① 關於夏利汽車電路圖問題
您好!你發的圖很小,請密我發全圖,給你說下怎麼看電路圖。如你電路圖所示。上面10個橫線,根據你說的ACC是 在汽車上主要指像收音機等的音響系統在鑰匙門那裡有圖標,ST 是啟動檔位,AM2 AM ig1 等 有的是電瓶 常火線和發電機上的火線。至於你說的05G—W等 需要看下張圖紙。在整個夏利電路圖會有明確標注的。給你傳個7100的夏利的空調線路圖空調電源由點火開關2控制,空調放大器9是控制電路的核心,它的輸入信號有:①蒸發器出風口處的熱敏電阻17,阻值隨環境溫度的變化而改變;②點火線圈斷電器觸點6處傳來的發動機轉速信號,並有電容8將自感電勢產生的峰值為300V的諧波成分濾掉。 l一蓄電池;2一點火開關;3=點火線圈附加電阻;4一點火線圈;5一分電器;6一斷電器;7一轉速感測器(低通濾波器) ;
8 一濾波電容;9一空調控制器;10一怠速提高裝置;11一二極體;12一壓縮機電磁離合器;13一冷卻風扇繼電器;
14一冷卻(冷凝器與散熱器)風扇電動機;15一空調開關;16一空調指示燈;17一熱敏電阻;18一鼓風機開關:
19一空調鼓風機;20一鼓風機調速電阻;21一低壓控制開關;控制器9內部的元件參數如下:
RI一28kΩ R冰-lOkΩ RI5一15OkΩ C6一0·1μF R2一28kΩ R9一1·8kΩ
RI6一lkΩ C7一15OμF R3一5kΩ Rl0一680ΩCl一0·03μF 8一0·047μF
R4一7·5kΩ Rl1一30OΩ C2一0·033μF Vl一6B2 R5一33kΩ Rl2一lOkΩ
C3一4·7μF V2一TG R6一28kΩ Hl3一5kΩ C4一0·047μF V3一TG8·H
R7一4kn Rl4一1·2kn C5一47pF V4一TG8·F
VTl一C2655 國產管型號為3DKIO5C或3DKlOC VT2一Cl959國產管型號為3DAI03
Wl一IOkΩ W2一2kΩ J一直流I2V單觸點繼電器 IC一SE078混合集成電路
空調放大器9的控制對象是空調壓縮機的電磁離合器12與冷凝器(散熱器)電風扇的繼電器13。執行機構是放大器內部的繼電器J以及怠速提高裝置10,一旦發動機負荷加重,轉速下降時,放大器就自動切斷壓縮機和冷卻風扇電路 ,同時保持怠速
提高裝置繼續工作。
當車內溫度低於高定值,怠速提高裝置10,壓縮機12,冷卻風扇14電路才會同時切斷。
空調放大器由一與會專用混合集成電路IC .兩個塑料功率天關管VT1和VT2.繼電器J以及一些阻容元件構成積分電路.
比較電路.緩潰迴路.觸發迴路和邏輯電路,IC的3端與4端分別控制VT2和VT1的基極。
② 雙極型集成電路的發展簡況
雙極型集成電路是在硅平面晶體管的基礎上發展起來的,最早的是雙極型數字邏輯集成電路。在數字邏輯集成電路的發展過程中,曾出現過多種不同類型的電路形式。常見的雙極型集成電路可分類如下。
DCTL電路是第一種雙極型數字邏輯集成電路,因存在嚴重的「搶電流」問題(見電阻-晶體管邏輯電路)而不實用。RTL電路是第一種有實用價值的雙極型集成電路。早期的數字邏輯系統曾採用過 RTL電路,後因基極輸入迴路上有電阻存在,限制了開關速度。此外,RTL邏輯電路的抗干擾的性能較差,使用時負載又不能多,因而被淘汰。電阻-電容-晶體管邏輯電路(RCTL)是為了改善RTL電路的開關速度而提出來的,即在RTL電路的電阻上並接電容。實際上 RCTL電路也未得到發展。DTL電路是繼 RTL電路之後為提高邏輯電路抗干擾能力而提出來的。DTL電路在線路上採用了電平位移二極體,抗干擾能力可用電平位移二極體的個數來調節。常用的 DTL電路的電平位移二極體,是用兩個硅二極體串接而成,其抗干擾能力可提高到1.4伏左右(見二極體-晶體管邏輯電路)。HTL電路是在 DTL電路的基礎上派生出來的。HTL電路採用反接的齊納二極體代替DTL電路的電平位移二極體,使電路的閾值提高到約7.4伏左右(見高閾值邏輯電路)。可變閾值邏輯電路(VTL)也是DTL電路系列中的另一種變形電路。閾值邏輯電路(TLC)是 HTL和VTL邏輯電路的總稱。TTL邏輯電路是在DTL邏輯電路基礎上演變而來,於1962年研製成功。為了提高開關速度和降低電路功耗,TTL電路在線路結構上經歷了三代電路形式的改進(見晶體管-晶體管邏輯電路)。
以上均屬飽和型電路。在進一步探索提高飽和型電路開關速度的同時,發現晶體管多餘載流子的存儲效應是一個極重要的障礙。存儲現象實質上是電路在開關轉換過程中由多餘載流子所引起。要提高電路開關速度,除了減少晶體管PN結電容,或者設法縮短多餘載流子的壽命以外,就得減少和消除晶體管內載流子存儲現象。60年代末和70年代初,人們開始在集成電路中利用熟知的肖特基效應。在TTL電路上制備肖特基勢壘二極體,把它並接在原有晶體管的基極和集電極上,使晶體管開關時間縮短到1納秒左右;帶肖特基勢壘二極體箝位的TTL門電路的平均傳輸延遲時間達2~4納秒。
肖特基勢壘二極體-晶體管-晶體管邏輯電路(STTL)屬於第三代 TTL電路。它在線路上採用了肖特基勢壘二極體箝位方法,使晶體管處於臨界飽和狀態,從而消除和避免了載流子存儲效應。與此同時,在TTL電路與非門輸出級倒相器的基極引入晶體管分流器,可以改善與非門特性。三極體帶有肖特基勢壘二極體,可避免進入飽和區,具有高速性能;輸出管加上分流器,可保持輸出級倒相的抗飽和程度。這類雙極型集成電路,已不再屬於飽和型集成電路,而屬於另一類開關速度快得多的抗飽和型集成電路。
發射極耦合邏輯電路(ECL)是電流型邏輯電路(CML)。這是一種電流開關電路,電路的晶體管工作在非飽和狀態,電路的開關速度比通常TTL電路又快幾倍。ECL邏輯電路把電路開關速度提高到 1納秒左右,大大超過 TTL和STTL電路。ECL電路的出現,使雙極型集成電路進入超高速電路范圍。
集成注入邏輯電路 (I2L)又稱合並晶體管邏輯電路(MTL),是70年代研製成的。在雙極型集成電路中,I2L電路的集成密度是最高的。
三層結構邏輯電路(3TL)是1976年中國在I2L電路的基礎上改進而成,因有三層結構而得名。3TL邏輯電路採用NPN管為電流源,輸出管採用金屬做集電極(PNM),不同於I2L結構。
多元邏輯電路(DYL)和雙層邏輯電路(DLL),是1978年中國研製成功的新型邏輯電路。DYL邏輯電路線性與或門,能同時實現開關邏輯和線性邏輯處理功能。DLL電路是通過ECL和TTL邏輯電路雙信息內部變換來實現電路邏輯功能的。
此外,在雙極型集成電路發展過程中,還有許多其他型式的電路。例如,發射極功能邏輯電路(EFL)、互補晶體管邏輯電路(CTL)、抗輻照互補恆流邏輯電路(C3L)、電流參差邏輯電路(CHL)、三態邏輯電路(TSL)和非閾值邏輯電路(NTL)等。
③ 能耗監測系統屬於消防嗎
不算
檢測系統
計量裝置
國家規定電能計量應當合理設置分項計量迴路。其分項計量系統應當採用電子式、精度等級為1.0級及以上(0.2、0.5、1.0級)的有功電能表。採用的普通電能表,應當由測量單元和數據處理單元等組成,並能顯示、儲存和輸出數據,具有標准通訊介面。
ACR330ELH電力儀表
在變壓器低壓側(AC230/400V)總進線處,應當設置多功能電能表,至少具有監測和計量三相電流、電壓、有功功率、功率因數、有功電能、最大需量、總諧波含量和2-21次各次諧波分量的功能。可選用ACR330ELH電力儀表。
主要功能
全電量測量(U、I、P、Q、PF、F、S)
最大需量(I,P),四象限電能計量、復費率電能累計
THDu、THDi、2-31次諧波分量
電壓波峰系數、電話波形因子、電流K系數、電壓電流不平衡度
電網電壓電流正、負、零序分量測量
4DI+3DO
RS485介面、Modbus、DL/T645
應用於高壓重要迴路低壓進線櫃。
建築工程能耗監測系統能耗"應合理設置分項計量迴路,以下迴路應設置分項計量表計"。
變壓器低壓側出線迴路;
單獨計量的外供電迴路;
特殊區供電迴路;
製冷機組主供電迴路;
單獨供電的冷熱源系統附泵迴路;
集中供電的分體空調迴路;
照明插座主迴路;
電梯迴路;
其他應單獨計量的用電迴路。
ACR220EFL/ACR120EFL電力儀表
上述迴路可選用ACR220EFL和ACR120EFL電力儀表。
主要功能
全電量測量(U、I、P、Q、PF、F、S)
四象限電能計量、復費率電能累計、最大需量統計
4DI+2DO
RS485介面、Modbus 、DL/T645
應用於低壓聯絡櫃、出線櫃、動力櫃。
數據處理方法
建築總能耗為建築各分類能耗(除水耗量外)所折算的標准煤量之和。
總用電量=∑各變壓器總表直接計量值
分類能耗量=∑各分類能耗計量表的直接計量值
分項用電量=∑各分項用電計量表的直接計量值
單位建築面積用電量=總用電量/總建築面積
單位空調面積用電量=總用電量/總空調面積
能耗數據展示
數據中心接收並存儲其管理區域內監測建築和數據中轉站上傳的數據,並對其管理區域內的能耗數據進行處理、分析、展示和發布。
數據中心分為部級數據中心、省(自治區、直轄市)級數據中心和市級數據中心。
市級和省(自治區、直轄市)級數據中心應將各種分類能耗匯總數據逐級上傳。
部級數據中心對各省(自治區、直轄市)級數據中心上報的能耗數據進行分類匯總後形成國家級的分類能耗匯總數據,並發布全國和各省(自治區、直轄市)的能耗數據統計報表以及各種分類能耗匯總表。
監測建築數據展示應包括:
建築的基本信息,能耗監測情況,能耗分類分項情況;
各監測支路的逐時原始讀數列表;
各監測支路的逐時、逐日、逐月、逐年能耗值(列表和圖);
各類相關能耗指標圖、表;
單個建築相關能耗指標與同類參考建築(如標桿值、平均值等)的比較(列表和圖)。
④ 集成電路各元件介紹
雙極型集成電路
bipolar integrated circuit
以通常的NPN或PNP型雙極型晶體管為基礎的單片集成電路。它是1958年世界上最早製成的集成電路。雙極型集成電路主要以硅材料為襯底,在平面工藝基礎上採用埋層工藝和隔離技術,以雙極型晶體管為基礎元件。按功能可分為數字集成電路和模擬集成電路兩類。在數字集成電路的發展過程中,曾出現了多種不同類型的電路形式,典型的雙極型數字集成電路主要有晶體管-晶體管邏輯電路(TTL),發射極耦合邏輯電路(ECL),集成注入邏輯電路(I2L)。TTL電路形式發展較早,工藝比較成熟。ECL電路速度快,但功耗大。I2L電路速度較慢,但集成密度高。
同金屬-氧化物-半導體集成電路相比,雙極型集成電路速度快,廣泛地應用於模擬集成電路和數字集成電路。
在半導體內,多數載流子和少數載流子兩種極性的載流子(空穴和電子)都參與有源元件的導電,如通常的NPN或PNP雙極型晶體管。以這類晶體管為基礎的單片集成電路,稱為雙極型集成電路。
雙極型集成電路是最早製成集成化的電路,出現於1958年。雙極型集成電路主要以硅材料為襯底,在平面工藝基礎上採用埋層工藝和隔離技術,以雙極型晶體管為基礎元件。它包括數字集成電路和線性集成電路兩類。
發展簡況 雙極型集成電路是在硅平面晶體管的基礎上發展起來的,最早的是雙極型數字邏輯集成電路。在數字邏輯集成電路的發展過程中,曾出現過多種不同類型的電路形式。常見的雙極型集成電路可分類如下。
DCTL電路是第一種雙極型數字邏輯集成電路,因存在嚴重的「搶電流」問題(見電阻-晶體管邏輯電路)而不實用。RTL電路是第一種有實用價值的雙極型集成電路。早期的數字邏輯系統曾採用過 RTL電路,後因基極輸入迴路上有電阻存在,限制了開關速度。此外,RTL邏輯電路的抗干擾的性能較差,使用時負載又不能多,因而被淘汰。電阻-電容-晶體管邏輯電路(RCTL)是為了改善RTL電路的開關速度而提出來的,即在RTL電路的電阻上並接電容。實際上 RCTL電路也未得到發展。DTL電路是繼 RTL電路之後為提高邏輯電路抗干擾能力而提出來的。DTL電路在線路上採用了電平位移二極體,抗干擾能力可用電平位移二極體的個數來調節。常用的 DTL電路的電平位移二極體,是用兩個硅二極體串接而成,其抗干擾能力可提高到1.4伏左右(見二極體-晶體管邏輯電路)。HTL電路是在 DTL電路的基礎上派生出來的。HTL電路採用反接的齊納二極體代替DTL電路的電平位移二極體,使電路的閾值提高到約7.4伏左右(見高閾值邏輯電路)。可變閾值邏輯電路(VTL)也是DTL電路系列中的另一種變形電路。閾值邏輯電路(TLC)是 HTL和VTL邏輯電路的總稱。TTL邏輯電路是在DTL邏輯電路基礎上演變而來,於1962年研製成功。為了提高開關速度和降低電路功耗,TTL電路在線路結構上經歷了三代電路形式的改進(見晶體管-晶體管邏輯電路)。
以上均屬飽和型電路。在進一步探索提高飽和型電路開關速度的同時,發現晶體管多餘載流子的存儲效應是一個極重要的障礙。存儲現象實質上是電路在開關轉換過程中由多餘載流子所引起。要提高電路開關速度,除了減少晶體管PN結電容,或者設法縮短多餘載流子的壽命以外,就得減少和消除晶體管內載流子存儲現象。60年代末和70年代初,人們開始在集成電路中利用熟知的肖特基效應。在TTL電路上制備肖特基勢壘二極體,把它並接在原有晶體管的基極和集電極上,使晶體管開關時間縮短到1納秒左右;帶肖特基勢壘二極體箝位的TTL門電路的平均傳輸延遲時間達2~4納秒。
肖特基勢壘二極體-晶體管-晶體管邏輯電路(STTL)屬於第三代 TTL電路。它在線路上採用了肖特基勢壘二極體箝位方法,使晶體管處於臨界飽和狀態,從而消除和避免了載流子存儲效應。與此同時,在TTL電路與非門輸出級倒相器的基極引入晶體管分流器,可以改善與非門特性。三極體帶有肖特基勢壘二極體,可避免進入飽和區,具有高速性能;輸出管加上分流器,可保持輸出級倒相的抗飽和程度。這類雙極型集成電路,已不再屬於飽和型集成電路,而屬於另一類開關速度快得多的抗飽和型集成電路。
發射極耦合邏輯電路(ECL)是電流型邏輯電路(CML)。這是一種電流開關電路, 電路的晶體管工作在非飽和狀態,電路的開關速度比通常TTL電路又快幾倍。ECL邏輯電路把電路開關速度提高到 1納秒左右,大大超過 TTL和STTL電路。ECL電路的出現,使雙極型集成電路進入超高速電路范圍。
集成注入邏輯電路 (I2L)又稱合並晶體管邏輯電路(MTL),是70年代研製成的。在雙極型集成電路中,I2L電路的集成密度是最高的。
三層結構邏輯電路(3TL)是1976年中國在I2L電路的基礎上改進而成,因有三層結構而得名。3TL邏輯電路採用NPN管為電流源,輸出管採用金屬做集電極(PNM),不同於I2L結構。
多元邏輯電路(DYL)和雙層邏輯電路(DLL),是1978年中國研製成功的新型邏輯電路。DYL邏輯電路線性與或門,能同時實現開關邏輯和線性邏輯處理功能。DLL電路是通過ECL和TTL邏輯電路雙信息內部變換來實現電路邏輯功能的。
此外,在雙極型集成電路發展過程中,還有許多其他型式的電路。例如,發射極功能邏輯電路(EFL)、互補晶體管邏輯電路(CTL)、抗輻照互補恆流邏輯電路(C3L)、電流參差邏輯電路(CHL)、三態邏輯電路(TSL)和非閾值邏輯電路(NTL)等。
特點和原理 雙極型集成電路的製造工藝,是在平面工藝基礎上發展起來的。與製造單個雙極型晶體管的平面工藝相比,具有若干工藝上的特點。
①雙極型集成電路中各元件之間需要進行電隔離。集成電路的製造,先是把矽片劃分成一定數目的相互隔離的隔離區;然後在各隔離區內製作晶體管和電阻等元件。在常規工藝中大多採用PN結隔離,即用反向PN結達到元件之間相互絕緣的目的。除PN結隔離以外,有時也採用介質隔離或兩者混合隔離法(見隔離技術)。
②雙極型集成電路中需要增添隱埋層。通常,雙極型集成電路中晶體管的集電極,必須從底層向上引出連接點,因而增加了集電極串連電阻,這不利於電路性能。為了減小集電極串連電阻,製作晶體管時在集電極下邊先擴散一層隱埋層,為集電極提供電流低阻通道和減小集電極的串聯電阻。隱埋層,簡稱埋層,是隱埋在矽片體內的高摻雜低電阻區。埋層在製作集成電路之前預先「埋置」在晶片體內。其工藝過程是:在 P型矽片上,在預計製作集電極的正下方某一區域里先擴散一層高濃度施主雜質即N+區;而後在其上再外延生長一層N型硅單晶層。於是,N型外延層將N+區隱埋在下面,再在這一外延層上製作晶體管。
③雙極型集成電路通常採用擴散電阻。電路中按電阻阻值大小選擇制備電阻的工藝,大多數是利用晶體管基區P型擴散的同時,製作每方約 150~200歐·厘米的P型擴散電阻。但是,擴散電阻存在阻值誤差大、溫度系數高和有寄生效應等缺點。除採用擴散電阻外,有時也採用硅單晶體電阻。
④雙極型集成電路元件間需要互連線,通常為金屬鋁薄層互連線。單層互連布線時難以避免交叉的位置,必要時可採用濃磷擴散低阻區,簡稱磷橋連接法。
⑤雙極型集成電路存在寄生效應。雙極型集成電路的縱向NPN晶體管,比分立晶體管多一個P型襯底層和一個PN結。它是三結四層結構。增加的襯底層是所有元件的公共襯底,增加的一個PN結是隔離結(包括襯底結)。雙極型集成電路因是三結四層結構而會產生特有的寄生效應:無源寄生效應、擴散電阻的寄生電容和有源寄生效應。隔離電容是集電極N型區與隔離槽或襯底P型區形成的PN結產生的電容。隔離和襯底接最低電位,所以這個電容就是集電極對地的寄生電容。擴散電阻的寄生電容是擴散電阻P型區與集電極外延層N型區產生的PN結電容,也屬無源寄生效應。這一PN結電容總是處於反偏置工作狀態。有源寄生效應即 PNP寄生晶體管。在電路中,NPN晶體管的基區、集電區(外延層)和襯底構成PNP寄生晶體管。在通常情況下,因PN結隔離,外延層和襯底之間總是反向偏置。只有當電路工作時,NPN管的集電結正偏,寄生PNP管才進入有源區。
工藝制備 (見彩圖)是利用PN結隔離技術制備雙極型集成電路倒相器的工藝流程,圖中包括一個NPN晶體管和一個負載電阻R。原始材料是直徑為75~150毫米摻P型雜質的硅單晶棒,電阻率ρ=10歐·厘米左右。其工藝流程是:先經過切片、研磨和拋光等工藝(是矽片制備工藝)制備成厚度約300~500微米的圓形矽片作為襯底,然後進行外延生長、氧化、光刻、擴散、蒸發、壓焊和多次矽片清洗,最後進行表面鈍化和成品封裝。
製作雙極型集成電路晶元需要經過 5次氧化,對氧化硅 (SiO2)薄層進行5次光刻,刻蝕出供擴散摻雜用的圖形窗口。最後還經過兩次光刻,刻蝕出金屬鋁互連布線和鈍化後用於壓焊點的窗口。因此,整套雙極型集成電路掩模版共有 7塊。即使通常省去鈍化工藝,也需要進行6次光刻,需要6塊掩模版。