導航:首頁 > 電器電路 > 電路板電偶

電路板電偶

發布時間:2025-06-02 21:08:57

1. 熱電阻溫度感測器四線接法的原理是什麼

在熱電阻的根部兩端各連接兩根導線的方式稱為四線制,其中兩根引線為熱電阻提供恆定電流I,把R轉換成電壓信號U,再通過另兩根引線把U引至二次儀表。可見這種引線方式可完全消除引線的電阻影響,主要用於高精度的溫度檢測。


(1)電路板電偶擴展閱讀

熱電阻是把溫度變化轉換為電阻值變化的一次元件,通常需要把電阻信號通過引線傳遞到計算機控制裝置或者其它一次儀表上。工業用熱電阻安裝在生產現場,與控制室之間存在一定的距離,因此熱電阻的引線對測量結果會有較大的影響。

國標熱電阻的引線主要有三種方式

1、二線制:在熱電阻的兩端各連接一根導線來引出電阻信號的方式叫二線制:這種引線方法很簡單,但由於連接導線必然存在引線電阻r,r大小與導線的材質和長度的因素有關,因此這種引線方式只適用於測量精度較低的場合

2、三線制:在熱電阻的根部的一端連接一根引線,另一端連接兩根引線的方式稱為三線制,這種方式通常與電橋配套使用,可以較好的消除引線電阻的影響,是工業過程式控制制中的最常用的。

3、四線制:在熱電阻的根部兩端各連接兩根導線的方式稱為四線制,其中兩根引線為熱電阻提供恆定電流I,把R轉換成電壓信號U,再通過另兩根引線把U引至二次儀表。可見這種引線方式可完全消除引線的電阻影響,主要用於高精度的溫度檢測。

熱電阻採用三線制接法。採用三線制是為了消除連接導線電阻引起的測量誤差。這是因為測量熱電阻的電路一般是不平衡電橋。熱電阻作為電橋的一個橋臂電阻,其連接導線(從熱電阻到中控室)也成為橋臂電阻的一部分,這一部分電阻是未知的且隨環境溫度變化,造成測量誤差。

採用三線制,將導線一根接到電橋的電源端,其餘兩根分別接到熱電阻所在的橋臂及與其相鄰的橋臂上,這樣消除了導線線路電阻帶來的測量誤差。

2. 常見電池種類有哪些

電池的種類很多,常用電池主要是干電池、蓄電池,以及體積小的微型電池。此外,還有金屬-空氣電池、燃料電池以及其他能量轉換電池如太陽電池、溫差電池、核電池等。
干電池
常用的一種是碳-鋅干電池(圖3)。負極是鋅做的圓筒,內有氯化銨作為電解質,少量氯化鋅、惰性填料及水調成的糊狀電解質,正極是四周裹以摻有二氧化錳的糊狀電解質的一根碳棒。電極反應是:負極處鋅原子成為鋅離子(Zn++),釋出電子,正極處銨離子(NH嬃)得到電子而成為氨氣與氫氣。用二氧化錳驅除氫氣以消除極化。電動勢約為1.5伏。
蓄電池
種類很多,共同的特點是可以經歷多次充電、放電循環,反復使用。
鉛蓄電池
最為常用,其極板是用鉛合金製成的格柵,電解液為稀硫酸。兩極板均覆蓋有硫酸鉛。但充電後,正極處極板上硫酸鉛轉變成二氧化鉛,負極處硫酸鉛轉變成金屬鉛。放電時,則發生反方向的化學反應。
鉛蓄電池的電動勢約為2伏,常用串聯方式組成6伏或12伏的蓄電池組。電池放電時硫酸濃度減小,可用測電解液比重的方法來判斷蓄電池是否需要充電或者充電過程是否可以結束。
鉛蓄電池的優點是放電時電動勢較穩定,缺點是比能量(單位重量所蓄電能)小,對環境腐蝕性強。
由正極板群、負極板群、電解液和容器等組成。充電後的正極板是棕褐色的二氧化鉛(PbO2),負極板是灰色的絨狀鉛(Pb),當兩極板放置在濃度為27%~37%的硫酸(H2SO4)水溶液中時,極板的鉛和硫酸發生化學反應,二價的鉛正離子(Pb2+)轉移到電解液中,在負極板上留下兩個電子(2e-)。由於正負電荷的引力,鉛正離子聚集在負極板的周圍,而正極板在電解液中水分子作用下有少量的二氧化鉛(PbO2)滲入電解液,其中兩價的氧離子和水化合,使二氧化鉛分子變成可離解的一種不穩定的物質——氫氧化鉛〔Pb(OH4〕)。氫氧化鉛由4價的鉛正離子(Pb4+)和4個氫氧根〔4(OH)-〕組成。4價的鉛正離子(Pb4+)留在正極板上,使正極板帶正電。由於負極板帶負電,因而兩極板間就產生了一定的電位差,這就是電池的電動勢。當接通外電路,電流即由正極流向負極。在放電過程中,負極板上的電子不斷經外電路流向正極板,這時在電解液內部因硫酸分子電離成氫正離子(H+)和硫酸根負離子(SO42-),在離子電場力作用下,兩種離子分別向正負極移動,硫酸根負離子到達負極板後與鉛正離子結合成硫酸鉛(PbSO4)。在正極板上,由於電子自外電路流入,而與4價的鉛正離子(Pb4+)化合成2價的鉛正離子(Pb2+),並立即與正極板附近的硫酸根負離子結合成硫酸鉛附著在正極上。
隨著蓄電池的放電,正負極板都受到硫化,同時電解液中的硫酸逐漸減少,而水分增多,從而導致電解液的比重下降在實際使用中,可以通過測定電解液的比重來確定蓄電池的放電程度。在正常使用情況下,鉛蓄電池不宜放電過度,否則將使和活性物質混在一起的細小硫酸鉛晶體結成較大的體,這不僅增加了極板的電阻,而且在充電時很難使它再還原,直接影響蓄池的容量和壽命。鉛蓄電池充電是放電的逆過程。
鉛蓄電池的工作電壓平穩、使用溫度及使用電流范圍寬、能充放電數百個循環、貯存性能好(尤其適於乾式荷電貯存)、造價較低,因而應用廣泛。採用新型鉛合金,可改進鉛蓄電池的性能。如用鉛鈣合金作板柵,能保證鉛蓄電池最小的浮充電流、減少添水量和延長其使用壽命;採用鉛鋰合金鑄造正板柵,則可減少自放電和滿足密封的需要。此外,開口式鉛蓄電池要逐步改為密封式,並發展防酸、防爆式和消氫式鉛蓄電池。
鉛晶蓄電池
鉛晶蓄電池應用的是專有技術,所採用的高導硅酸鹽電解質是傳統鉛酸電池電解質的復雜性改型,無酸霧內化成工藝是定型工藝的革新。這些技術工藝均屬國內外首創,該產品在生產、使用及廢棄物中都不存在污染問題,更符合環保要求,由於鉛晶蓄電池用硅酸鹽取代硫酸液作電解質,從而克服了鉛酸電池使用壽命短,不能大電流充放電的一系列缺點,更加符合動力電池的必備條件,鉛晶電池也必將對動力電池領域產生巨大的推動作用。
鉛晶蓄電池較鉛酸電池具有無可比擬的優越性:
1、鉛晶電池的使用壽命長
一般鉛酸電池循環充放電都在350次左右,而鉛晶電池在額定容量放電60%的前提下,循環壽命700多次,相當於鉛酸電池壽命的一倍。
2、高倍率放電性能好
特殊的工藝使鉛晶電池具有高倍率放電的特性,一般鉛酸電池放電只有3C,鉛晶電池放電最大可以達到10C。
3、深度放電性能好
鉛晶電池可深度放電到0V,繼續充電可恢復全部額定容量,這一特性相對鉛酸電池來講是難以達到的境界。
4、耐低溫性能好
鉛晶電池的溫度適應范圍比較廣,從-20—50℃都能適應,特別是在-20℃的情況下,放電能達到87%。對廣大低溫地區是不可多得的首選佳品。
5、環保性好
鉛晶電池所採用的新材料、新工藝和新配方,不存在酸霧等揮發的有害物質,對土地、河流等不會造成污染,更加符合環保要求。
鐵鎳蓄電池
也叫愛迪生電池。鉛蓄電池是一種酸性蓄電池,與之不同,鐵鎳蓄電池的電解液是鹼性的氫氧化鉀溶液,是一種鹼性蓄電池。其正極為氧化鎳,負極為鐵。充電、放電的化學反應是
電動勢約為1.3~1.4伏。其優點是輕便、壽命長、易保養,缺點是效率不高。
鎳鎘蓄電池
正極為氫氧化鎳,負極為鎘,電解液是氫氧化鉀溶液,充電、放電的化學反應是
其優點是輕便、抗震、壽命長,常用於小型電子設備。
銀鋅蓄電池
正極為氧化銀,負極為鋅,電解液為氫氧化鉀溶液。
銀鋅蓄電池的比能量大,能大電流放電,耐震,用作宇宙航行、人造衛星、火箭等的電源。充、放電次數可達約100~150次循環。其缺點是價格昂貴,使用壽命較短。
燃料電池
一種把燃料在燃燒過程中釋放的化學能直接轉換成電能的裝置。與蓄電池不同之處,是它可以從外部分別向兩個電極區域連續地補充燃料和氧化劑而不需要充電。燃料電池由燃料(例如氫、甲烷等)、氧化劑(例如氧和空氣等)、電極和電解液等四部分構成。其電極具有催化性能,且是多孔結構的,以保證較大的活性面積。工作時將燃料通入負極,氧化劑通入正極,它們各自在電極的催化下進行電化學反應以獲得電能。
燃料電池把燃燒反應所放出的能量直接轉變為電能,所以它的能量利用率高,約等於熱機效率的2倍以上。此外它還有下述優點:①設備輕巧;②不發噪音,很少污染;③可連續運行;④單位重量輸出電能高等。因此,它已在宇宙航行中得到應用,在軍用與民用的各個領域中已展現廣泛應用的前景。
太陽電池
把太陽光的能量轉換為電能的裝置。當日光照射時,產生端電壓,得到電流,用於人造衛星、宇宙飛船中的太陽電池是半導體製成的(常用硅光電池)。日光照射太陽電池表面時,半導體PN結的兩側形成電位差。其效率在百分之十以上,典型的輸出功率是5~10毫瓦每平方厘米(結面積)。
溫差電池
兩種金屬接成閉合電路,並在兩接頭處保持不同溫度時,產生電動勢,即溫差電動勢,這叫做塞貝克效應(見溫差電現象),這種裝置叫做溫差電偶或熱電偶。金屬溫差電偶產生的溫差電動勢較小,常用來測量溫度差。但將溫差電偶串聯成溫差電堆時,也可作為小功率的電源,這叫做溫差電池。用半導體材料製成的溫差電池,溫差電效應較強。
核電池
把核能直接轉換成電能的裝置(目前的核發電裝置是利用核裂變能量使蒸汽受熱以推動發電機發電,還不能將核裂變過程中釋放的核能直接轉換成電能)。通常的核電池包括輻射β射線(高速電子流)的放射性源(例如鍶-90),收集這些電子的集電器,以及電子由放射性源到集電器所通過的絕緣體三部分。放射性源一端因失去負電成為正極,集電器一端得到負電成為負極。在放射性源與集電器兩端的電極之間形成電位差。這種核電池可產生高電壓,但電流很小。它用於人造衛星及探測飛船中,可長期使用。
原電池
經一次放電(連續或間歇)到電池容量耗盡後,不能再有效地用充電方法使其恢復到放電前狀態的電池。特點是攜帶方便、不需維護、可長期(幾個月甚至幾年)儲存或使用。原電池主要有鋅錳電池、鋅汞電池、鋅空氣電池、固體電解質電池和鋰電池等。鋅錳電池又分為干電池和鹼性電池兩種。
鋅錳干電池
製造最早而至今仍大量生產的原電池。有圓柱型和疊層型兩種結構。其特點是使用方便、價格低廉、原材料來源豐富、適合大量自動化生產。但放電電壓不夠平穩,容量受放電率影響較大。適於中小放電率和間歇放電使用。新型鋅錳干電池採用高濃度氯化鋅電解液、優良的二氧化錳粉和紙板漿層結構,使容量和壽命均提高一倍,並改善了密封性能。
鹼性鋅錳電池
以鹼性電解質代替中性電解質的鋅錳電池。有圓柱型和鈕扣型兩種。這種電池的優點是容量大,電壓平穩,能大電流連續放電,可在低溫(-40℃)下工作。這種電池可在規定條件下充放電數十次。
鋅汞電池
由美國S.羅賓發明,故又名羅賓電池。是最早發明的小型電池。有鈕扣型和圓柱型兩種。放電電壓平穩,可用作要求不太嚴格的電壓標准。缺點是低溫性能差(只能在0℃以上使用),並且汞有毒。鋅汞電池已逐漸被其他系列的電池代替。
鋅空氣電池
以空氣中的氧為正極活性物質,因此比容量大。有鹼性和中性兩種系列,結構上又有濕式和乾式兩種。濕式電池只有鹼性一種,用NaOH為電解液,價格低廉,多製成大容量(100安·小時以上)固定型電池供鐵路信號用。乾式電池則有鹼性和中性兩種。中性空氣干電池原料豐富、價格低廉,但只能在小電流下工作。鹼性空氣干電池可大電流放電,比能量大,連續放電比間歇放電性能好。所有的空氣干電池都受環境濕度影響,使用期短,可靠性差,不能在密封狀態下使用。
固體電解質電池
以固體離子導體為電解質,分高溫、常溫兩類。高溫的有鈉硫電池,可大電流工作。常溫的有銀碘電池,電壓0.6伏,價格昂貴,尚未獲得應用。已使用的是鋰碘電池,電壓2.7伏。這種電池可靠性很高,可用於心臟起搏器。但這種電池放電電流只能達到微安級。
鋰電池
以鋰為負極的電池。它是60年代以後發展起來的新型高能量電池。按所用電解質不同分為:①高溫熔融鹽鋰電池;②有機電解質鋰電池;③無機非水電解質鋰電池;④固體電解質鋰電池;⑤鋰水電池。鋰電池的優點是單體電池電壓高,比能量大,儲存壽命長(可達10年),高低溫性能好,可在-40~150℃使用。缺點是價格昂貴,安全性不高。另外電壓滯後和安全問題尚待改善。近年來大力發展動力電池和新的正極材料的出現,特別是磷酸亞鐵鋰材料的發展,對鋰電發展有很大幫助。
儲備電池
有兩種激活方式,一種是將電解液和電極分開存放,使用前將電解液注入電池組而激活,如鎂海水電池、儲備式鉻酸電池和鋅銀電池等。另一種是用熔融鹽電解質,常溫時電解質不導電,使用前點燃加熱劑將電解質迅速熔化而激活,稱為熱電池。這種電池可用鈣、鎂或鋰合金為負極,KCl和LiCl的低共熔體為電解質,CaCrO4、PbSO4或V2O5等為正極,以鋯粉或鐵粉為加熱劑。採用全密封結構可長期儲存(10年以上)。儲備電池適於特殊用途。
標准電池
最著名的是惠斯頓標准電池,分飽和型和非飽和型兩種。其標准電動勢為1.01864伏(20℃)。非飽和型的電壓溫度系數約為飽和型的1/4。
糊式鋅-錳干電池
由鋅筒、電糊層、二氧化錳正極、炭棒、銅帽等組成。最外面的一層是鋅筒,它既是電池的負極又兼作容器,在放電過程中它要被逐漸溶解;中央是一根起集流作用的碳棒;緊緊環繞著這根碳棒的是一種由深褐色的或黑色的二氧化錳粉與一種導電材料(石墨或乙炔黑)所構成的混合物,它與碳棒一起構成了電池的正極體,也叫炭包。為避免水分的蒸發,干電池的上部用石蠟或瀝青密封。鋅-錳干電池工作時的電極反應為鋅極:Zn→Zn2++2e
紙板式鋅-錳干電池
在糊式鋅-錳干電池的基礎上改進而成。它以厚度為70~100微米的不含金屬雜質的優質牛皮紙為基,用調好的糊狀物塗敷其表面,再經過烘乾製成紙板,以代替糊式鋅-錳干電池中的糊狀電解質層。紙板式鋅-錳干電池的實際放電容量比普通的糊式鋅-錳干電池要高出2~3倍。標有「高性能」字樣的干電池絕大部分為紙板式。
鹼性鋅-錳干電池
其電解質由汞齊化的鋅粉、35%的氫氧化鉀溶液再加上一些鈉羧甲基纖維素經糊化而成。由於氫氧化鉀溶液的凝固點較低、內阻小,因此鹼性鋅-錳干電池能在-20℃溫度下工作,並能大電流放電。鹼性鋅-錳干電池可充放電循環40多次,但充電前不能進行深度放電(保留60%~70%的容量),並需嚴格控制充電電流和充電期終的電壓。
疊層式鋅-錳干電池
由幾個結構緊湊的扁平形單體電池疊在一起構成。每一個單體電池均由塑料外殼、鋅皮、導電膜以及隔膜紙、炭餅(正極)組成。隔膜紙是一種吸有電解液的表面有澱粉層的漿層紙,它貼在鋅皮的上面;隔膜紙上面是炭餅。隔膜紙如同糊式干電池的電糊層,起隔離鋅皮負極和炭餅正極的作用。疊層式鋅-錳干電池減去了圓筒形糊式干電池串聯組合的麻煩,其結構緊湊、體積小、體積比容量大,但貯存壽命短且內阻較大,因而放電電流不宜過大。
鹼性蓄電池
與同容量的鉛蓄電池相比,其體積小,壽命長,能大電流放電,但成本較高。鹼性蓄電池按極板活性材料分為鐵鎳、鎘鎳、鋅銀蓄電池等系列。以鎘鎳蓄電池為例,鹼性蓄電池的工作原理是:蓄電池極板的活性物質在充電後,正極板為氫氧化鎳〔Ni(OH)3〕,負極板為金屬鎘(Cd);而放電終止時,正極板轉變為氫氧化亞鎳〔Ni(OH2)〕,負極板轉變為氫氧化鎘〔Cd(OH)2〕,電解液多選用氫氧化鉀(KOH)溶液。
金屬-空氣電池
以空氣中的氧氣作為正極活性物質,金屬作為負極活性物質的一種高能電池。使用的金屬一般是鎂、鋁、鋅、鎘、鐵等;電解質為水溶液。其中鋅

3. 熱敏電阻一般用在哪裡

熱敏電阻一般用在電表中。

熱敏電阻是一種感測器電阻,其電阻值隨著溫度的變化而改變。按照溫度系數不同分為正溫度系數熱敏電阻(PTC thermistor,即 Positive Temperature Coefficient thermistor)和負溫度系數熱敏電阻(NTC thermistor,即 Negative Temperature Coefficient thermistor)。

正溫度系數熱敏電阻器的電阻值隨溫度的升高而增大,負溫度系數熱敏電阻器的電阻值隨溫度的升高而減小,它們同屬於半導體器件。

原理:

熱敏電阻將長期處於不動作狀態;當環境溫度和電流處於c區時,熱敏電阻的散熱功率與發熱功率接近,因而可能動作也可能不動作。熱敏電阻在環境溫度相同時,動作時間隨著電流的增加而急劇縮短;熱敏電阻在環境溫度相對較高時具有更短的動作時間和較小的維持電流及動作電流。

4. 熱電阻和熱電偶如何分辨

熱電偶和熱電阻的區分方式

1、看標牌

標牌上標的有熱偶、熱阻等信息。

2、看接線盒接線

熱偶一般為兩根線,雙支的四根線;熱阻一般為三根線,雙支的六根線。

單支熱阻有四根線的,也有少數兩根線的。

3、看接線板

在接線板上查看,有正負(補償導線也有正負)的是熱偶,沒有正負的是熱阻。

4、看內芯

熱電偶是2根不同材料的金屬絲,尾端焊接在一起;熱阻是2根相同材料的導線,尾端連接在一個感溫元件上。所以,從外觀上看,熱電阻的頭部有一個直徑明顯變大的部分,而熱電偶就沒有。

5、量電阻使用萬用表的電阻檔測量;正常情況下熱電偶的電阻很小,只有幾歐;熱電阻的電阻體在常溫下100多歐。

(4)電路板電偶擴展閱讀:

熱電偶(thermocouple)是溫度測量儀表中常用的測溫元件,它直接測量溫度,並把溫度信號轉換成熱電動勢信號,通過電氣儀表(二次儀表)轉換成被測介質的溫度。各種熱電偶的外形常因需要而極不相同,但是它們的基本結構卻大致相同,通常由熱電極、絕緣套保護管和接線盒等主要部分組成,通常和顯示儀表、記錄儀表及電子調節器配套使用。

當有兩種不同的導體或半導體A和B組成一個迴路,其兩端相互連接時,只要兩結點處的溫度不同,一端溫度為T,稱為工作端或熱端,另一端溫度為T0 ,稱為自由端(也稱參考端)或冷端,迴路中將產生一個電動勢,該電動勢的方向和大小與導體的材料及兩接點的溫度有關。

這種現象稱為「熱電效應」,兩種導體組成的迴路稱為「熱電偶」,這兩種導體稱為「熱電極」,產生的電動勢則稱為「熱電動勢」 。

熱電動勢由兩部分電動勢組成,一部分是兩種導體的接觸電動勢,另一部分是單一導體的溫差電動勢。

熱電偶冷端補償計算方法:

從毫伏到溫度:測量冷端溫度,換算為對應毫伏值,與熱電偶的毫伏值相加,換算出溫度;

從溫度到毫伏:測量出實際溫度與冷端溫度,分別換算為毫伏值,相減後得出毫伏值,即得溫度。

熱電偶的技術優勢:熱電偶測溫范圍寬,性能比擬穩定;丈量精度高,熱電偶與被測對象直接接觸,不受中間介質的影響;熱響應時間快,熱電偶對溫度變化反響靈活;丈量范圍 大,熱電偶從-40~+ 1600℃ 均可連續測溫;熱電偶性能牢靠, 機械強度好。運用壽命長,裝置便當。

電偶必需是由兩種性質不同但契合一定要求的導體(或半導體)材料構成迴路。熱電偶丈量端和參考端之間必需有溫差。

將兩種不同資料的導體或半導體A和B焊接起來,構成一個閉合迴路。當導體A和B的兩個執著點1和2之間存在溫差時,兩者之間便產生電動勢,因此在迴路中構成一個大小的電流,這 種現象稱為熱電效應。熱電偶就是應用這一效應來工作的。

熱電阻的測溫原理是基於導體或半導體的電阻值隨溫度變化而變化這一特性來測量溫度及與溫度有關的參數。熱電阻大都由純金屬材料製成,目前應用最多的是鉑和銅,現在已開始採用鎳、錳和銠等材料製造熱電阻。熱電阻通常需要把電阻信號通過引線傳遞到計算機控制裝置或者其它二次儀表上。

熱電阻的測溫原理與熱電偶的測溫原理不同的是,熱電阻是基於電阻的熱效應進行溫度測量的,即電阻體的阻值隨溫度的變化而變化的特性。因此,只要測量出感溫熱電阻的阻值變化,就可以測量出溫度。目前主要有金屬熱電阻和半導體熱敏電阻兩類。

金屬熱電阻的電阻值和溫度一般可以用以下的近似關系式表示,即Rt=Rt0[1+α(t-t0)]

式中,Rt為溫度t時的阻值;Rt0為溫度t0(通常t0=0℃)時對應電阻值;α為溫度系數。

半導體熱敏電阻的阻值和溫度關系為Rt=AeB/t

式中Rt為溫度為t時的阻值;A、B取決於半導體材料的結構的常數。

相比較而言,熱敏電阻的溫度系數更大,常溫下的電阻值更高(通常在數千歐以上),但互換性較差,非線性嚴重,測溫范圍只有-50~300℃左右,大量用於家電和汽車用溫度檢測和控制。金屬熱電阻一般適用於-200~500℃范圍內的溫度測量,其特點是測量准確、穩定性好、性能可靠,在程式控制制中的應用極其廣泛。

5. 晶元上面沒有電路布局的部分,三防漆被刮露銅,直接把銅刮傷了,會不會讓穩定性變差

隨著電子技術的發展,電路板上的器件引腳間距越來越小,器件排列更加密集,電場梯度更大,這都使得電路板對腐蝕更為敏感。另一方面,電路板應用環境的拓展和產品可靠性壽命要求的不斷增加,使得電路板發生腐蝕失效的風險不斷增加。其中大氣環境作為電路板腐蝕發生的外部條件,大氣污染物在產品腐蝕發生的過程中扮演了重要角色。由於與大氣污染物相關的故障通常在電子產品使用一段時間後才能顯現出來,這意味著一旦發生了腐蝕引起的故障,相同環境下相同使用年限的產品將進入故障集中爆發期。同時污染對電子產品的影響是不可逆的,會對維修造成很大困難,甚至導致產品的報廢。因此在產品設計之初進行相應的大氣污染物的防護設計很有必要。在以往研究中的有關電路板腐蝕問題,主要聚焦於特定類型的腐蝕機理及緩蝕劑的研究。電路板塗覆塗層的研究中,偏向在平面條件下保護塗層的不同材質、不同厚度等因素對防護和可維修性的分析,少有專門針對工程實際中電路板防護塗層的塗覆薄弱點評估和關於電路板腐蝕防護的系統性介紹。
在以往研究的基礎上,文中結合電路板大氣污染物防護的實際問題,從電路板典型腐蝕失效和保護塗層的塗覆薄弱點入手,探討電路板類產品應對大氣污染物的具體防護措施。
大氣污染物分類
根據ANSI/ISA-71.04的描述,影響設備工作的空氣中的污染物有固體、液體、氣體三種形態。各形態中對電路板影響較大的物質如下所述。
1)固態微粒——灰塵。灰塵中通常含有氯離子、硫酸根、硝酸根等水溶性鹽分。除了直接使設備內部金屬接插件或金屬觸點接觸不良外,還會在金屬表面促使水膜的形成。水溶性成分溶解在水膜中,將會加速金屬腐蝕的發生,導致電路板絕緣阻抗下降。若在電路板工作過程中,可能會發生更為嚴重的電偶腐蝕。
2)液態空氣污染物——鹽霧。此處描述的液態空氣污染物除了廣義上的液體外,還包含了被氣體攜帶的液體和空氣中霧化液滴狀物的氣溶膠。沿海地區的空氣中,鹽霧含量較高,主要成分是NaCl,NaCl在化學上比較不活潑,但在潮濕及有水的情況下,會產生Cl-,與Cu、Ni、Ag等金屬或合金反應。同時NaCl作為一種強電解質,在低於臨界相對濕度的情況下,可以在附著表面發生結露,離解生成Cl-,溶解在電路板表面的液膜或液滴中。在一定濃度Cl-下,電子設備開始出現局部腐蝕,隨著新的不緻密腐蝕產物的出現,進一步破壞設備表面的防護層,腐蝕速率迅速增大。
3)氣態空氣污染物——S02、H2S。含硫化合物是大氣中最主要的污染物之一,大氣中H2S和SO2主要來自采礦、含硫燃料的燃燒及冶金、硫酸製造等工業過程。H2S和SO2是強可變組分,H2S在加熱情況下可分解為H2和S。排放到空氣中的SO2與潮濕空氣中的O2和水蒸氣反應,在粉塵等催化劑作用下化合生成H2SO4。
腐蝕失效機理和形態
由腐蝕引起的電化學遷移(Electrochemical migration,ECM)是電子產品腐蝕失效的主要原因。電化學遷移存在兩種不同的形式:一種是金屬離子遷移到陰極,還原沉積形成枝晶,並向陽極生長;另外一種是陽極向陰極生產的導電陽極絲(Concting anodic filaments,CAF)。金屬的電化學遷移最終會造成電路的短路漏電流,從而造成系統的失效。
電路板出現的大氣腐蝕機制中,材料表面的吸附液膜扮演著重要角色。液膜厚度在1μm以上的腐蝕最為嚴重,液膜之下主要發生的是電化學反應。常見的電子設備在空氣中出現的腐蝕形態,可以大致分為以下幾類。
1)局部腐蝕。腐蝕集中在金屬材料表面的小部分區域內,其餘大部分表面腐蝕輕微或不發生腐蝕。主要由於金屬表面狀態(塗層缺陷、化學成分等)和腐蝕介質分布的不均勻,導致電化學性不均勻,即不同的部位具有不同的電極電位,從而形成電位差,驅動局部腐蝕的產生。在局部腐蝕過程中,陽極區域和陰極區域區別明顯,通常形成小陽極大陰極的組態,陽極腐蝕嚴重。
2)微孔腐蝕。一種特殊的局部腐蝕,常見於鍍金元件上的特殊電偶腐蝕。由於鍍層表面微孔或其他缺陷的存在,中間過渡層甚至基體金屬暴露在大氣中,Au與其他金屬形成大陰極小陽極的電偶對,發生電化學腐蝕。腐蝕產物的出現進一步導致表面缺陷的增大,最終導致鍍層破壞。受接觸表面微孔腐蝕產物的影響,腐蝕區域將表現出較高的接觸阻抗和相移。
3)電解腐蝕。在相鄰導體間距較近且存在偏壓的情況下,將形成較強的電場。若此時導體存在液膜,電位較高的導體將會被溶液電解,形成的離子向另一導體遷移,導致導體間絕緣性能迅速下降,破壞導體,最終導致設備失效。
典型腐蝕與防護
電路板典型腐蝕失效
電路板上會用到多種物料,物料的選型對於腐蝕反應的發生有重要影響。以工程實際中遇到的厚膜電阻硫化、SMD LED兩種典型硫化失效和印製板銅腐蝕為例,比較不同器件封裝結構和材料選擇對電路板抗腐蝕能力的影響。
1)厚膜貼片電阻硫化腐蝕。厚膜電阻的面電極含有銀元素,銀元素暴露在空氣中極易與硫發生化學反應。如果外部保護層和電鍍層沒有緊密結合,則面電極會與空氣中的硫接觸。當空氣中含有大量含硫化合物時,銀與硫化物反應生成硫化銀,由於硫化銀不導電,且體積比銀大,在化合後,體積膨脹,導致原先銀層的斷層,電阻值逐漸增大,直至斷路。為了防止厚膜電阻硫化,可選用抗硫化能力強的電阻。在面電極上塗覆保護層,通過導入不含Ag、且具有導電性的硫化保護層,從而保護上面電極,徹底杜絕硫化的通路。典型抗硫化電阻封裝結構如圖1所示。通過1年的對比應用試驗表明,電阻硫化失效率大大降低,新封裝結構的厚膜電阻具有良好的抗硫化作用。
圖1 帶抗硫化塗層的貼片電阻結構
2)硅膠封裝LED硫化腐蝕失效。典型的貼片封裝LED結構如圖2所示,其中與金線相連的一般為鍍銀支架,灌封材料則通常根據廠商而異。實際應用中,在含硫量較高的地區使用硅膠封裝LED,被硫化的風險很高。如圖3所示,硅膠封裝的LED內部支架已經發黑,經過測試,無法點亮。將失效硅膠封裝LED機械開封後,在金相顯微鏡下觀察到內部鍵合點和支架的形貌如圖4和圖5所示。支架出現嚴重發黑,甚至露出基底銅層的顏色,外部鍵合點已脫落,晶元位置的銀膠發黑嚴重。選取LED支架區域的兩個位置進行EDS能譜分析,如圖6所示。在支架區域分別檢測到了質量分數為13.02%和5.38%的硫元素。
圖2 貼片LED結構
圖3 被硫化的硅膠封裝LED
圖4 金相顯微鏡下的被硫化的硅膠封裝LED開封圖片
圖5 LED支架區域SEM圖像
圖 6EDS分析結果
硅膠多孔結構對空氣中硫化物有吸附作用,PLCC表面灌注型發光二極體如果選用硅膠進行封裝,則會有硫化的風險。因為硅膠具有透濕透氧的特性,空氣中的硫離子易穿透硅膠分子間隙,進入LED內部,與支架鍍銀層發生化學反應,導致支架功能區黑化,光通量下降,直至出現死燈。如果選用環氧樹脂進行封裝(見圖7),則能有效阻止硫離子的侵蝕。選用環氧樹脂封裝的LED,現場使用1年後沒有發現硫化的現象。
圖7 環氧樹脂封裝的LED
3)印刷電路板的銅腐蝕。印刷電路板使用銅作為電氣傳輸介質,銅腐蝕不僅會影響產品外觀,更容易導致電氣連接短路或斷路問題。為提高電路板覆銅的抗腐蝕能力,常見的表面處理方式有:熱風整平噴錫、化學鎳金和化學浸銀。相關研究表明,在容易產生凝露的含硫大氣環境下,熱風整平噴錫抗腐蝕能力最強,其次是化學鎳金。
表面處理並不能完全確保電路板在惡劣環境下覆銅不被腐蝕。如圖8所示,化學鎳金電路板底部接地覆銅區域出現覆銅腐蝕現象,甚至被三防漆覆蓋區域的過孔也出現了明顯的腐蝕產物堵塞過孔。如圖9所示,經過熱風整平噴錫的電路板過孔出現腐蝕現象,電路板過孔位置是腐蝕現象出現的高發區域。除了改變表面處理方式和增加鍍層厚度外,還應調整電路板生產和集成測試過程中的工藝參數,尤其應避免ICT測試過程中,過高探針壓力破壞鍍層。ICT測試壓痕如圖10所示。
圖8 化學鎳金處理的電路板過孔腐蝕
圖9 熱風整平噴錫處理的電路板過孔腐蝕
圖10 電路板ICT測試壓痕
塗層塗覆
印製電路板的器件腐蝕通常從引腳或器件邊緣誘發,歷經表面塗層損傷、界面腐蝕擴展、金屬腐蝕擴展、元器件內腔腐蝕等階段。三防漆作為一種特殊配方的塗料,用於保護電路板免受環境的侵蝕。三防漆的種類和塗覆厚度是影響防護效果的重要因素。業內常根據GB/T 13452.2-2008測量平面位置的塗覆材料厚度,有濕膜厚度、干膜厚度的區分。IPC-A-610給出了不同類型的三防漆推薦塗覆厚度,見表1。根據實際應用,對於受控環境,可以無需塗覆三防或採用薄層塗覆工藝,塗覆厚度處於范圍下限;對於不受控環境或惡劣環境,則建議採用厚層塗覆工藝,塗覆厚度處於范圍上限。
表1 IPC-A-610建議塗覆厚度
在實際生產中,發現引腳處干膜厚度有時僅能達到平面區域干膜厚度的1/3。原因是三防漆具有一定流動性,在噴塗後,受到重力和引腳間的毛細作用,器件引腳處的三防漆厚度較薄,成為三防防護的薄弱點(見圖11),極易形成腐蝕。如圖12所示,使用一段時間的電路板器件引腳處出現了三防漆缺失和引腳腐蝕現象。
圖11 保護塗層的薄弱點
圖12 器件三防缺失和引腳腐蝕
為了評估不同種類三防漆材質及塗覆厚度在電路板防護效果,選取三塊相同電路板,設置不同的塗覆參數,見表2。方案A、B中的丙烯酸三防漆在使用前需要稀釋,方案C中的觸變型聚氨酯三防漆是改良型的聚氨酯三防漆,具有剪切時黏度較小、便於噴塗均勻、停止剪切時黏度迅速上升的特點。根據GB/T 2423.17進行恆定鹽霧試驗168h之後,按照GB/T 2423.18採用等級II的要求進行交變鹽霧6個周期試驗,時間為144h。試驗方法和參數見表3和圖13。
表2 試驗電路板樣品塗覆參數
表3 鹽霧試驗參數
圖13鹽霧試驗方案
試驗結果如圖14所示。在經過恆定鹽霧試驗和交變鹽霧試驗之後,方案A的電路板在塗層的邊沿位置出現了塗層脫落,貼片器件和引腳焊點位置出現鼓泡,部分器件引腳出現了較嚴重腐蝕,在紫光燈下器件引腳位置三防漆脫落情況嚴重。方案B的電路板在紫光燈下器件引腳位置三防漆出現少量脫落,引腳出現輕微腐蝕,電路板在平面位置出現一些鼓泡,貼片器件的邊沿位置出現一定鼓泡。方案C的電路板三防漆外觀未見明顯破損,在紫光燈下器件引腳位置三防漆留存相對完整,在PCB平面位置有少量鼓泡情況出現,在貼片器件引腳處出現少量氣泡。
圖14 鹽霧試驗後的電路板三防漆外觀對比
試驗結果表明,在三防漆塗覆工藝相同的前提下,不同物性參數和塗覆厚度的三防漆在電路板的防護效果上有較大的差異。適當提高三防漆材質黏度和厚度能有效改善器件引腳處和器件邊沿處防護效果,保證塗層的完整性,進一步提高了電路板器件工作過程的抗腐蝕能力。
結構防護
結構密封防護設計是為隔絕或減少外部腐蝕介質的影響,保持內部絕緣件和電子器件原有的性能。例如將設備置於高防護等級的防護外殼中,如圖15所示。
圖15 IP67電路板防護外殼
提高防護等級可能會導致如散熱、人機交互、成本等方面的問題。當系統中引入風扇時,需注意風道設計。根據設備的使用環境,合理選擇產品的散熱方式和風扇的位置。當風扇置於進風口位置,應注意避免在設備內部形成渦流,且進風口位置避免放置管腳密度較大的器件,以減少局部區域積灰嚴重的問題出現,避免固體顆粒污染物聚集。
結論
針對電路板的大氣污染物防護問題,在應力因素分析和已有腐蝕故障機理研究的基礎上,分別從器件級、單板級和設備級,在物料選型、防護塗層和結構防護設計方面提出了多種分析驗證方法和防護措施。
1)對於腐蝕器件,可用金相顯微、SEM及EDS等手段確定具體污染源,針對污染源種類和入侵路徑選擇合適封裝的器件。
2)受重力和引腳間毛細作用的影響,器件引腳和邊緣位置通常是塗層塗覆的薄弱點。帶有保護塗層的電路板腐蝕通常從引腳或器件邊緣誘發,器件引腳位置為保護塗層的塗覆薄弱點。提高塗層材料黏度和厚度,可以有效提升保護電路板對污染物的抗腐蝕能力。
3)適當提高結構設計的IP防護等級和合理的風道設計,可以有效降低大氣污染物入侵。
該研究提出的相關方法和相關案例分析為電路板腐蝕失效分析和防護設計提供了參考和借鑒。
淺談爬行腐蝕現象
一、問題的提出
1.一批運行了相當一段時間後的用戶單板中,發現其中6塊單板過孔上發黑而導致工作失常,如圖1所示。
圖1 電容、電阻端子焊點發黑
2.一批PCBA在運行了一段時間後出現了4塊因電阻排焊盤和焊點發暗而導致電路工作不正常,如圖2所示。
圖2 電阻排焊盤和焊點發暗
不管是失效的電容、電阻還是電阻排,端子介面的位置都檢測到大量硫元素的存在。對失效樣品上殘留的塵埃進行檢測也發現S元素含量很高。因此,從現象表現和試驗分析的結果看,造成故障的原因是應用環境中的硫浸蝕。
二、爬行腐蝕的機理
爬行腐蝕發生在裸露的Cu面上。Cu面在含硫物質(單質硫、硫化氫、硫酸、有機硫化物等)的作用下會生成大量的硫化物。Cu的氧化物是不溶於水的。但是Cu的硫化物和氯化物卻會溶於水,在濃度梯度的驅動下,具有很高的表面流動性。生成物會由高濃度區向低濃度區擴散。硫化物具有半導體性質,且不會造成短路的立即發生,但是隨著硫化物濃度的增加,其電阻會逐漸減小並造成短路失效。
此外,該腐蝕產物的電阻值會隨著溫度的變化而急劇變化,可以從10MΩ下降到1Ω。濕氣(水膜)會加速這種爬行腐蝕:硫化物(如硫酸、二氧化硫)溶於水會生成弱酸,弱酸會造成硫化銅的分解,迫使清潔的Cu面露出來,從而繼續發生腐蝕。顯然濕度的增加會加速這種爬行腐蝕。據有關資料報導,這種腐蝕發生的速度很快,有些單板甚至運行不到一年就會發生失效,如圖3、圖4所示。
圖3 電阻排焊點的爬行腐蝕
圖4 PTH過孔上的爬行腐蝕
三、爬行腐蝕的影響因素
1.大氣環境因素的影響作為大氣環境中促進電子設備腐蝕的元素和氣體,被列舉的有:SO2、NO2、H2S、O2、HCl、Cl2、NH3等,腐蝕性氣體成分的室內濃度、蓄積速度、發生源、影響和容易受影響的材料及容許濃度如表1所示。上述氣體一溶入水中,就容易形成腐蝕性的酸或鹽。表1
2.濕度根據爬行腐蝕的溶解/擴散/沉積機理,濕度的增加應該會加速硫化腐蝕的發生。
Ping Zhao等人認為,爬行腐蝕的速率與濕度成指數關系。Craig Hillman等人在混合氣體實驗研究中發現,隨著相對濕度的上升,腐蝕速率急劇增加,呈拋物線狀。以Cu為例,當濕度從60%RH增加到80%RH時,其腐蝕速率後者為前者的3.6倍。
3.基材和鍍層材料的影響
Conrad研究了黃銅、青銅、CuNi三種基材,Au/Pd/SnPb三種鍍層結構下的腐蝕速率,實驗氣氛為干/濕硫化氫。結果發現:基材中黃銅抗爬行腐蝕能力最好,CuNi最差;表面處理中SnPb是最不容易腐蝕的,Au、Pd表面上腐蝕產物爬行距離最長。
Alcatel-Lucent、Dell、Rockwell Automation等公司研究了不同表面處理單板抗爬行腐蝕能力,認為HASL、Im-Sn抗腐蝕能力最好,OSP、ENIG適中,Im-Ag最差。Alcatel-Lucent認為各表面處理抗腐蝕能力排序如下:ImSn~HASL5ENIG>OSP>ImAg化學銀本身並不會造成爬行腐蝕。但爬行腐蝕在化學銀表面處理中發生的概率卻更高,這是因為化學銀的PCB露Cu或表面微孔更為嚴重,露出來的Cu被腐蝕的概率比較高。
4.焊盤定義的影響
Dell的Randy研究認為,當焊盤為阻焊掩膜定義(SMD)時,由於綠油側蝕存在,PCB露銅會較為嚴重,因而更容易腐蝕。採用非阻焊掩膜(NSMD)定義方式時,可有效提高焊盤的抗腐蝕能力。
5.單板組裝的影響。
① 再流焊接:再流的熱沖擊會造成綠油局部產生微小剝離,或某些表面處理的破壞(如OSP),使電子產品露銅更嚴重,爬行腐蝕風險增加。由於無鉛再流溫度更高,故此問題尤其值得關注。
② 波峰焊接:據報導,在某爬行腐蝕失效的案例中,腐蝕點均發生在夾具波峰焊的陰影區域周圍,因此認為助焊劑殘留對爬行腐蝕有加速作用。其可能的原因是:●助焊劑殘留比較容易吸潮,造成局部相對濕度增加,反應速率加快;●助焊劑中含有大量污染離子,酸性的H+還可以分解銅的氧化物,因此也會對腐蝕有一定的加速作用。四、對爬行腐蝕的防護措施隨著全球工業化的發展,大氣將進一步惡化,爬行腐蝕將越來越受到電子產品業界的普遍關注。
歸納對爬行腐蝕的防護措施主要有:(1)採用三防塗敷無疑是防止PCBA腐蝕的最有效措施;(2)設計和工藝上要減小PCB、元器件露銅的概率;(3)組裝過程要盡力減少熱沖擊及污染離子殘留;(4)整機設計要加強溫、濕度的控制;(5)機房選址應避開明顯的硫污染。五、爬行腐蝕、離子遷移枝晶及CAF等的異同馬里蘭大學較早研究了翼型引腳器件上的爬行腐蝕,並對腐蝕機理進行了初步的探討。與離子遷移枝晶、CAF類似,爬行腐蝕也是一個傳質的過程,但三者發生的場景、生成的產物及導致的失效模式並不完全相同,具體對比如表2所示。表2
現代電子裝聯工藝可靠性

閱讀全文

與電路板電偶相關的資料

熱點內容
重卡氣囊懸掛維修視頻 瀏覽:163
長沙三洋空調維修電話 瀏覽:98
金斧杯家居設計大賽 瀏覽:643
起重機維修工作怎麼樣 瀏覽:883
電路圖電 瀏覽:747
精裝修售後維修工招聘 瀏覽:196
上海整體家居定製 瀏覽:117
相鄰地面高差大設置什麼防水 瀏覽:70
建材家居跨界 瀏覽:615
怎麼鑒別佳能5d3是不是翻新機 瀏覽:233
深圳麥克維爾中央空調售後維修電話 瀏覽:414
商品房維修基金繳納標準是什麼意思 瀏覽:649
油漆翻新施工大概多少錢一平方 瀏覽:367
電路串聯有嗎 瀏覽:57
百德防水材料怎麼樣 瀏覽:815
電路高壓多少 瀏覽:813
成都得一傢具工資怎麼樣 瀏覽:292
基本的傢具跟裝修得花多少錢 瀏覽:587
米畫傢具屬於什麼檔次 瀏覽:313
舊房翻新標準是多少 瀏覽:17