『壹』 场效应管为什么要设置驱动电路
信号从直流交流都有,信号不能加电容阻隔,书和网络都翻烂了都找不到没加电容的偏置。
我用multisim仿真。加了电容,分压式偏置就有效,去掉电容,偏置就失效了,出来的信号和没偏置一样。实在不知如何是好了。
『贰』 如何处理场效应管驱动电路
能够完成试验 不过看你要的功率了
你说的那种方式是自激震荡方式
缺点功率小 效率低 纹波大
『叁』 这个电路图怎样加三极管和场管驱动双12v变压器。
一,需要的硬件: 12V/2200UF的电容两个,80W高频变压器一个(12V转300),直流MOS管3205两个,交流MOS管740四个,PWM驱动芯片TL594两个,高压电容400V/100UF一个,还有LM324一个(用于过欠压控制),还有一些三极管8050和8550几个,做驱动电路,电路板一块。 二,不过还是有相当的难度,成本在100元以内。 三,万用表一块。 四,一个继电器可以实现逆变和市电的切换,但需要一个控制电路,切换时间是继电器的反应时间,在20MS 以内。 五,对于不间断电源来说,一般都是通过可控硅控制的,反应时间快,可以相位跟踪,对于一些要求高的设备有好处。对于给电池充电的控制可以通过电压采样控制电路,加一个继电器实现。
六,其原理是将直流电通过芯片驱动以及功率管的控制,再将其变压,能使输出是50hz的交流电。
『肆』 这比较器电路驱动场效管电路图对吗
1)电路图中没有场效应管;
2)比较电路中,并没有固定的基准电压作为参照,你的比较器功能是什么;
『伍』 求场效管驱动电路,如下图
场效应管驱动电压一般在10至15V之间5V不行的,导通不完全会导致内阻大发热大效率低,还有你三个场效应管并联没有均流电阻,会烧毁其中两只的。
『陆』 场效应管和可控硅驱动电路一样吗
他们的驱动电路是有本质上的区别,首先场效应管通常分为结型场效应管和绝缘栅型场效应管,可控硅通常分为单向可控硅和双向可控硅(可控硅也叫晶闸管,可分单向晶闸管和双向晶闸管),其中绝缘栅型场效应管也叫MOS管(有一种场效应管、三极管混合的器件叫IGBT俗称门控管,该器件的驱动电路与场效应管的驱动电路几乎一样),这种驱动属于电压驱动,在大多应用在功率输出、电力变换等场合,要求最好采用PWM(脉宽调制)信号来控制,其输入到栅极的方波上升沿要求陡峭(也称图腾柱输出),并且要有一定的瞬态驱动能力(因为场效应管的栅极等效一个电容,当驱动信号的瞬态功率不够时,其原本的波形将被改变,通常等效为一个积分器),要求导通时,其栅极电压要相对于源极高10-20V左右,典型值15V,而关断时为了保证场效应管关断可靠,该电压此时应该为-15V,在实际应用中为了减小场效应管的功耗过大或防止其损坏一般要加如过流保护和相关吸收电路,并且尽量做到场效应管的工作频率与负载的谐振频率相同,典型应用就是电磁炉,流过炉盘(加热线圈)的电流与流过吸收电容的电流各自虽然都很大,但相位不同,互相抵消,经叠加后的总电流较小,即流过场效应管(实际用IGBT)的电流较小。下图为场效应管的典型驱动电路:
『柒』 分析这个Mos管驱动电路原理
上面的是P沟道场管,下面的是N沟道场管;
此电路中,N沟道场管的栅极电压高电平时导通低电平时截止,而P沟道场管的则刚好相反;
余下的,就希望你自己能去想想了;
『捌』 如何选择最适合的MOS管驱动电路
1、管种类和结构
MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。
至于为什么不使用耗尽型的MOS管,不建议刨根问底。
对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。
MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。
在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。
2、MOS管导通特性
导通的意思是作为开关,相当于开关闭合。
NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。
PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。
3、MOS开关管损失
不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。
MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。
导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。
4、MOS管驱动
跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。
在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。
第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。
上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量。而且电压越高,导通速度越快,导通电阻也越小。现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了。
MOS管的驱动电路及其损失,可以参考Microchip公司的AN799 Matching MOSFET Drivers to MOSFETs。讲述得很详细,所以不打算多写了。
5、MOS管应用电路
MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动。
5种常用开关电源MOSFET驱动电路解析
在使用MOSFET设计开关电源时,大部分人都会考虑MOSFET的导通电阻、最大电压、最大电流。但很多时候也仅仅考虑了这些因素,这样的电路也许可以正常工作,但并不是一个好的设计方案。更细致的,MOSFET还应考虑本身寄生的参数。对一个确定的MOSFET,其驱动电路,驱动脚输出的峰值电流,上升速率等,都会影响MOSFET的开关性能。
当电源IC与MOS管选定之后, 选择合适的驱动电路来连接电源IC与MOS管就显得尤其重要了。
一个好的MOSFET驱动电路有以下几点要求:
(1)开关管开通瞬时,驱动电路应能提供足够大的充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡。
(2)开关导通期间驱动电路能保证MOSFET栅源极间电压保持稳定且可靠导通。
(3)关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断。
(4)驱动电路结构简单可靠、损耗小。
(5)根据情况施加隔离。
『玖』 场效应管的驱动电压是多少
场效应管的驱动电压是2~4V(极值20V),驱动电流约100nA。
场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。主要有两种类型(junction FET—JFET)和金属 - 氧化物半导体场效应管(metal-oxide semiconctor FET,简称MOS-FET)。由多数载流子参与导电,也称为单极型晶体管。它属于电压控制型半导体器件。具有输入电阻高(107~1015Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。