抗共模干擾能力強。但是由於單元門的開關管對是輪流導通的,對整個電路來講沒有「截止」狀態,所以電路的功耗較大。
Ⅹ 關於邏輯門電路
這就是一個異或邏輯電路,當兩個輸入端不同時輸出為1 否則輸出為0。至於工作電壓需要看用的是什麼類型的器件。