导航:首页 > 电器电路 > 布斯法电路

布斯法电路

发布时间:2022-09-23 10:47:11

A. 格鲁布斯法的公式

T=|X质疑—X平均|/S
其中,S为这组数据的标准差。
之后,对比计算出的T与数据表中的T值,若计算出的T值比查表得到的相应值大,则舍去可疑值。
检验用数据表:见扩展阅读或附带的图片。

B. 工程测量时,如何用格拉布斯准则剔除异常值

在做测量不确定度的评定时,对于测量结果进行数据处理之前,往往要进行异常值的剔除工作。超出在规定条件下预期的误差叫做异常值。产生异常值的原因一般是由于疏忽、失误或突然发生的不该发生的原因造成的,如读错、记错、仪器示值突然跳动、突然震动、操作失误等。所以必须在计算测量结果及不确定度评定中要考虑异常值的判别和剔除。
异常值的判别方法也叫异常值检验法,即:判断异常值的统计检验法。其方法有很多种,例如格拉布斯法、狄克逊法、偏度-峰度法、拉依达法、奈尔法等等。每种方法都有其适用范围和优缺点。每种统计检验法都会犯错误1和错误2。但是有人做过统计,在所有方法中,格拉布斯法犯这两种错误的概率最小,所以本文介绍如何使用格拉布斯法来剔除异常值,其判别步骤如下:
1、假设现在有一组测量数据为:例如测量10次(n=10),获得以下数据:8.2、5.4、14.0、7.3、4.7、9.0、6.5、10.1、7.7、6.0。
2、排列数据:将上述测量数据按从小到大的顺序排列,得到4.7、5.4、6.0、6.5、7.3、7.7、8.2、9.0、10.1、14.0。可以肯定,可疑值不是最小值就是最大值。
3、计算平均值x-和标准差s:x-=7.89;标准差s=2.704。计算时,必须将所有10个数据全部包含在内。
4、计算偏离值:平均值与最小值之差为7.89-4.7=3.19;最大值与平均值之差为14.0-7.89=6.11。
5、确定一个可疑值:比较起来,最大值与平均值之差6.11大于平均值与最小值之差3.19,因此认为最大值14.0是可疑值。
6、计算Gi值:Gi=(xi-x- )/s;其中i是可疑值的排列序号——10号;因此G10=( x10-x- )/s=(14.0-7.89)/2.704=2.260。由于 x10-x-是残差,而s是标准差,因而可认为G10是残差与标准差的比值。下面要把计算值Gi与格拉布斯表给出的临界值GP(n)比较,如果计算的Gi值大于表中的临界值GP(n),则能判断该测量数据是异常值,可以剔除。但是要提醒,临界值GP(n)与两个参数有关:检出水平α (与置信概率P有关)和测量次数n (与自由度f有关)。
7、定检出水平α:如果要求严格,检出水平α可以定得小一些,例如定α=0.01,那么置信概率P=1-α=0.99;如果要求不严格,α可以定得大一些,例如定α=0.10,即P=0.90;通常定α=0.05,P=0.95。
8、查格拉布斯表获得临界值:根据选定的P值(此处为0.95)和测量次数n(此处为10),查格拉布斯表,横竖相交得临界值G95(10)=2.176。
9、比较计算值Gi和临界值G95(10):Gi=2.260,G95(10)=2.176,Gi>G95(10)。
10、判断是否为异常值:因为Gi>G95(10),可以判断测量值14.0为异常值,将它从10个测量数据中剔除。
11、余下数据考虑:剩余的9个数据再按以上步骤计算,如果计算的Gi>G95(9),仍然是异常值,剔除;如果Gi<G95(9),不是异常值,则不剔除。本例余下的9个数据中没有异常值。

C. 格鲁布斯法的介绍

格鲁布斯法是指化学中用于判断一组数据中的可疑值的取舍的方法。

D. 茫茫()()~亲~帮我一下么。

乘法器结构电路16位有符号(2的补充)的乘法器是运用华勒斯树和改进的布斯算法来设计的,如图4所示。通过使用布斯编码,部分产品的总数被减少到一半(图3)。布斯编码器允许正确的乘数术语注入到部分产品约简树。部分产品树输出被注入最终32位混合加法器来完成16×16位乘法运算。这个乘数的机构非常适合于在高性能、低功耗嵌入式处理器和数字信号处理器的应用上必不可少的16位乘法运算。布斯编码器和布斯选择器是通过使用新的微分MOS电流模式门电路来实现的(图5和图6)。
+1
已赞过
baby bear
的感言:
万分感谢
2011-07-16

E. 判断可疑测量值取舍常用的检验方法有哪些

判断可疑测量值取舍常用的检验方法常用的有四倍法、Q检验法、迪克逊(Dixon)检验法和格鲁布斯(Grubbs)检验法。

在实际分析工作中,常常会遇到一组平行测量数据中有个别的数据过高或过低这种数据称为可以数据,也称异常值或逸出值。

(5)布斯法电路扩展阅读:

在一组分析数据中,往往有个别数据与其他数据相差较大,这种个别数据成为可疑值。对可疑值的处理,应首先回顾和检查生产可疑值的实验过程,有无可觉察到的技术上的异常原因。但原因不明时,必须按一定的数理统计方法进行处理,决定保留还是舍弃。

在定量分析化学实验中,实验结束后,必须对分析数据进行处理,这样能拓宽分析化学实验的应用面,以适应厂矿化验室实际工作的需要。同时也增强实验员分析化学的理论和实验必备素质。

F. 格拉布斯准则是什么

格拉布斯准则:
某个测量值的残余误差的绝对值 |Vi |>Gg,则判断此值中有粗大误差,应以剔除,此即格拉布斯准则。
利用格拉布斯(Grubbs)准则进行处理:
根据误差理论,要有效地剔除偶然误差,一般要测量10次以上,兼顾到精度和响应速度,取15次为一个单位。
在取得的15个数据中,有些可能含有较大的误差,需要对它们分检,剔除可疑值,提高自适应速度。
对可疑值的剔除有多种准则,如莱以达准则、肖维勒(Chauvenet)准则、格拉布斯(Grubbs)准则等。
以Grubbs准则为例,它认为若某测量值 xi对应的残差Vi满足下式 |Vi|=| xi-|>g(n,a)× σ(X) 时应将该数据舍去。
式中,为n次采集到的AD 值的平均值,=(∑xi)/n ;σ(X)为测量数据组的标准差,由贝塞尔函数可得: σ(X)=[(∑Vi2 )/(n-1)]1/2;g(n, a)是取决于测量次数n和显著性水平a (相当于犯“弃真” 错误的概率系数),a通常取0.01或0.05。
通过查表可得:当 n=15时,a=0.05, g(n,a)=2.41。
把15次采集到的AD值存入一个数组中然后求平均值,计算残差,求标准差σ(X)。
将残差绝对值与2.41倍的标准差σ(X)比较。剔除可疑值以后,再求平均值,求出新的平均值以后,应再重复以上过程,验证是否还有可疑值存在。
据我们对测量装置大量的实际测试结果看,这样做没有什么必要,因为一般只有第一遍即可达到要求。
然而这种方法也有它的不足, 利用Grubbs准则需要处理大量的数据,而在一般的工业现场测试设备中,仪表结构大多采用嵌入式结构,如AVR单片机。
这些MCU程序空间和数据空间有限,若处理大量数据,难以满足资源要求。

G. 如何判别测量数据中是否有异常值

一般异常值的检测方法有基于统计的方法,基于聚类的方法,以及一些专门检测异常值的方法等,下面对这些方法进行相关的介绍。

1. 简单统计

如果使用pandas,我们可以直接使用describe()来观察数据的统计性描述(只是粗略的观察一些统计量),不过统计数据为连续型的,如下:

df.describe()红色箭头所指就是异常值。

以上是常用到的判断异常值的简单方法。下面来介绍一些较为复杂的检测异常值算法,由于涉及内容较多,仅介绍核心思想,感兴趣的朋友可自行深入研究。

4. 基于模型检测

这种方法一般会构建一个概率分布模型,并计算对象符合该模型的概率,把具有低概率的对象视为异常点。如果模型是簇的集合,则异常是不显著属于任何簇的对象;如果模型是回归时,异常是相对远离预测值的对象。

离群点的概率定义:离群点是一个对象,关于数据的概率分布模型,它具有低概率。这种情况的前提是必须知道数据集服从什么分布,如果估计错误就造成了重尾分布。

比如特征工程中的RobustScaler方法,在做数据特征值缩放的时候,它会利用数据特征的分位数分布,将数据根据分位数划分为多段,只取中间段来做缩放,比如只取25%分位数到75%分位数的数据做缩放。这样减小了异常数据的影响。

优缺点:(1)有坚实的统计学理论基础,当存在充分的数据和所用的检验类型的知识时,这些检验可能非常有效;(2)对于多元数据,可用的选择少一些,并且对于高维数据,这些检测可能性很差。

5. 基于近邻度的离群点检测

统计方法是利用数据的分布来观察异常值,一些方法甚至需要一些分布条件,而在实际中数据的分布很难达到一些假设条件,在使用上有一定的局限性。

确定数据集的有意义的邻近性度量比确定它的统计分布更容易。这种方法比统计学方法更一般、更容易使用,因为一个对象的离群点得分由到它的k-最近邻(KNN)的距离给定。

需要注意的是:离群点得分对k的取值高度敏感。如果k太小,则少量的邻近离群点可能导致较低的离群点得分;如果K太大,则点数少于k的簇中所有的对象可能都成了离群点。为了使该方案对于k的选取更具有鲁棒性,可以使用k个最近邻的平均距离。

优缺点:(1)简单;(2)缺点:基于邻近度的方法需要O(m2)时间,大数据集不适用;(3)该方法对参数的选择也是敏感的;(4)不能处理具有不同密度区域的数据集,因为它使用全局阈值,不能考虑这种密度的变化。

5. 基于密度的离群点检测

从基于密度的观点来说,离群点是在低密度区域中的对象。基于密度的离群点检测与基于邻近度的离群点检测密切相关,因为密度通常用邻近度定义。一种常用的定义密度的方法是,定义密度为到k个最近邻的平均距离的倒数。如果该距离小,则密度高,反之亦然。另一种密度定义是使用DBSCAN聚类算法使用的密度定义,即一个对象周围的密度等于该对象指定距离d内对象的个数。

优缺点:(1)给出了对象是离群点的定量度量,并且即使数据具有不同的区域也能够很好的处理;(2)与基于距离的方法一样,这些方法必然具有O(m2)的时间复杂度。对于低维数据使用特定的数据结构可以达到O(mlogm);(3)参数选择是困难的。虽然LOF算法通过观察不同的k值,然后取得最大离群点得分来处理该问题,但是,仍然需要选择这些值的上下界。

6. 基于聚类的方法来做异常点检测

基于聚类的离群点:一个对象是基于聚类的离群点,如果该对象不强属于任何簇,那么该对象属于离群点。

离群点对初始聚类的影响:如果通过聚类检测离群点,则由于离群点影响聚类,存在一个问题:结构是否有效。这也是k-means算法的缺点,对离群点敏感。为了处理该问题,可以使用如下方法:对象聚类,删除离群点,对象再次聚类(这个不能保证产生最优结果)。

优缺点:(1)基于线性和接近线性复杂度(k均值)的聚类技术来发现离群点可能是高度有效的;(2)簇的定义通常是离群点的补,因此可能同时发现簇和离群点;(3)产生的离群点集和它们的得分可能非常依赖所用的簇的个数和数据中离群点的存在性;(4)聚类算法产生的簇的质量对该算法产生的离群点的质量影响非常大。

7. 专门的离群点检测

其实以上说到聚类方法的本意是是无监督分类,并不是为了寻找离群点的,只是恰好它的功能可以实现离群点的检测,算是一个衍生的功能。

阅读全文

与布斯法电路相关的资料

热点内容
北京家居电子商务有限公司 浏览:253
苹果指纹保修吗 浏览:270
木质家具摔裂怎么固定 浏览:296
防水涂料如何用滚筒刷 浏览:563
华苑冠华维修电话 浏览:698
顶楼雨棚多久需要维修 浏览:864
海尔空调武汉维修点 浏览:603
北碚长安4s店维修电话号码 浏览:924
小米售后维修大概需要多久 浏览:949
电脑保修键盘进水保修吗 浏览:398
维修车子需要带什么 浏览:829
维修电脑与家电怎么办理执照 浏览:518
瑞士珠宝保修单 浏览:284
中式古典家具质量怎么样 浏览:296
合肥家具除甲醛如何处理 浏览:457
楼顶开裂用什么防水材料 浏览:441
苹果广西售后维修点吗 浏览:739
广州市苹果维修电话 浏览:46
家电的市场部活动怎么写 浏览:535
开平二手家电市场在哪里 浏览:202