導航:首頁 > 電器電路 > 乘法器電路圖

乘法器電路圖

發布時間:2023-05-25 18:24:51

㈠ 要進行兩個電壓U1,U2乘法運算,若採用霍爾元件作為運算器,請提出設計方案,並畫出測量系統的原理圖

(1)電流乘法器:霍爾元件的輸出電壓UH∝I1B,外加磁場可由電流I2產生B∝I2, 則有UH∝I1I2,因此霍爾元件可作為電流乘法器。

(2)電壓乘法器:I1和芹磨I2由電壓U1和U2產生,則有UH∝U1U2,因此霍爾元件可作為電壓乘法器。

在試驗過程中盡量使通入電壓低一些,以免電流太大損壞線圈,為了讀數清楚電壓表盡量選擇小一些,變流比在5以下時採用交流法測量比較簡單准確;

對變流比超過10的互感器不要採用這種方法進行測量,因為U2的數值較小U3與U1的數值接近,電壓滲蔽表的讀數不易區別大小,所以在測量時不好辨別,一般不宜採用此法測量極性。

(1)乘法器電路圖擴展閱讀:

由於通電導線周圍存在磁場,其大小和導線中的電流成正比,故可以利用霍爾元件測量出磁場,就可確定導線電流的大小。利用這一原理可以設計製成霍爾電流感測器。其優點是不和被測電路發生電接觸,不影響被測電路,不消耗被測電源的功率,特別適合於大電流感測。

如果把霍爾元件集成的開關按預定位置有規律地布置在物體上,當裝在運動物體上的永磁體經過它時叢首州,可以從測量電路上測得脈沖信號。根據脈沖信號列可以感測出該運動物體的位移。若測出單位時間內發出的脈沖數,則可以確定其運動速度。

㈡ 調幅的調幅電路

調幅電路原理主要分為兩類:高電平調幅電路和低電平調幅電路,具體如下: 高電平調幅要求電路的輸出功率足夠大。電路在調幅的同時,還進行功率放大。調制過程通常是在丙類放大級進行的。根據調制信號控制的電極不同,調制方法主要有集電極調幅、基極調幅、發射極調幅。
1、集電極調幅
(1)集電極調幅電路的特點是:
低頻調制信號加到集電極迴路,B1、B2為高頻變壓器;B3為低頻變壓器。低頻調制信號uΩ(t)與丙類放大器的直流電源相串聯,因此放大器的有效集電極電源電壓Vcc(t)等於兩個電壓之和,它隨調制信號變化而變化。圖中的電容Cb、C`是高頻旁路電容,C`的作用是避免高頻電流通過調制變壓器B3的次級線圈以及直流電源,因此它對高頻相當於短路,而對調制信號頻率應相當於開路.
對於丙類高頻功率故大器,當基極偏置Vbb、高頻激勵信號電壓振幅Ubm和集電極迴路阻抗Rp不變,只改變集電極有效電源電壓時,集電極電流脈沖在欠壓區可認為不變。而在過壓區,集電極電流脈沖幅度將隨集電極有效電源電壓的變化而變。因此,集電極調幅必須工作於過壓區。
(2)集電極調幅只能產生普通調幅波。
優點是:調幅線性比基極調幅好。此外,由於集電極調幅 始終工作在臨界和弱過壓區,故效率比較高。
缺點是:調制信號接在集電極迴路中供給的功率比較大。
2、基極調幅
基極調幅電路的特點是調制信號加在基極迴路。圖中C1、C3為高頻旁路電容;C2為低頻旁路電容;B1為高頻變壓器;B2為低頻變壓器;LC迴路為帶通濾波器。應保證迴路調諧於ωC,通帶為2Ω。
基極調幅的原理是利用丙類功率放大器在電源電壓Vcc、輸入信號振幅Ubm、諧振電阻Rp不變的條件下,在欠壓區改變Vbb,其輸出電流隨Vbb接近線性變化這一特性來實現調幅的。
基極調幅的優點是:由於調制信號接在基極迴路,對於調制信號只需很小的功率。
缺點是:效率較低,調制線性不如集電極調幅。 (1) 模擬乘法器調幅電路
作用:實現兩個模擬信號相乘
符號:

電路圖:

(2)二極體調制電路
二極體調制電路包括單二極體調制電路、二極體平衡電路、二極體雙平衡調制電路等。
1)單二極體電路
單二極體電路如下圖所示。

當二極體兩端的電壓UD大於二極體的導通電壓時,二極體導通,流過二極體的電流與加在兩端的電壓成正比;當二極體兩端的電壓UD小於二極體的導通電壓時,二極體截止,電流為0;二極體等效為一個受控開關。控制電壓為二極體兩端電壓UD。
當Ucm>>UΩm且Ucm為大信號(>0.5V)時,可進一步認為二極體的通斷主要由Uc控制。一般情況下二極體的開啟電壓UP較小,有Ucm>>UP,可令UP近似為0或在電路中加一固定偏置電壓來抵消UP。忽略輸出電壓的反作用,用開關函數分析法則可得到

可得到相應的頻譜圖如下:

將它通過以ωc為中心、通頻帶2Ω為的帶通濾波器後,可得到調幅波。
這里的分析忽略了輸出電壓的反作用。是因為輸出電壓的相對於Uc而言很小。若考慮反作用,輸出電壓對二極體兩端的電壓影響不大,頻率分量不會變化,可能使輸出信號幅度降低(rDàrD+RL)。
另外,如果不滿足大信號條件,不能用開關函數分析法或線性時變分析法,但可用冪級數分析法,可以知道該電路仍然可以完成頻譜的線性搬移功能。
2)二極體平衡調制器
在單二極體電路中,由於工作在線性時變工作狀態,因而二極體產生的頻率分量大大減少了,但在產生的頻率分量中,仍然有不少不必要的頻率分量,因此有必要進一步減少一些頻率分量。
二極體平衡電路可以滿足這一要求。其原理電路如下圖。

該電路由兩個性能一致的二極體及中心抽頭變壓器Tr1、Tr2接成平衡電路。電路上下兩部分完全一樣。控制信號(載波信號)加在兩個變壓器的中心抽頭處,輸入信號(調制信號)接在輸入變壓器,即載波信號同相加到D1、D2上;調制信號u2反相加到D1、D2上輸出變壓器接濾波器,用以濾除無用的頻率分量。從Tr2次向右看的負載電阻為RL。則該電路可等效成如下的原理電路形式。

由於加到兩個二極體的控制電壓是同相的,利用開關函數分析法,可得到負載上總電流為

其頻譜圖如下:

與單二極體電路相比,i含有頻譜:Ω、ω1±Ω、3ω1±Ω、……,經中心角頻率為ωc的3dB帶寬為2Ω 的LC帶通濾波器後,可在負載RL得到頻譜ωc±Ω 電壓分量,可見是實現了DSB調制。這是不難理解的,由於控制電壓uC同相地加在兩個二極體的兩端。當電路完全對稱時,兩個相等的ωC分量互相抵消,因此在輸出中不再有ωC及其諧波分量。即在輸出中,不必要的頻率分量進一步減少了。(DSB調幅)
3)二極體雙平衡調制器——二極體環形調制器
在二極體平衡調制電路中,通過兩個單二極體電路的上下對稱平衡接法,大大減少了不必要的頻率分量,同時使有用頻率分量的幅度增加了一倍。但依然有不必要的頻率分量如調制信號的頻率分量存在,且所得到的有用頻率分量的幅度依然不是很大。那麼,是否可以通過再平衡的方法進一步減少不必要的頻率分量且讓有用分量的幅度再增加一倍呢?
二極體雙平衡電路可以滿足這一要求。其原理電路如圖。

該電路由兩個雙二極體平衡電路組成,由於四個二極體環接形成環路,所以該電路又稱二極體環形調制器。載波從變壓器T1接入,調制信號接到兩個變壓器的中心抽頭間,變壓器T2輸出已調信號。
其分析條件與單二極體電路和二極體平衡電路相同。
各二極體工作情況如下圖:

則可得,

其頻譜圖如下:

i中含有頻譜:ωc±Ω ,3ωc±Ω……經中心為ωc、3dB帶寬為2Ω的帶通濾波器後,在負載RL 上可得到頻譜ωc±Ω電壓頻譜分量,實現了DSB調制。
從頻譜圖中可以看出,環形電路在平衡電路的基礎上,又消除了低頻調制信號的頻率分量,且輸出的DSB信號幅度為平衡電路的二倍。其無調制信號分量是兩次平衡抵消的結果,每個平衡電路自身抵消載波及諧波分量,兩個平衡電路抵消調制信號分量,所以環形電路的性能更接近理想相乘器。

㈢ 電路設計

電路圖已經發送,不知道你能不能明含敗清白?

要了解乘法器,必須先知道加法器的原理,想知道加法器的原理,最好還是非常熟悉2進制的運算方法。也就是說,你要對2進制的熟悉程度與對待10進制的熟悉程度一樣,才能夠對2進制的運算器有很好的了解。比如,人家問你2進制的10字怎麼寫,你就要馬上知道是1010。人家又問7怎麼寫,你就要馬上知道是0111。人家還問3+4=7怎麼寫,那就是0011+0100=0111。一般來說,你只要從0——15之間的2進制數掌握就可以了,也就是從0000——1111之間。順便也把16進制掌握好,就是從0——F之間枯嫌。
圖2,是一個全加器,也就是加法器了。圖3是一個乘法器單元,其實與門電路就是一個乘法器,因為有0*0=0,0*1=0,1*0=0,1*1=1。但它必須還要與全加器結合才能夠是一個完全的乘法器,從我們平時的草稿計算可知,計算乘法時,它是分兩部分來完成的。第一步是先算出乘法,第二步再作加法運算,所乘法器也是如此。
圖4,是一個兩位二進制的乘法器,圖5是一個消去一些多餘元件的乘法器,它與圖4的功能完全等價。在圖中的千、百、十、個位不是真正有這么大,在這里只是用來說明一個數對應的位置而已。
至於原理的問題,你可以從圖中去慢慢研究,靠的是自己的理解,很難用文字描述清楚給你聽。如果你是學過的,應該很容易學懂,如果你還沒學到過,我勸你還是不要先提前談前去學它。好了,我只說到這!

㈣ MC1496和MC1596可以通用不

模擬乘法器的應用實驗五 振幅調制及混頻器電路實驗實驗六 倍頻電路實驗 一、實驗目的 ①學習MC1496模擬乘法器的電路組成及工作原理。 ②學習應用MC1496模擬乘法器組成高頻功能電路,培養設計、調試和測量電路的能力。 二、MC1496模擬乘法器集成電路 (一)MC1496內部電路圖 圖1-39所示是MC1496的內部電路及引腳圖。它是由兩個單差分對電路T1、T2、T5和T3、T4、T6組合而成。其中腳8和腳10為u1輸入端,腳1和腳4為u2輸入端,腳6和腳12為差動輸出端,腳2和腳3之間接入反饋電阻Ry以增大u2的動態范圍。腳5接偏置電阻Rb,提供偏置電流。 (二)MC1496模擬乘法器實驗電路圖1-40是MC1496模擬乘法器的實驗電路圖。其中偏置電阻Rb=6.8k,使Io=2mA。R1和R2分別給T1、T2、T3、T4提供偏置。而兩只10k電阻與Rw構成的調零電路,用於調節T5、T6的平衡。Ry=1k是用於增大u2的動態范圍。實驗電路為單端輸出,採用部分接入的單調諧迴路作為負載,以增強選頻特性。 三、實驗原理(一)模擬乘法器的輸出電壓與輸入電壓的關系式 由於實驗電路接入了Ry,且為單端輸出。設雙調諧迴路在通帶內的電壓傳輸系數為ABP,則經帶通濾波器後的輸出電壓為
在此要注意ABP是與頻率有關的量,在通帶外,可認為是零,即反映帶通濾波的作用。 (二)振幅調制電路 振幅調制實驗電路如圖1—41所示。其中u1輸入載波振盪信號 uc=uocco s:t 。由於帶通濾波器的中心頻率在實驗電路中為固定值,只能進行微調,故載波信號的載波頻率應取與帶通濾波器的中心頻率相等。而u2輸入端加入調制信號 uo=』。+ 。 1.平衡調幅輸出 所謂平衡調幅是指其輸出信號為雙邊帶調幅波,其載波信號被抑制。實驗中應注意保證u2輸入信號只是調制信號 un ,而不含有直流成分。這就需要通過RW 調節使腳1、4兩端的電位差為零。具體測量可在輸入u1=uc、uo=0時,調節Rw,用示波器觀測輸出電壓uo。當uo變到零時.即表明腳1、4兩端直流電位差為零,滿足平衡調幅的需要。此時若輸人u2=un,則是雙邊帶調幅波輸出。 2.普通調幅輸出 普通調幅波是除了有上下邊頻分量外,還有載波分量。因而在輸入u1=uc時,u2中除了凋制信號un以外,還應該有直流分量。這就是通過調節Rw,使腳1、4兩端直流電位差不為零,相當於輸入電壓u2為直流電壓加調制信號uo,通過乘法器及帶通濾波器後,輸出為普通調幅波。對於模擬乘法器調幅電路來說,載波信號uc的輸入信號振幅大小可分為兩種情況:—種是u2的振幅小於26 mv,另一種情況是uc的振幅足夠大.可認為工作於開關狀態。當Ucm<26mv時,輸出電壓uo為當Ucm>100mV時, 則經帶通濾波後的輸出電壓uo為
(三)混頻電路 混頻實驗電路的連接如圖1-42所示。其中u1輸入本機振盪信號uL =UIm,t ,一般來說本振信號選取大信號,即U1m>=100mv,為開關工作狀態。而u2輸入為外來的輸入信號us,通常在混頻器中外來輸入信號是小信號,可以是調幅波、調頻波或調相波。為了便於觀測,本實驗的us採用小信號的普通調幅波。由於本實驗電路中帶通濾波器的中心頻率是一個固定值,只能進行微調,因而在帶通濾波器的中心頻率確定之後,這個中心頻率就是混頻器的中心頻率fI。若混頻器選取的中頻為低中頻,則在選取輸入信號us的載波頻率fs和本振信號uL的頻率fL時,應該滿足
反之,若混頻器選取的中頻為高中頻時,輸入信號us的載波頻率fs和本振信號uL的頻率fL應滿足
(四)倍頻電路 二倍頻實驗電路的連接如圖1-43所示。其輸入信號ui通過耦合電容加到u1和u2輸入端。一般來說,模擬乘法器構成的倍頻器其輸入信號採用小信號輸入。由於實驗板的帶通濾波器的中心頻率是固定值,只能微調,故在做倍頻器實驗時,輸入信號ui的頻率fi應為帶通濾波器中心頻率的1/2。 四、實驗內容 (一)振幅調制電路實驗 ①根據提供的模擬乘法器實驗電路板,設計用模擬乘法器構成的普通調幅波調幅電路和雙邊帶調幅電路,提出完成上述實驗的必要條件。 ②掌握模擬乘法器組成調幅電路的基本原理,熟習實驗電路板的組成及具體電路,並完成靜態和動態的調整與測量。 ③提出完成調幅電路實驗的測試方法及必備儀器。 ④測試並分析實驗結果。 (二)混頻器實驗 ①根據實驗電路板,設計用模擬乘法器構成的混頻電路,提出完成混頻實驗的必要條件。 ②掌握混頻電路的基本原理及用乘法器組成混頻電路的實質、特徵,並完成靜態和動態的調整與測量。 ③對混頻器的各種干擾,進行實驗與分析。 ④提出完成混頻電路實驗的測試方法及必備儀器。 ⑤完成測試並分析實驗結果。 (三)倍頻電路實驗 ①根據實驗電路板,設計用模擬乘法器構成二倍頻電路,提出完成倍頻實驗的必要條件。 ②掌握倍頻電路的基本原理及用乘法器實現倍頻的實質、特徵,並完成靜態和動態的調整與測量。 ①提出完成倍頻電路實驗的測試方法及必備儀器。 ④完成測試並分析實驗結果。

㈤ 求MC1496的接法。只需要實現最簡單的功能,輸入兩個正弦波X,Y,輸出Z即可

1 MLT04的結構功能和主要特點

在高頻電子線路中,振幅調制、同步檢波、混頻、倍頻、鑒頻等調制與解調的過程均可視為兩個信號相乘的過程,而集成模擬乘法器正是實現兩個模擬量電壓或電流相乘的電子器件。採用集成模擬乘法器實現上述功能比用分立器件要簡單得多,而且性能優越,因此集成模擬乘法器在無線通信、廣播電視等方面應用較為廣泛。在目前的乘法器中,單通道器件(如MOTOROLA的MC1496)無法實現多通道的復雜運算;二象限器件(如ADI公司的AD539)又會使負信號的應用受到限制。而ADI公司的 MLT04則是一款完全四通道四象限電壓輸出模擬乘法器,這種完全乘法器克服了以上器件的諸多不足之處,適用於電壓控制放大器、可變濾波器、多通道功率計算以及低頻解調器等電路。非常適合於產生復雜的要求高的波形,尤其適用於高精度CRT顯示系統的幾何修正。其內部結構及引腳排列如圖1所示。

MLT04是由互補雙極性工藝製作而成,它包含有四個高精度四象限乘法單元。溫度漂移小於0.005%/℃。0.3μV/Hz的點雜訊電壓使低失真的Y通道只有0.02%的總諧波失真雜訊,四個8MHz通道的總靜止功耗也僅為150mW。MLT04的工作溫度范圍為-40℃~+85℃。

MLT04的其它主要特性如下:

●四個獨立輸入通道;

●四象限乘法信號;

●電壓輸入電壓輸出;

●乘法運算無需外部元件;

●電壓輸出:W=(X×Y)/2.5V,其中X或Y上的線性度誤差僅為0.2%;

●具有優良的溫度穩定性:0.005% ;

●模擬輸入范圍為±2.5V,採用±5V電壓供電;

●低功耗一般為150mW。

2 誤差源和非線性

模擬乘法器的靜態誤差主要由輸入失調電壓、輸出偏置電壓、比例系數以及非線性度引起。在這四種誤差源中,只有X和Y的輸入失調電壓可以由外部調整。而MLT04的輸出偏置電壓在出廠時已由廠家調整至50mV,比例系數在整個量程之內被內部調整為2.5%。MLT04的輸入失調電壓的誤差可以採用圖2所示的可變失調電壓調整電路來消除。這種電路還可以減小乘法器內核中的輸出偏置電壓、增益誤差以及非線性器件引起的固有誤差。

乘法器的內部非線性是器件的固有誤差。它指的是所有成對輸入值的實際輸出與理想的線性理論輸出值之間的差值。其定義是在完全沒有電流誤差時,誤差量與滿刻度的百分比。在最壞的情況下,MLT04的X輸入端的最大非線性也小於0.2%,Y輸入端的最大非線性僅為0.06%。因此,在應用於數據機或是混頻器時,最好將載波信號由X輸入端輸入,而實際信號由Y輸入端輸入。

3 應用電路

3.1 乘法器

圖3所示為乘法器的基本連接方法。四個獨立通道中的每一個通道都是由兩個單端電壓輸入(X和Y)和一個低阻抗電壓輸出(W)組成,而且每個通道都有自己專有的接地,這些接地都被接至模擬地。為了達到最好的性能,電路布局一定要緊湊並且連線要短,電源電壓的饋電電流要旁路。不用的通道引腳要接地。

3.2 平方和倍頻器

如需對輸入信號進行平方運算,可將輸入信號VIN並行的同時接到X和Y輸入端以產生輸出信號VIN/2.5V。這里的輸入信號可以是任意極性,但得到的輸出信號一定是正值。圖4為平方運算電路。

如果輸入是正弦波VINsinωt,由以下的三角公式可知,平方電路也可以作為倍頻器:

(VINsinωt)2/2.5V=V2IN(1-cosωt)/(2×2.5V)

由上式還可看出,輸出中含有直流部分,直流隨著輸入VIN的變化會發生很大變化。通過高通濾波器可以除去MLT04輸出中的直流偏置。為了得到理想的頻率特性,高通濾波器的截止頻率應該接近輸入信號的基頻。

這種配置中的一個基本誤差源是X和Y輸入端的失調電壓。輸入的失調電壓和輸入信號混在一起將導致輸出波形失真。為了解決這一問題,圖5電路中,利用雙運放OP285提供的反相放大器可以調整X和Y輸入端的失調。

此外通過反乘法器配置還可利用MLT04來設計除法器和平方根函數發生器等電路。

3.3 壓控低通濾波器

圖6所示是用模擬乘法器MLT04構成的一個壓控低通濾波器。比傳統的濾波器配置相比這種技術的好處在於濾波器的截至頻率ω0直接正比於乘法器的輸入電壓。這使得濾波器中的電容可以由電壓控制,從而可以直接或間接調整。這樣濾波器的頻率特性就可以在不影響其它參數的情況下由一個單獨的電壓進行控制。

圖6中,當VX從25mV變化到2.5V時,濾波電路的截至頻率也將從1kHz變化到100kHz。因此,利用這種方法可以構造出中心頻率、通帶增益以及Q值等參數由直流電壓控制的濾波器。
還不錯,希望你採納。

㈥ 模擬乘法電路原理

見圖紙的電路圖及運算過程,U0=K×Ux×Uy,K為常數,實現了乘法運算。

㈦ 急求一通信電子線路課程設計

通信單元電路設計
(AM調制)

引言
進入信息時代以來,純禪隨著通信技術、計算機技術和控制技術的不斷發展與相互融合,極大的擴展了通信的功能,使得人們可以隨時隨地通過各種通信手段獲取和交換各種各樣的信息。通信滲入到社會生產和生活的各個領域,通信產品隨處可見。通信已經成為現代文明的標志之一,對人們日常生活和社會活動的影響與越來越大。
現代通信從模擬通信方式開始,數字通信著後來居上,已經逐步取代了模擬通信,但數字調制理論是建立在模擬調制的基礎上的。而且,在現有的各類通信系統中,仍然還有大量模擬通信設備承擔著相當數量的通信任務,由於資金投入以及系統建設、設備更換所需時間等原因,這些模擬設備還將繼續使用一段時間。
通信原理課程是一門理論性與實踐性都很強的專業基礎課。加強理論課程的學習,加深對本課程中的基本理論知識及基本概念的理解,提高理論聯系實際的能力,培養實踐動手能力和分析解決通信工程中實際問題的能力是通信原理教學的當務之急。而通信原理實驗課程就是一種重要的教學手段和途徑。通信原理實驗系統將通信原理的基礎知識靈活地運用在實驗教學環節中。可獨立也可組合、綜合實施多項實驗或示教。本實驗系統力求電路原理清楚,重點突出,實驗內容豐富。其電路設計構思新穎、技術先進、波形測量點選擇准確,具有一定的代表性。同時,注重理論分析與實際動手相結合,以理論指導實踐,以實踐驗證基本原理,旨在提高學生分析問題、解決問題的能力及動手能力,並通過有目的地選擇並完成實驗項目及二次開發,使學生進一步鞏固理論基本知識,建立完整的通信系統的概念。

方案論證

通過自己和老師的幫助,自己得到了本實驗的電路圖。並且,又經過自己看課本和有桐褲手關資料,對這次的實驗理論和基本原理的加深體會,證明了本次電路局嫌的電路圖是完全合理和准確的,是完全經得起考驗的,如果本次實驗不成功,只有可能是在畫PCB的過程中有錯誤或電子元件不符合,焊接元件過程中不小心弄錯造成的。
設低頻信號uΩ和高頻載波信號分別為
uΩ= UΩmcosΩt =UΩmcos2πFt (6.2.12)
uc=Ucmcosωct=U cmcos2πfct (6.2.13)
式中,F為低頻頻率,fc為高頻載波頻率。為了簡化分析,設兩者波形的初相角均為零,其波形如圖 6.2.7(a)、(b)所示。將uc和uΩ分別輸入模擬乘法器的X和Y輸入端,如圖6.2.8所示,圖中,UYQ為一固定的直流電壓,要求UYQ≥UΩm。由此可得輸入端總的輸入電壓為
uY = UYQ+UΩmcosΩt
因此,模擬乘法器的輸出電壓uO為
式中,ma= 稱為調幅系數,它表示載波受低頻信號控制的程度。令
(6.2.15)
則式 (6.2.14) 可寫成
uo=Um(t)cosωct (6.2.16)
由式(6.2.16)可見,模擬乘法器的輸出電壓是一個幅度Um(t)隨低頻信號而變化的高頻信號,其波形如圖6.2.7(c)所示。稱它為普通調幅波(簡稱 AM 波)。將式(6.2.16)展開,並應用三角函數關系,則得

由式(6.2.17)可知,被單頻信號調幅後的高頻已調波,由幅度為Ucm′、角頻率為ωc的載頻和兩個幅度一樣、角頻率分別為(ωc+ Ω)、(ωc-Ω)的邊頻所組成,其頻譜分布如圖6.2.9所示,(fc+F) 稱上邊頻、(fc-F)稱下邊頻,它們對稱地排列在載頻的兩側,相對於載頻的位置僅取決於調制信號的頻率。顯然,載波分量並不包含信息,調制信號的信息只包含在上、下邊頻分量內,邊頻的幅度反映了調制信號幅度的大小,邊頻的頻率雖屬於高頻的范疇,但反映了調制信號頻率的高低。
由於載波本身並不包含信息,因此為了提高設備的功率利用率,可以不傳送載波而只傳送兩個邊帶信號,這種調制方式稱為抑制載波雙邊帶調幅,簡稱雙邊帶調幅,用DSB表示。將uc和uΩ分別輸入模擬乘法器的X和Y輸入端,如圖6.2.10所示。由此可以得到輸出電壓uo′為

由式(6.2.18)可見,KUΩmUcmcosΩt是雙邊帶調幅高頻信號的幅度,它與調制信號UΩmcosΩt成正比。圖6.2.10中帶通濾波器調諧在載波頻率上,用以濾除無用頻率分量。
由於上、下邊頻帶中的任何一個邊頻帶已經包含調制信號的全部信息,因此為了節省佔有的頻帶、提高波段利用率,也可以只傳送兩個邊帶信號中的任何一個,稱為抑制載波的單邊帶調幅,簡稱單邊帶調幅,用SSB表示。將雙邊帶調幅信號抑制掉一個邊頻帶,就可以得到單邊帶調幅信號,即
從式(6.2.19)可以看出,單頻調制的單邊帶信號仍是等幅波,但它與原載波不間,SSB信號的幅度與調制信號幅度UΩm成正比,它的頻率隨調制信號頻率的不同而不同。
用MC1496構成的雙邊帶調幅實用電路如圖6.3.1所示。圖中,接於電源電路的電阻R8、R9用來分壓,以便提供模擬乘法器內部V1~V4管的基極偏置電壓,接在5腳的電阻 R5 用來控制恆流電路的電流值IO/2。接在2、3腳的電阻 RY 用來擴大uΩ的線性動態范圍,同時控制乘法器的增益。接於1、4腳的電阻R1、Rp、R2作為載波調零電阻。
根據圖6.3.1中負電源電壓值及 R5 的阻值,可得IO/2≈1mA, 這樣不難得到模擬乘法器各管腳的直流電位分別為
U1=U4≈0V,U2=U3≈0.7V,U8≈U10=6V
U6=U12=VCC-RCIO/2=8.1V,U5= -R5IO/2=-6.8V
實際應用中,為了保證集成模擬乘法器MC1496能正常工作,各引腳的直流電位應滿足下列要求:
(1)U1=U4,U8=U10,U6=U12;
(2)U6、12-U8、10 ≥2V,U8、10- U1、4≥2.7V,U1、4-U5 ≥2.7V。
載波信號 uc 通過電容C1、C3 及R7 加到乘法器的輸入端8、10腳,低頻信號uΩ 通過 C2、R4、R6 加到乘法器的輸入端 1、4 腳,輸出信號可由 C4 和 C5 單端或雙端輸出。調試過程中,由於示波器、毫伏表等測量儀器均為單端式,所以測量輸出電壓只能取單端輸出,兩邊輸出電壓應相等。這時的調幅輸出波形如圖6.3.2(c)所示,應為一雙邊帶調幅波形。
為了減小載波信號輸出,可先令uΩ=0,即將uΩ輸入端對地短路,只有載波uc輸入時,調節 Rp 使乘法器輸出電壓為零。但實際模擬乘法器不可能完全對稱,所以調節 Rp,輸出電壓不可能為零,故只需使輸出載波信號為最小(一般為 mV 級 )就行。若載波輸出電壓過大,則說明該器件性能不好。
低頻輸入信號uΩ的幅度不能過大,其最大值由IO/2與 RY 的乘積所限定,圖6.3.1所示電路uΩ的幅度必須小於1V。若低頻幅度超過該值,輸出調幅波形將會產生嚴重失真。
載波輸入信號 uc 的幅度要求小於26mV, 這種情況常稱為小信號狀態,輸出電壓的大小可用式(6.1.6)來估算。在工程上,載波信號常採用大信號輸入(Ucm>260mV),這時雙差分對管在uc 的作用下,工作在開關狀態,稱為開關調幅。這時調幅電路輸出幅度比較大,且幅度不受Ucm的影響
試驗原理分析

所謂調制,就是在傳送信號的一方(發送端)將所要傳送的信號(它的頻率一般是較低的)「附加」在高頻振盪信號上。所謂將信號「附加」在高頻振盪上,就是利用信號來控制高頻振盪的某一參數,使這個參數隨信號而變化,這里,高頻振盪波就是攜帶信號的「運載工具」,所以也叫載波。在接收信號的一方(接收端)經過解調(反調制)的過程,把載波所攜帶的信號取出來,得到原有的信息,解調過程也叫檢波。調制與解調都是頻譜變換的過程,必須用非線性元件才能完成。調制的方式可分為連續波調制與脈沖波調制兩大類,連續波調制是用信號來控制載波的振幅、頻率或相位,因而分為調幅、調頻和調相三種方式;脈沖波調制是先用信號來控制脈沖波的振幅、寬度、位置等,然後再用這已調脈沖對載波進行調制,脈沖調制有脈沖振幅、脈寬、脈位、脈沖編碼調制等多種形式。
調幅波的數學表達式與頻譜
我們已經知道,調幅波的特點是載波的振幅受調制信號的控製作周期性的變化,這變化的周期與調制信號的周期相同,振幅變化與調制信號的振幅成正比。為簡化分析,假定調制信號是簡諧振盪,即為單頻信號,其表達式為:

如果用它來對載波()進行調幅,那麼,在理想情況下,普通調幅信號為:

(5-1)
其中調幅指數為比例系數。圖5-1給出了,和的波形圖。
圖5-1 普通調幅波形

從圖中並結合式(5-1)可以看出,普通調幅信號的振幅由直流分量和交流分量迭加而成,其中交流分量與調制信號成正比,或者說,普通調幅信號的包絡(信號振幅各峰值點的連線)完全反映了調制信號的變化。另外還可得到調幅指數Ma的表達式:

顯然,當>1時,普通調幅波的包絡變化與調制信號不再相同,產生了失真,稱為過調制,如圖5-2所示。所以,普通調
圖5-2 過調制波形
幅要求必須不大於1。
式(5-1)又可以寫成
(5-2)
可見,的頻譜包括了三個頻率分量:(載波)、(上邊頻)和(下邊頻)。原調制信號的頻帶寬度是(或),而普通調幅信號的頻帶寬度是2(或2F),是原調制信號的兩倍。普通調幅將調制信號頻譜搬移到了載頻的左右兩旁,如圖5-3所示。
被傳送的調制信息只存在於邊頻中而不在載頻中,攜帶信息的邊頻分量最多隻佔總功率的三分之一(因為Ma≤1)。在實際系統中,平均調幅指數很小,所以邊頻功率占的比例更小,功率利用率更低。
為了提高功率利用率,可以只發送兩個邊頻分量而不發送載頻分量,或者進一步僅發送其中一個邊頻分量,同樣可以將調制信息包含在調制信號中。這兩種調制方式分別稱為抑制載波的雙邊帶調幅(簡稱雙邊帶調幅)和抑制載波的單邊帶調幅(簡稱單邊帶調幅)。本實驗模塊介紹的是雙邊帶的幅度調制與解調。

圖5-3 普通調幅波的頻譜

雙邊帶調幅信號的特點
設載波為,單頻調制信號為 ,則雙邊帶調幅信號為:
(5-3)其中為比例系數。
可見雙邊帶調幅信號中僅包含兩個邊頻,無載頻分量,其頻帶寬度仍為調制信號帶寬的兩倍。

雙邊帶調幅信號的產生與解調方法
由式5-3可以看出,產生雙邊帶調幅信號的最直接方法就是將調制信號與載波信號相乘。本實驗模塊的振幅調制電路的原理框圖如圖5-4所示:

圖5-4 雙邊帶調幅原理框圖

圖5-5 雙邊帶調幅信號產生電路原理圖
雙邊帶調幅信號產生的具體電路原理圖如圖5-5所示。
圖中MC1496是雙平衡四象限模擬乘法器,其內部結構和主要性能參數見附錄。MC1496可用於振幅調制、同步檢波、鑒頻。本實驗就是採用MC1496作為振幅調制器的。高頻載波信號從「載波輸入」點輸入,經高頻耦合電容C105輸入至U202(MC1496)的10腳。低頻基帶信號從「音頻輸入」點輸入,經低頻耦合電容C106輸入至U202的1腳。C108為高頻旁路電容,C104為低頻旁路電容。調幅信號從MC1496的12腳輸出。實際上,從此腳輸出的調幅信號還要經過濾波,這樣才能保證調幅信號的質量。濾波電路如圖5-6所示。

第四章 電路分析、設計
集成模擬乘法器是實現兩個模擬信號相乘的器件,它廣泛用於乘法、除法、乘方和開方等模擬運算,同時也廣泛用於信息傳輸系統作為調幅、解調、混頻、鑒相和自動增益控制電路,是一種通用性很強的非線性電子器件,目前已有多種形式、多品種的單片集成電路,同時它也是現代一些專用模擬集成系統中的重要單元。
模擬乘法器的電路符號如圖6.1.1所示,它有兩個輸入端、一個輸出端。若輸入信號為uX、uY,則輸出信號uO為
uO = kuXuY (6.1.1)
式中,K 稱為乘法器的增益系數,單位為V-1 。
模擬乘法器電路符號

根據乘法運算的代數性質,乘法器有四個工作區域,由它的兩個輸入電壓的極性來確定,並可用X-Y平面中的四個象限表示。能夠適應兩個輸入電壓四種極性組合的乘法器稱為四象限乘法器;若只對一個輸入電壓能適應正、負極性,而對另一個輸入電壓只能適應一種極性,則稱為二象限乘法器;若對兩個輸入電壓都只能適應一種極性,則稱為單象限乘法器。
式( 6.1.1 )表示,一個理想的乘法器中,其輸出電壓與在同一時刻兩個輸入電壓瞬時值的乘積成正比,而且輸入電壓的波形、幅度、極性和頻率可以是任意的。
對於一個理想的乘法器,當 uX、uY中有一個或兩個都為零時,輸出均為零。但在實際乘法器中, 由於工作環境、製造工藝及元件特性的非理想性,當 uX =0,uY=0時,uO≠0,通常把這時的輸出電壓稱為輸出失調電壓;當 uX=0,uY≠0(或 uY=0,uX≠0) 時,uO≠0,這是由於uY(或uX)信號直接流通到輸出端而形成的,稱這時的輸出電壓為uY(或uX)的輸出饋通電壓。輸出失調電壓和輸出饋通電壓越小越好。此外,實際乘法器中增益系數 K 並不能完全保持不變, 這將引起輸出信號的非線性失真,在應用時需加註意。
雙邊帶調幅

單片集成模擬乘法器
採用兩個差分放大電路可構成較理想的模擬乘法器,稱為雙差分對模擬乘法器,也稱為雙平衡模擬乘法器。圖6.1.3所示(虛線框內)是根據雙差分對模擬乘法器基本原理製成的單片集成模擬乘法器MC1496的內部電路。圖中,V1、V2、V5 和 V3、V4、V6 分別組成兩個基本模擬乘法器,V7、V8、V9、R5等組成電流源電路。 R5、V7、R1為電流源的基準電路,V8、V9均提供恆值電流IO/2, 改變外接電阻R5的大小,可調節IO/2在的大小。圖中2、3兩腳,即V5、V6 兩管發射極上所跨接的電阻 RY,除可調節乘法器的增益外,其主要作用是用來產生負反饋,以擴大輸入電壓 uY 的線性動態范圍。該乘法器輸出電壓 uO 的表示式為

其增益系數為
K=Rc/RY UT
uX必須為小信號,其值應小於UT(≈ 26mV);因電路採用了負反饋電阻RY,uY的線性動態范圍被擴大了,它的線性動態范圍為

其增益系數

通過調節IO′的大小(由微調R3的阻值實現)可以改變增益系數,MC1595增益系數的典型值為0.1V-1。 RX、RY 為負反饋電阻,用以擴大uX、uY的線性動態范圍,uX、uY的線性動態范圍分別為

MC1496型集成模擬乘法器

第五章調試、測試分析及結果

制板成功後,按如下步驟進行調試:
將信號源模塊、PAMAM模塊、小心地固定在主機箱中,確保電源接觸良好。
插上電源線,打開主機箱右側的交流開關,再分別按下兩個模塊中的開關POWER1、POWER2,對應的發光二極體LED001、LED002、D200、D201、發光,按一下信號源模塊的復位鍵,兩個模塊均開始工作。
使信號源模塊的信號輸出點「模擬輸出」的輸出為頻率2KHz、峰—峰值為0.5V左右的正弦波, 使「64K正弦波」處信號的峰—峰值為1V。
用連接線連接信號源模塊的信號輸出點「模擬輸出」和AM調制電路板的信號輸入點,以及信號源模塊的信號輸出點「64K正弦波」和AM調制電路板的信號輸入點,調節AM調制電路板的電位器,同時用示波器觀察波形,直到觀察到普通雙邊帶調幅波形。
雖然經過調試,最後的結果並不是非常的准確,波形並沒有如實驗箱上的那麼標准,但是基本上還是成功的,經過分析,可能是由於制板或焊接過程中有一些微小的失誤導致的,又或者是由於買的電子元件存在一些不符或問題等,但實驗還算可以。

小結

通過這次通信單元電路設計AM調制的實驗,不僅增強了自己的動手能力,而且也增強了自己對通信原理中的調制解調的理解。有了這次的自己動手的實驗 使自己學會理論分析與實際動手相結合,以理論指導實踐,以實踐驗證基本原理,旨在提高了自己分析問題、解決問題的能力及動手能力,並通過有目的地選擇並完成實驗項目及二次開發,使自己進一步鞏固理論基本知識,建立完整的通信系統的概念。
其次,通過這一次普通雙邊帶調幅(AM調制),自己達到了如下的實驗目的 :
掌握普通雙邊帶調幅與解調原理及實現方法。
掌握二極體包絡檢波原理。
掌握調幅信號的頻譜特性。
了解普通雙邊帶調幅與解調的優缺點。
還有,這次的課程設計,再次使自己對動手能力的培養和努力有更深的體會,增強自己的實踐操作能力是非常有必要的,也是根本要求,以後還要繼續加強。
這次的實驗給了自己很多的東西,使自己覺得在以後的課程上應該更加的努力和發奮,不使自己落後。
電路圖及元件清單
雙邊帶調制信號產生電路
元件清單:
電阻(14個) :
1K(3個) 3.3K(2個) 6.8K(1個)
10K(1個) 100(3個) 510(1個)
750(2個)
滑動變阻 47K(1個)
電容(5個) :
普通電容(3個) 104 100 0.1uF
極性電容(2個) 20uF/16V 20uF/16V
穩壓二極體 8.2V(1個)
MC1464(1片)

㈧ 急求用二位全加器和門電路實現二位二進制的乘法電路

假設要實現A X B,利用門電路搭一個2-4解碼器。2-4解碼器的輸入信號為A;然後用2-4解碼器的輸出控制一個4路選擇器,4路選擇器的4個輸入分別是0,B,B+B,B+B+B,這部分用二位全加器實現。


位移和添加乘法器的一般結構如下圖所示,對於32比特的數乘運算,根據乘數最低有效位的數值,被乘數的數值被相加並累積。

在每一個時鍾循環周期內,乘數被左移一個比特,並且它的位值被測試,如果位值是0,則只進行一次位移操作。如果位值是1,則被加數被放入累加器中,並且左移一位。

當所有乘數的比特值被測試完之後,結果就在累加器當中。累加器最初是N位,相加之後變成2N位,最低有效位包涵了乘數。延遲是N個最大循環周期。這類電路放在非同步電路中有許多好處。

(8)乘法器電路圖擴展閱讀:

執行一個乘法運算最簡單的是採用一個兩輸入的加法器。對於M和N位寬的輸 ,乘法採用一個N位加法器時需要M個周期。

這個乘法的移位和相加演算法把M個部分積(partial proct)加在一起。每一個部分積是通過將被乘數與乘數的一位相乘(這本質上是一個「與」操作),然後將結果移位到這個乘數位的位置得到的。

實現乘法的一個更快的辦法是採用類似於手工計算乘法的方法。所有的部分積同時產生並組成一個陣列,運用多操作數相加來汁算最終的積。

㈨ 電路設計,用與或非門設計一個兩位二進制數乘法器,要步驟和電路圖

我慎粗建議你去看《數字電路與系統》清華大學出版的旅拿,裡面都是講計算機的硬體基本電路,你要什麼+-*/法器都講得很清楚,總比我們在這里講得要清楚。你那個就是兩位的乘法器都很復雜的,在這種平台上不好說,要學就學正統的寬鎮鎮!

閱讀全文

與乘法器電路圖相關的資料

熱點內容
夢見別人買傢具 瀏覽:361
k11防水如何自己做 瀏覽:834
哪些汽車維修費用高 瀏覽:89
別墅工程翻新裝修大概要多少錢 瀏覽:721
上海第六醫院骨科專家電話是多少 瀏覽:35
維修手機前需要注意什麼 瀏覽:349
智能家居營銷 瀏覽:692
購買的傢具什麼情況下可以退貨 瀏覽:756
航線維修是做什麼 瀏覽:565
怎麼貼圓角傢具 瀏覽:284
機頂盒沒信號怎麼維修 瀏覽:829
人和豐田維修部電話 瀏覽:736
儀征雪佛蘭維修點在哪裡 瀏覽:500
雨霖傢具 瀏覽:459
安慶澳柯瑪油煙機維修售後電話 瀏覽:180
同江家電維修 瀏覽:357
廠里維修放大鏡哪個好 瀏覽:455
二手房什麼時候交維修基金 瀏覽:516
輕質隔牆做多少層防水 瀏覽:562
為什麼我家電腦圖標 瀏覽:697