❶ 調幅的調幅電路
調幅電路原理主要分為兩類:高電平調幅電路和低電平調幅電路,具體如下: 高電平調幅要求電路的輸出功率足夠大。電路在調幅的同時,還進行功率放大。調制過程通常是在丙類放大級進行的。根據調制信號控制的電極不同,調制方法主要有集電極調幅、基極調幅、發射極調幅。
1、集電極調幅
(1)集電極調幅電路的特點是:
低頻調制信號加到集電極迴路,B1、B2為高頻變壓器;B3為低頻變壓器。低頻調制信號uΩ(t)與丙類放大器的直流電源相串聯,因此放大器的有效集電極電源電壓Vcc(t)等於兩個電壓之和,它隨調制信號變化而變化。圖中的電容Cb、C`是高頻旁路電容,C`的作用是避免高頻電流通過調制變壓器B3的次級線圈以及直流電源,因此它對高頻相當於短路,而對調制信號頻率應相當於開路.
對於丙類高頻功率故大器,當基極偏置Vbb、高頻激勵信號電壓振幅Ubm和集電極迴路阻抗Rp不變,只改變集電極有效電源電壓時,集電極電流脈沖在欠壓區可認為不變。而在過壓區,集電極電流脈沖幅度將隨集電極有效電源電壓的變化而變。因此,集電極調幅必須工作於過壓區。
(2)集電極調幅只能產生普通調幅波。
優點是:調幅線性比基極調幅好。此外,由於集電極調幅 始終工作在臨界和弱過壓區,故效率比較高。
缺點是:調制信號接在集電極迴路中供給的功率比較大。
2、基極調幅
基極調幅電路的特點是調制信號加在基極迴路。圖中C1、C3為高頻旁路電容;C2為低頻旁路電容;B1為高頻變壓器;B2為低頻變壓器;LC迴路為帶通濾波器。應保證迴路調諧於ωC,通帶為2Ω。
基極調幅的原理是利用丙類功率放大器在電源電壓Vcc、輸入信號振幅Ubm、諧振電阻Rp不變的條件下,在欠壓區改變Vbb,其輸出電流隨Vbb接近線性變化這一特性來實現調幅的。
基極調幅的優點是:由於調制信號接在基極迴路,對於調制信號只需很小的功率。
缺點是:效率較低,調制線性不如集電極調幅。 (1) 模擬乘法器調幅電路
作用:實現兩個模擬信號相乘
符號:
電路圖:
(2)二極體調制電路
二極體調制電路包括單二極體調制電路、二極體平衡電路、二極體雙平衡調制電路等。
1)單二極體電路
單二極體電路如下圖所示。
當二極體兩端的電壓UD大於二極體的導通電壓時,二極體導通,流過二極體的電流與加在兩端的電壓成正比;當二極體兩端的電壓UD小於二極體的導通電壓時,二極體截止,電流為0;二極體等效為一個受控開關。控制電壓為二極體兩端電壓UD。
當Ucm>>UΩm且Ucm為大信號(>0.5V)時,可進一步認為二極體的通斷主要由Uc控制。一般情況下二極體的開啟電壓UP較小,有Ucm>>UP,可令UP近似為0或在電路中加一固定偏置電壓來抵消UP。忽略輸出電壓的反作用,用開關函數分析法則可得到
可得到相應的頻譜圖如下:
將它通過以ωc為中心、通頻帶2Ω為的帶通濾波器後,可得到調幅波。
這里的分析忽略了輸出電壓的反作用。是因為輸出電壓的相對於Uc而言很小。若考慮反作用,輸出電壓對二極體兩端的電壓影響不大,頻率分量不會變化,可能使輸出信號幅度降低(rDàrD+RL)。
另外,如果不滿足大信號條件,不能用開關函數分析法或線性時變分析法,但可用冪級數分析法,可以知道該電路仍然可以完成頻譜的線性搬移功能。
2)二極體平衡調制器
在單二極體電路中,由於工作在線性時變工作狀態,因而二極體產生的頻率分量大大減少了,但在產生的頻率分量中,仍然有不少不必要的頻率分量,因此有必要進一步減少一些頻率分量。
二極體平衡電路可以滿足這一要求。其原理電路如下圖。
該電路由兩個性能一致的二極體及中心抽頭變壓器Tr1、Tr2接成平衡電路。電路上下兩部分完全一樣。控制信號(載波信號)加在兩個變壓器的中心抽頭處,輸入信號(調制信號)接在輸入變壓器,即載波信號同相加到D1、D2上;調制信號u2反相加到D1、D2上輸出變壓器接濾波器,用以濾除無用的頻率分量。從Tr2次向右看的負載電阻為RL。則該電路可等效成如下的原理電路形式。
由於加到兩個二極體的控制電壓是同相的,利用開關函數分析法,可得到負載上總電流為
其頻譜圖如下:
與單二極體電路相比,i含有頻譜:Ω、ω1±Ω、3ω1±Ω、……,經中心角頻率為ωc的3dB帶寬為2Ω 的LC帶通濾波器後,可在負載RL得到頻譜ωc±Ω 電壓分量,可見是實現了DSB調制。這是不難理解的,由於控制電壓uC同相地加在兩個二極體的兩端。當電路完全對稱時,兩個相等的ωC分量互相抵消,因此在輸出中不再有ωC及其諧波分量。即在輸出中,不必要的頻率分量進一步減少了。(DSB調幅)
3)二極體雙平衡調制器——二極體環形調制器
在二極體平衡調制電路中,通過兩個單二極體電路的上下對稱平衡接法,大大減少了不必要的頻率分量,同時使有用頻率分量的幅度增加了一倍。但依然有不必要的頻率分量如調制信號的頻率分量存在,且所得到的有用頻率分量的幅度依然不是很大。那麼,是否可以通過再平衡的方法進一步減少不必要的頻率分量且讓有用分量的幅度再增加一倍呢?
二極體雙平衡電路可以滿足這一要求。其原理電路如圖。
該電路由兩個雙二極體平衡電路組成,由於四個二極體環接形成環路,所以該電路又稱二極體環形調制器。載波從變壓器T1接入,調制信號接到兩個變壓器的中心抽頭間,變壓器T2輸出已調信號。
其分析條件與單二極體電路和二極體平衡電路相同。
各二極體工作情況如下圖:
則可得,
其頻譜圖如下:
i中含有頻譜:ωc±Ω ,3ωc±Ω……經中心為ωc、3dB帶寬為2Ω的帶通濾波器後,在負載RL 上可得到頻譜ωc±Ω電壓頻譜分量,實現了DSB調制。
從頻譜圖中可以看出,環形電路在平衡電路的基礎上,又消除了低頻調制信號的頻率分量,且輸出的DSB信號幅度為平衡電路的二倍。其無調制信號分量是兩次平衡抵消的結果,每個平衡電路自身抵消載波及諧波分量,兩個平衡電路抵消調制信號分量,所以環形電路的性能更接近理想相乘器。
❷ 直流電機可控硅調速電路圖
如圖所示:
可控硅是P1N1P2N2四層三端結構元件,共有三個PN結,分析原理時,可以把它看作由一個PNP管和一個NPN管所組成,其等效圖解如右圖所示。
雙向可控硅:雙向可控硅是一種硅可控整流器件,也稱作雙向晶閘管。這種器件在電路中能夠實現交流電的無觸點控制,以小電流控制大電流,具有無火花、動作快、壽命長、可靠性高以及簡化電路結構等優點。從外表上看,雙向可控硅和普通可控硅很相似,也有三個電極。
但是,它除了其中一個電極G仍叫做控制極外,另外兩個電極通常卻不再叫做陽極和陰極,而統稱為主電極Tl和T2。
晶閘管(即可控硅)調速技術在直流電動機調速系統的運用,逐漸發展成為一門高科技電子自動化控制學科,晶閘管(可控硅)直流調速系統的自動化程度越來越成熟。
這不僅是經濟性與可靠性的大大提高,而且使先進的自動化技術有了更廣闊的運用,大大促進了社會生產力的進步,簡單說來,主要由以下幾點:
1、首先是直流電動機的調速性能好,調速范圍廣,從零速到預定速度,非常易於平滑調速,即無極調速;
2、啟動、制動力矩大,易於快速啟動和制動,尤其是低速啟動效果非常好;
3、過載能力強,能承受較為頻繁、較大的沖擊載荷。
(2)調數電路擴展閱讀
直流電動機晶閘管(可控硅)調速裝置這些優點,是非常適合於客運索道的使用范疇,比如:低速大扭矩,客運索道的運載力是相當大的,尤其是在必要時刻要做出一定的速度調節。
在實際的運用中,無論是速度如何調節,客運索道的直流調速系統總是能夠使直流電動機輸出足夠的扭矩,使客運索道的速度都能夠平滑穩定地運行自如,這就足可見到晶閘管(可控硅)調速系統的可靠性,同時還可以滿足直流電動機的良好的啟動和制動性能。
晶閘管(可控硅)調速裝置的種類很多,在客運索道中直流電動機的可控硅直流調速裝置最為廣泛運用的是可編程式控制制晶閘管數字觸發器,是一種集成電路組成,可由用戶現場編程和配置內部參數。
從而獲得所需要的功能,輸出觸發脈沖安全可靠,電路響應速度快,可提高觸發脈沖的對稱性和穩定性。這種調速裝置的特點就是體積小,移相范圍寬,靈敏度高,操作簡單,安全可靠,控制精度高等優點,在業界受到很好的評價。
直流電動機盡管比交流電動機有著良好的調速性能,但是與交流電動機相比,它的一些缺點卻始終不能彌補的,比如:
1、直流電動機的結構復雜,具有碳刷和整流子,滑環和碳刷需要經常維護或更換,碳刷在運轉過程中還會產生火花。
這不僅僅是製造成本和維護成本的增加,電動機的容量都受到一定的限制,使用環境也不能在易爆氣體及塵埃較多的場合下使用;
2、由於直流電動機具有換向器的結構,所以它的結構強度上就受到了一定的約束,它的轉速一般僅為每分鍾幾百轉到一千轉,而交流電動機每分鍾最高可達幾千轉,在轉速上,交流電動機比直流電動機有著更絕對的優勢。
除此之外,直流電動機受換向的限制,電樞電壓也受到限制,最高只能做到一千多伏,而交流電動機可達10千伏,甚至還高,所有的直流電動機的缺點,交流電動機幾乎都可以來彌補。
❸ 功放調音電路原理及優劣
第一個只用RC電路雖然簡單但損耗肯定很大,而且也不太准確(易受溫度影響)
第二個用運放的好處就是不太容易失真,而且可以調的比RC還多低中高都可以獨立調整