⑴ 蓄电池充电平衡的方法
现有的均衡充电方法
实现对串联蓄电池组的各单体电池进行均充,目前主要有以下几种方法。
1.在电池组的各单体电池上附加一个并联均衡电路,以达到分流的作用。在这种模式下,当某个电池首先达到满充时,均衡装置能阻止其过充并将多余的能量转化成热能,继续对未充满的电池充电。该方法简单,但会带来能量的损耗,不适合快充系统。
2.在充电前对每个单体逐一通过同一负载放电至同一水平,然后再进行恒流充电,以此保证各个单体之间较为准确的均衡状态。但对蓄电池组,由于个体间的物理差异,各单体深度放电后难以达到完全一致的理想效果。即使放电后达到同一效果,在充电过程中也会出现新的不均衡现象。
3.定时、定序、单独对蓄电池组中的单体蓄电池进行检测及均匀充电。在对蓄电池组进行充电时,能保证蓄电池组中的每一个蓄电池不会发生过充电或过放电的情况,因而就保证了蓄电池组中的每个蓄电池均处于正常的工作状态。
4.运用分时原理,通过开关组件的控制和切换,使额外的电流流入电压相对较低的电池中以达到均衡充电的目的。该方法效率比较高,但控制比较复杂。
图1 分时控制均充原理图
5.以各电池的电压参数为均衡对象,使各电池的电压恢复一致。如图2所示,均衡充电时,电容通过控制开关交替地与相邻的两个电池连接,接受高电压电池的充电,再向低电压电池放电,直到两电池的电压趋于一致。
该种均衡方法较好的解决了电池组电压不平衡的问题,但该方法主要用在电池数量较少的场合。
图2 均衡电压充电原理示意图
6.整个系统由单片机控制,单体电池都有独立的一套模块。模块根据设定程序,对各单体电池分别进行充电管理,充电完成后自动断开。
该方法比较简单,但在单体电池数多时会使成本大大增加,也不利于系统体积的减小
⑵ 什么是均衡充电
所谓均衡充电,就是均衡电池特性的充电,是指在电池的使用过程中,因为电池的个体差异、温度差异等原因造成电池端电压不平衡,为了避免这种不平衡趋势的恶化,需要提高电池组的充电电压,对电池进行活化充电。
首先,均衡充电的概念是在老式铅酸电池使用中提出的目前大的多数的阀控式电池都明确提出“电压均衡、化成彻底”。而“电池内不形成酸层,无需进行均衡充电”。对于2.4V单体电池的充电电压的定义是加速充电,即“FAST CHARGE”,而非“EQUATION”。
其次,均衡充电会对阀控式电池造成损害。均衡充电电压对于大多数电池来说,都是较高的浮充电压。此时,大多数正常电池都处于过充电状态。不能复合的气体在电池内部形成一定的压力,压力超过安全控制阀阀值时,阀门打开,气体从控制阀中排出。
在以前的电池维护中,伴随着均衡充电的过程是进行电池比重的调整,也就是说采用添加蒸馏水的办法补充水量,以保持电池的均衡性。但在免维护电池中,在现有的维护制度下是不加水的,这样一来,将不可避免造成电池的失水、电池干枯。
均衡充电的方法有以下两种可供选择:
(1)将充电电压调到2.33V/单体(25℃),充电30h;
(2)将充电电压调到2.35V/单体(25℃),充电20h。
以上两种方法,若无特殊理由,应优先选择第一种方法。在上面的方法中,25℃这个环境温度参数非常重要,电池使用寿命与它有很大关系,在使用维护中要严格遵守。理论上,蓄电池的使用环境温度为-40℃~50℃,最佳使用温度为15℃~25℃,因此,具体充电时间应尽量安排在春秋季节,这时天气较凉爽,对阀控式密封铅酸蓄电池均衡充电有利。有条件的单位可以为阀控式密封铅酸蓄电池安装空调,以便使室内温度保持在25℃,这样就不用考虑季节变化的因素了。当环境温度高于25℃时,充电电压应相应降低;当环境温度低于25℃时,充电电压应提高。降低或提高的幅度为每变化1℃,增减0.003V/单体。一般是温度每变化5℃,将充电电压调整一次。当均衡充电时,电池温度应略有升高,可升到40℃左右。在其它条件下的温度升高或异常变化均为不正常现象,应立即查明原因并进行处理。
除了对均衡充电电压要严格把握外,对浮充电压也应合理选择。因为浮充电压是蓄电池长期使用的充电电压,是影响电池寿命至关重要的因素。一般情况下,全浮充电压定为2.23~2.25V/单体(25℃)比较合适。如果不按此浮充范围工作,而是采用2.35V/单体(25℃),则连续充电4个月就会出现热失控;或者采用2.30V/单体(25℃),连续充电6~8个月就会出现热失控;要是采用2.28V/单体(25℃),则连续12~18个月就会出现严重的容量下降,进而导致热失控。热失控的直接后果是蓄电池的外壳鼓包、漏气,电池失去放电功能,最后只有报废。再从阀控式密封铅酸蓄电池的水的分解速度来说,充电电压越低越好,但从保证阀控式密封铅酸蓄电池的容量来说,充电电压又不能太低,因此,在全浮充状态下,阀控式密封铅酸蓄电池的浮充电压的最佳选择是2.23V/单体(25℃)。
⑶ S-8211DAR用于均衡充电电路时MOSFET用P管还是N管呢
S-8211芯片跟DW-01相若,2个N-mos作充放电输出控制,很多8脚封装的mos芯片内里已有2个如STC5NF20,FDS9926A...等。
⑷ 7.4V平衡充充电池器怎样制作,求电路图,谢谢各位
平衡充充电电路一般使用特定充电芯片,如果能够买到就最理想!
淘x上有一种二节7.4v或三节11.2v锂电池保护板,也可以应用在平衡充电器上。
再进一步diy ,废弃手机电池内有保护板,用两个这样的保护板也可以做到7.4V平衡充电器的效果。
⑸ 平衡充电器的电路图
fdyhkpfogiohjvobgijh9gojnoguj
⑹ 浮充电压与均衡电压区别
电流非常小,和大电流高电压
⑺ 串联电池平衡充的方法
电池串联使用,没有个平衡充怎么行,所以陆陆续续做了3个平衡充
一个是论坛一位朋友的均衡电路 优点:电流可调,我用的3R33恒流模块最大可3A充电 缺点:万一 一开始充电时有一个电池比较满电的或是线阻大误认为电池满电的话,三极管要承受很大的耗散功率,分功的二极管是4007,只能过1A,另外加了个电压电流表,方便看状态
电压限制在4.18V
均衡的效果
帮大电池组充电
遥控加控电
另一个是3R33S的隔离三路输出,供4057使用,带载电压4.5V,空载5.2V,很适合4057使用
555~~我的铝硅铁磁环,一直都不舍得用
我用的是李老师的4057模块,刚好这个板子上加了肖特基做分压,所以我直接用这个板子上的肖特基整流,方便,省料,哈哈
一个是独立电源的4057充电模块,用的是5X电源 但是封在盒子里,发热太厉害了
以下是整合
可以同时充两组电池
带载后4.52V
其中的一路输出,空载5.2V
⑻ 求锂电池组均衡充电电源的仿真电路图
采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。其专中:1为单节属锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;13为分流放电支路。单节锂电池保护芯片数目依据锂电池组电池数目确定,串联使用,分别对所对应单节锂电池的充放电、过流、短路状态进行保护。该系统在充电保护的同时,通过保护芯片控制分流放电支路开关器件的通断实现均衡充电,该方案有别于传统的在充电器端实现均衡充电的做法,降低了锂电池组充电器设计应用的成本。
⑼ 电动车铅酸电池该怎样均衡充电
铅酸电池允电维护最简单,不需要搞得那么复杂,基本上使用一年都要更换新的
⑽ 求一个成熟的3S锂电池平衡充电路。
ok!本抄人传你一个最便袭宜的平衡充电路 所谓的平衡充就是电池一对一的充电。去找3个手机万能充电器 把3个万能充电器输出串联起来,没个串点引根线接一次正确顺序接到平衡座子上面!就ok!然后用万用表在测试一下就可以充电了