① 试分析降压斩波电路中各元件起到的作用是什么
六种斩波电路原理分析
1、降压斩波电路
图1:降压斩波电路(Buck Chopper)原理图及波形图
如上图1:降压斩波电路原理图及波形图所示,图中V为全控型器件,选用IGBT;D为续流二极管。由图1中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向负载供电,UD=Ui。当V处于断态时,负载电流经二极管D续流,电压UD近似为零,至一个周期T结束,再驱动V导通,重复上一周期的过程。负载电压的平均值为:
式中ton为V处于通态的时间,toff为V处于断态的时间,T为开关周期,α为导通占空比,简称占空比或导通比(α=ton/T)。由此可知,输出到负载的电压平均值UO最大为Ui,若减小占空比α,则UO随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
2、升压斩波电路
图2:升压斩波电路(Boost Chopper)原理图及波形图
如上图2:升压斩波电路原理图及波形图所示,电路也使用一个全控型器件V。由图2中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向电感L1充电,充电电流基本恒定为I1,同时电容C1上的电压向负载供电,因C1值很大,基本保持输出电压UO为恒值。设V处于通态的时间为ton,此阶段电感L1上积蓄的能量为Ui*I1*ton。当V处于断态时Ui和L1共同向电容C1充电,并向负载提供能量。设V处于断态的时间为toff,则在此期间电感L1释放的能量为(UO-Ui)*I1*toff。当电路工作于稳态时,一个周期T内电感L1积蓄的能量与释放的能量相等,即:
上式中的T/toff≥1,输出电压高于电源电压,故称该电路为升压斩波电路。
3、升降压斩波电路
图3:升降压斩波电路(Boost-Buck Chopper)原理图及波形图
如上图3:升降压斩波电路原理图及波形图所示,电路的基本工作原理是:当可控开关V处于通态时,电源Ui经V向电感L1供电使其贮存能量,同时C1维持输出电压UO基本恒定并向负载供电。此后,V关断,电感L1中贮存的能量向负载释放。可见,负载电压为上负下正,与电源电压极性相反。输出电压为:
若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压
4、Cuk斩波电路
图4:Cuk斩波电路原理图
如上图4:Cuk斩波电路原理图所示,电路的基本工作原理是:当可控开关V处于通态时,Ui—L1—V回路和负载R—L2—C2—V回路分别流过电流。当V处于断态时,Ui—L1—C2—D回路和负载R—L2—D回路分别流过电流,输出电压的极性与电源电压极性相反。输出电压为:
若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。
5、Sepic斩波电路
图5:Sepic斩波电路原理图
如上图5:Sepic斩波电路:原理图所示,电路的基本工作原理是:可控开关V处于通态时,Ui—L1—V回路和C2—V—L2回路同时导电,L1和L2贮能。当V处于断态时,Ui—L1—C2—D—R回路及L2—D—R回路同时导电,此阶段Ui和L1既向R供电,同时也向C2充电,C2贮存的能量在V处于通态时向L2转移。输出电压为:
若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。
6、Zeta斩波电路
图6:Zeta斩波电路原理图
如上图6所示:Zeta斩波电路原理图所示,电路的基本工作原理是:当可控开关V处于通态时,电源Ui经开关V向电感L1贮能。当V处于断态后,L1经D与C2构成振荡回路,其贮存的能量转至C2,至振荡回路电流过零,L1上的能量全部转移至C2上之后,D关断,C2经L2向负载R供电。输出电压为:
若改变导通比α,则输出电压可以比电源电压高,也可以比电源电压低。当0<α<1/2时为降压,当1/2<α<1时为升压。
② 升压斩波电路中的参数怎么确定
3.1 基本斩波电路 重点:最基本的2种——降压斩波电路和升压斩波电路。3.1.1 降压斩波电路 �0�1 斩波电路的典型用途之一是拖动直流电动机,也可带蓄电池负载,两种情况下负载中均会出现反电动势,如图3-1中Em所示�0�1 工作原理,两个阶段�0�5 t=0时V导通,E向负载供电,uo=E,io按指数曲线上升�0�5 t=t1时V关断,io经VD续流,uo近似为零,io呈指数曲线下降�0�5 为使io连续且脉动小,通常使L值较大图3-1 降压斩波电路的原理图及波形a)电路图 b)电流连续时的波形 c)电流断续时的波形�0�1 数量关系电流连续时,负载电压平均值 (3-1)a——导通占空比,简称占空比或导通比Uo最大为E,减小a,Uo随之减小——降压斩波电路。也称为Buck变换器(Buck Converter)。负载电流平均值 (3-2)电流断续时,uo平均值会被抬高,一般不希望出现�0�1 斩波电路三种控制方式(1)脉冲宽度调制(PWM)或脉冲调宽型——T不变,调节ton(2)频率调制或调频型——ton不变,改变T(3)混合型——ton和T都可调,使占空比改变其中PWM控制方式应用最多�0�1 基于“分段线性”的思想,可对降压斩波电路进行解析3.1.2 升压斩波电路 1. 升压斩波电路的基本原理图3-2 升压斩波电路及其工作波形a)电路图 b)波形 �0�1 工作原理�0�5 假设L值、C值很大�0�5 V通时,E向L充电,充电电流恒为I1,同时C的电压向负载供电,因C值很大,输出电压uo为恒值,记为Uo。设V通的时间为ton,此阶段L上积蓄的能量为EI1ton�0�5 V断时,E和L共同向C充电并向负载R供电。设V断的时间为toff,则此期间电感L释放能量为
�0�5 稳态时,一个周期T中L积蓄能量与释放能量相等 (3-20)化简得: (3-21),输出电压高于电源电压,故称升压斩波电路。也称之为boost变换器——升压比,调节其即可改变Uo。将升压比的倒数记作b,即 。b和导通占空比a有如下关系: (3-22)因此,式(3-21)可表示为 (3-23)�0�1 升压斩波电路能使输出电压高于电源电压的原因�0�5 L储能之后具有使电压泵升的作用�0�5 电容C可将输出电压保持住2. 升压斩波电路的典型应用�0�5 直流电动机传动�0�5 单相功率因数校正(Power Factor Correction—PFC)电路�0�5 用于其他交直流电源中图3-3 用于直流电动机回馈能量的升压斩波电路及其波形a) 电路图 b) 电流连续时 c) 电流断续时�0�1 用于直流电动机传动时�0�5 通常用于直流电动机再生制动时把电能回馈给直流电源�0�5 实际L值不可能为无穷大,因此有电动机电枢电流连续和断续两种工作状态�0�5 电机反电动势相当于图3-2中的电源,此时直流电源相当于图3-2中的负载。由于直流电源的电压基本是恒定的,因此不必并联电容器。�0�1 电路分析基于“分段线性”的思想进行解析V处于通态时,设电动机电枢电流为i1,得下式 (3-27)式中R为电机电枢回路电阻与线路电阻之和。设i1的初值为I10,解上式得 (3-28)当V处于断态时,设电动机电枢电流为i2,得下式: (3-29)设i2的初值为I20,解上式得: (3-30)当电流连续时,从图3-3b的电流波形可看出,t=ton时刻i1=I20,t=toff时刻i2=I10,由此可得: (3-33) (3-34)把上面两式用泰勒级数线性近似,得 (3-35)该式表示了L为无穷大时电枢电流的平均值Io,即 (3-36)对电流断续工作状态的进一步分析可得出:电流连续的条件为 (3-38)根据此式可对电路的工作状态作出判断。3.1.3 升降压斩波电路和Cuk斩波电路 1. 升降压斩波电路图3-4 升降压斩波电路及其波形a)电路图 b)波形设L值很大,C值也很大。使电感电流iL和电容电压即负载电压uo基本为恒值。�0�1 基本工作原理�0�5 V通时,电源E经V向L供电使其贮能,此时电流为i1。同时,C维持输出电压恒定并向负载R供电。�0�5 V断时,L的能量向负载释放,电流为i2。负载电压极性为上负下正,与电源电压极性相反,该电路也称作反极性斩波电路稳态时,一个周期T内电感L两端电压uL对时间的积分为零,即 (3-39)当V处于通态期间,uL = E;而当V处于断态期间,uL = - uo。于是: (3-40)所以输出电压为: (3-41)改变a,输出电压既可以比电源电压高,也可以比电源电压低。 当0<a <1/2时为降压 当1/2<a <1时为升压 因此称作升降压斩波电路。或称之为buck-boost 变换器。2. Cuk斩波电路图3-5所示为Cuk斩波电路的原理图及其等效电路。图3-5 Cuk斩波电路及其等效电路a) 电路图 b) 等效电路�0�5 V通时,E—L1—V回路和R—L2—C—V回路分别流过电流�0�5 V断时,E—L1—C—VD回路和R—L2—VD回路分别流过电流�0�5 输出电压的极性与电源电压极性相反�0�5 等效电路如图3-5b所示,相当于开关S在A、B两点之间交替切换稳态时电容C的电流在一周期内的平均值应为零,也就是其对时间的积分为零,即 (3-45)在图3-5b的等效电路中,开关S合向B点时间即V处于通态的时间ton,则电容电流和时间的乘积为I2ton。开关S合向A点的时间为V处于断态的时间toff,则电容电流和时间的乘积为I1 toff。由此可得 (3-46)从而可得 (3-47)当电容C很大使电容电压uC的脉动足够小时,输出电压Uo与输入电压E的关系可用以下方法求出:当开关S合到B点时,B点电压uB=0,A点电压uA= -uC;当S合到A点时,uB= uC,uA=0因此,B点电压uB的平均值为 (UC为电容电压uC的平均值),又因电感L1的电压平均值为零,所以 。另一方面,A点的电压平均值为 ,且L2的电压平均值为零,按图3-5b中输出电压Uo的极性,有 。于是可得出输出电压Uo与电源电压E的关系: (3-48)这一输入输出关系与升降压斩波电路时的情况相同。�0�1 优点(与升降压斩波电路相比): 输入电源电流和输出负载电流都是连续的,且脉动很小,有利于对输入、输出进行滤波。3.1.4 Sepic斩波电路和Zeta斩波电路 图3-6分别给出了Sepic斩波电路和Zeta斩波电路的原理图。图3-6 Sepic斩波电路和Zeta斩波电路a)Sepic斩波电路 b)Zeta斩波电路Sepic斩波电路的基本工作原理是:当V处于通态时,E—L1—V回路和C1—V—L2回路同时导电,L1和L2贮能。V处于断态时,E—L1—C1—VD—负载(C2和R)回路及L2—VD—负载回路同时导电,此阶段E和L1既向负载供电,同时也向C1充电,C1贮存的能量在V处于通态时向L2转移。Sepic斩波电路的输入输出关系由下式给出: (3-49)Zeta斩波电路也称双Sepic斩波电路,其基本工作原理是:在V处于通态期间,电源E经开关V向电感L1贮能。同时,E和C1共同向负载R供电,并向C2充电。待V关断后,L1经VD向C1冲电,其贮存的能量转移至C1。同时,C2向负载供电,L2的电流则经VD续流。Zeta斩波电路的输入输出关系为: (3-50)两种电路相比,具有相同的输入输出关系。Sepic电路中,电源电流和负载电流均连续,有利于输入、输出滤波,反之,Zeta电路的输入、输出电流均是断续的。另外,与前一小节所述的两种电路相比,这里的两种电路输出电压为正极性的,且输入输出关系相同。
③ 二重一相,一重二相,二重二相降压斩波电路分别怎么画图为三重三相的,仿照这个三重三相来画
一般=相变压器的图都是以左边为初级绕组,右边为次级绕组,当中的实粗线为变压器铁芯,其铁芯标注也有多种,在此不作多多表示。而次级绕组可有多种需用电压输出,可以抽头,也可共头为地多种交流电压供用。
作变换x=rcosθ,y=rsinθ的逆变换,rdrdθ=dxdy
积分区域:θ=π/4表示直线y=x在第一象限的部分,r=secθ,即x=1
所以是0<=x<=1,0<=y<=x
所以原式=∫<0,1>dx∫<0,x>f(x^2+y^2)dy
(3)降压斩波电路原理图扩展阅读:
用斩波器实现直流变换的基本思想是通过对电力电子开关器件的快速通、断控制把恒定的直流电压或电流斩切成一系列的脉冲电压或电流,在一定滤波的条件下,在负载上可以获得平均值可小于或大于电源的电压或电流。如果改变开关器件通、断的动作频率,或改变开关器件通、断的时间比例,就可以改变这一脉冲序列的脉冲宽度,以实现输出电压、电流平均值的调节
目前,斩波器广泛用于电力牵引。例如地铁、电力机车、无轨电车和电 瓶搬运车等直流电动机的无级调速上。与传统的在电路中串电阻调压的方法 相比,不仅有较好的起动、制动特性,而且省去体积大的直流接触器和耗电 大的变阻器,电能损耗也大大减少。
④ 什么是斩波电路,什么是逆变电路能不能详细解释下它们的用途
斩波电路.分为6种:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波回电路,答Sepic斩波电路,Zeta斩波电路,前两种是最基本电路。它的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器.一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况;直流斩波电路的种类很多.逆变电路.与整流电路相对应,将低电压变为高电压,把直流电变成交流电的电路称为逆变电路.它的基本作用是在控制电路的控制下将中间直流电路输出的直流电源转换为频率和电压都任意可调的交流电源.
谢谢
.
希望5星采纳
⑤ 简述降压斩波电路工作原理
是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙而产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中呈电中性,这便是双电层电容的充放电原理。
法拉第准电容:其理论模型是由Conway首先提出,是在电极表面和近表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸脱附和氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液离子与电极活性物质发生的氧化还原反应。当电解液中的离子(如H+、OH-、K+或Li+)在外加电场的作用下由溶液中扩散到电极/溶液界面时,会通过界面上的氧化还原反应而进入到电极表面活性氧化物的体相中,从而使得大量的电荷被存储在电极中。放电时,这些进入氧化物中的离子又会通过以上氧化还原反应的逆反应重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。
⑥ 三相斩波电路如下
这个是降压斩波电路,所以UO=Ton/T*E
u0=20/50*50v=20v
I=u0/R=20/20=1A
希望可以帮助你~~
不好意思我刚才翻书看了看 这个是升压斩波电路
U0=(T/Toff)*E=50/(50-20)*50
I0=u0/R
这次对了