導航:首頁 > 電器電路 > 數字電子鍾電路圖

數字電子鍾電路圖

發布時間:2023-03-10 13:09:27

Ⅰ 跪求數字電子鍾邏輯電路設計

數字電子鍾邏輯電路設計

一、實驗目的:

1、掌握數字鍾的設計方法;

2、熟悉集成電路的使用方法。

二、設計任務和要求:

1、設計一個有「時」,「分」,「秒」(23小時59分59秒)顯示且有校時功能的電子鍾;

2、用中小規模集成電路組成電子鍾;

3、畫出框圖和邏輯電路圖,寫出設計報告;

4、選做:①鬧鍾系統。②整點報時。③日歷系統。

三、方案選擇和論證:

1.分秒功能的實現:用兩片74290組成60進制遞增計數器

2.時功能的實現:用兩片74290組成24進制遞增計數器

3.定點報時:當分秒同時出現為0時,燈亮。

4.日歷系統:月跟日分別用2片74192實現,月份就接成12進制,日則接成31進制,星期由1片74192組成7進制,從星期一至星期天。

四、方案的設計:

1、可調時鍾模塊:

秒、分、時分別為60、60和24進制計數器。用兩片74LS290做一個二十四進制,輸入計數脈沖CP加在CLKA』端,把QA與與CPLB』從外部連接起來,電路將對CP按照8421BCD碼進行非同步加法計數。通過反饋端,控制清零端清零,其中個位接成二進制形式,十位接成四進制形式。其電路圖如下:

同理利用兩片74290組成的六十進制計數器,如下圖所示

將兩個六十進制的加法計數器和一個二十四進制的加法計數器進行級聯:將秒的十位進位脈沖接到分的個位輸入脈沖,將分的十位進位脈沖接到時的個位輸入脈沖,這樣就可以組成最基本的電路。

2.校時電路:

例如說時的校準,開關1上端接1HZ脈沖,下端接分的進位。當開關打到上端時電路進入校準功能,當開關打到下端時電路進入正常計時功能。其電路如總電路圖所示

3.整點報時:

分別用2個或非門接到分和秒的各輸出個節點處,再用一個與非門與報時燈鏈接,當輸出同時為零時,即整點時,報時燈就亮了,起到報時功能。本實驗使用LED發光(1s),其電路圖如下:

4.日歷系統:

月和日都用2片74192實現。月份功能則接成13進制,因為月份分日都是從1開始計起,所以要求從0001開始,到1101時,立刻清零,清零時應該切換到置數狀態,即將ABCD置1000,通過一個與非門鏈接到LOAD端置零,同時也將計數器置為0001的狀態。其電路圖如下所示

日功能74192三十一進制電路圖:

總電路圖:

四、電路調試:

調試這部分工作在EWB模擬軟體上進行。對於電路的調試應該分為幾個部分,分別對電路各個部分的功能都進行調試,之後,每連接一部分都要調試一次。

在實現日歷系統時,如月份需要顯示燈顯示1~31。一開始以為只把計數器鏈接成三十一進制即可,結果顯示燈只顯示0~30,沒有自己預期的結果。經過仔細思考,要把0去掉不顯示,從1開始顯示,而還要顯示31。經過查書,最後,知道開始需置數成0001狀態,到1000才清零,清零的同時回到置數0001狀態,通過多次鏈接、測試,終於實現了。

在實現校時功能過程中,由於之前想得太過復雜了,浪費了大量時間,最後,經過上網搜索,到圖書館查書,簡單的用了個開關連接到脈沖實現了。

Ⅱ 用555和74160計數器設計一個數字電子鍾計時系統

數字鍾電路是一個典型的數字電路系統,其由時,分,秒計數器以及校時和顯示電路組成.下面介紹利用集成十進制遞增計數器(74160)和帶解碼器的七段顯示數碼管組成的數字鍾電路.計數器74160和七段顯示數碼管的功能及使用方法在8.4節已有敘述.

1. 利用兩片74160組成60進制遞增計數器

利用兩片74160組成的同步60進制遞增計數器如圖9.4-1所示,其中個位計數器(C1)接成十進制形式。十位計數器(C2)選擇QC與QB做反饋端,經與非門輸出控制清零端(CLR』),接成六進制計數形式。個位與十位計數器之間採用同步級連方式,將個位計數器的進位輸出控制端(RCO)接至十位計數器容許端(ENT),完成個位對十位計數器的進位控制。將個位計數器的RCO端和十位計數器的QC、QA端經與們由CO端輸出,作進位輸出控制信號。當計數器狀態為59時,CO端輸出高電平,在同步級聯方式下,容許高位計數器計數。選擇信號源庫中的1HZ方波信號作為計數器的測試時鍾源。

因為秒與分計數均由60進制遞增計數器來完成,為在構成數字鍾系統時使電路得到簡化,我們將圖9.4-1虛線框內建立部分用子電路表示。具體操作過程如下:

在EWB主界面內建立圖9.4-1所示60進制計數器,閉合模擬電源,經過功能測試,確保計數器工作正常。選中虛線框內所示部分電路(Circuit)菜單中的創建子電路(Creat Subcircuit……)項,主界面內出現子電路設置對話框,在對話框內添入電路名稱(60C)後,選擇在電路中置換(Replace in Circuit)項,得用子電路表示的60進制遞增計數器如圖9.4-3所示。

2、用兩片74160組成24/12進制遞增計數器

圖9.4-4所示電路是由兩片74160組成的能實現12和24進制轉換的同步遞增計數器。圖中個位與十位計數器均接成十進制計數形式,採用同步級連方式。選擇十位計數器的輸出端QB和個位計數器的輸出端QC通過與非門NAND2控制兩片計數器的清零端(CLR』),利用狀態24反饋清零,可實現24進制遞增計數。若選擇十位計數器的輸出端QA與個位計數器的輸出端QB經過與非門NAND1輸出,控制兩片計數器的清零端(CLR』),利用狀態12反饋清零,可實現12進制遞增計數。敲擊Q鍵,使開關K選擇與非門NAND2輸出或NAND1輸出可實現24和12進制遞增計數器的轉換。該計數器可利用作數字鍾的時計數器。

為簡化數字鍾電路,我們將圖9.4-4所示的24/12進制計數器虛線框內電路轉換為子電路,轉換方法與上述60進制計數器相同。用子電路表的24/12進制同步計數器如圖9.4-5所示。

3. 數字鍾系統的組成

利用60進制和24/12進制遞增計數器子電路構成的數字鍾系統如圖9.4-6所示。在數字鍾電路中,由兩個60進制同步遞增計數器完成秒、分計數,由24/12進制同步遞增計數器實現小時計數。

秒、分、時計數器之間採用同步級連方式。開關K控制小時的24進制和12進制計數方式選擇。為簡化電路,直接選用信號源庫中的方波秒脈沖作數字鍾的秒脈沖信號,讀者可自行設計獨立的秒脈沖源,例如;可利用555多諧振盪器產生的秒脈沖,或者採用石英晶體振盪器經分頻器產生秒脈沖。還可以在小時顯示的基礎上,增加上、下午或日期顯示以及整點報時等,這里不再贅述。

敲擊S和F鍵,可控制開關S和F 將秒脈沖直接引入時、分計數器,實現校時。

對於圖9.4-6所示數字鍾電路,若要進一步 簡化電路還可以利用子電路嵌套功能將虛線框內電路轉換為更高一級的子電路,我們將子電路命名為CLOCK,用高一級子電路表示的數字鍾電路如圖9.4-7所示。

今後在設計用到數字鍾作單元電路的系統時可直接引用該電路,使系統得到簡化。

圖1、數字電子鍾結構圖

2、秒鍾、分鍾計時電路的設計

利用集成十進制遞增計數器(74160)和帶主解碼器的七段顯示數碼管組成的數字鍾電路。計數器74160的功能真值表如圖2所示。

根據計數器74160的功能表真值表,利用兩片74160組成的同步六十進制遞增計數器如圖3示,其中個位計數器(CL)接成十進制形式。十位計數器(C2)選擇QC與QB做反饋端,經與非門(NEND)輸出控制清零端(CLR),接成六進制計數形式。個位與十位計數器之間採用同步級連復位方式,將個位計數器的進位輸出控制端(RCO)接至十位計數器的計數計數器的計數容許端(ENT),完成個位對十位計數器的進位控制QC,QA端經過與門AND1和AND2由CO端輸出,作為六十進制的進位輸出脈沖信號,

圖二、同步十進制計數器74160真值表

當計數器計數狀態為59時,CO端輸出高電平,在同步級聯方式下,容許高位計數器計數。電路創建完成後,進行模擬實驗時,利用信號源庫中的1HZ方波信號作為計數器的時鍾脈沖源。

圖3、秒鍾/分鍾計時電路

因為秒鍾與分鍾技術均由六十進制遞增計數器來完成,為在構成數字鍾系統時使電路得到簡化,圖虛線框內的電路創建為子電路表示。具體操作過程如下:在EWB主界面內建立如示的六十進制計數器,閉合模擬電源開關,經過計數器功能測試,確定計數器工作正常,選中虛線框內所示部分電路後,再選擇電路菜單中創建子電路框內添入子電路名稱(分計時)後,選擇在電路中置換選項,得到用子電路表示的六十進制遞增計數器,即秒鍾/分鍾計時子電路,如圖4

圖4、分鍾計時子電路對話框

圖5、分鍾計時電路

四、24/12進制的能實現遞增計數器

24/12進制的能實現十二四進制的同步遞增計數器。如圖四。所示。圖中個位與十位計數器均接成十進制計數形式,採用同步級聯復位方試。 選擇十位計數器的輸出端Qb和個位計數器 輸出端Qc通過與非門NAND2的控制兩片計數器的清零端CLR,當計數器的輸出狀態為00100100時,立即解碼清零,實現二進制糹遞增計數器:若選擇十位二進制的輸出端Q a與個位計數器的輸出端Qb經與非門NAD1控制兩片計數器的清零端CLR,當計數器的輸出狀態為00100100時,立即解碼反饋為零,實現二十進制遞增計數器,若選擇十位計數器的輸出端Qb經與門NAND1控制兩片計數器的清零端CLR。當計數器的輸出端狀態為00010010時,立即解碼反饋為零,實現十二進制遞增計數,敲Q,開關Q 選擇與非門NAND2輸出和NA民NAND1輸出實現二十四進制遞增計數器的轉換。計數器用作數子鍾的計數器。

圖6、24/12二進制計時電路

為了簡化數子電子鍾的電路,需要將圖765的24/12二進制計數器的線框內電路轉換為子電路,方法與上面六二進制的分計數器一樣,用子電路表示24/12進同步計數器如圖7。

圖7、24/12計時電路

五、數字電子鍾系統的組成

利用六十進制和24/12進制遞增計數器子電路構成的數字電子鍾系統如圖8所示,在數字電子鍾電路中,由兩個六十進制同步遞增計數器分別構成秒鍾計時器和分計時器,級連夠完成秒 ,分計時、由24/12進制同步遞增計實現小時計數。秒、分、時計數器之間採用同步級連方式,開關(Q)控制小時的二十四進制和十二進制計數方式選擇,敲擊S和F鍵,可控制開關S和F將秒脈沖直接引入時,分計數器,實現時計數器和分計數器的校時。

對於圖所示數字電子鍾電路,為了進一步簡化電路,還可以利用子電路嵌套功能,將虛線框內電路轉換為更高一級的子電路,成為子電路數字電子鍾,用嵌套子電路表示的數字電子鍾電路如圖8所示

圖8、24/12進制計數電路

以上創建的各種子電路都已經存入自定義元器件庫中,在其他電子系統設計中需要時,可以直接調用這些子電路,使系統的設計更方便,更快捷。

訪真實驗時,可直接選用信號源庫中的方波秒脈沖作數字鍾的秒脈沖信號,作為一個設計內容,讀者可自行設計獨立的秒脈沖信號源,可利用555定時器組成多諧震盪器產生秒鍾脈沖信號,或者採用石英晶體震盪器經分頻器產生秒脈沖,脈沖頻率更穩定,計時誤差會更小,還可以在小時顯示的基礎上,增加上下午或日期顯示,整點報時電路以及作息時間提示電路等。

Ⅲ 數字電子鍾 lm8560 畢業設計

你好!

LM8560是典型的數字鍾電路,除自身沒有60hz振盪器之外,功能很完善。

可以直接與TMS3450互相直接替換,LM8360是曾經是我國專業國營工廠製作數字鍾和定時收音機等的應用電路。具有性能穩定,走時功能、定時功能和睡眠功能。能夠使用50或60HZ頻率作為數字鍾的基準頻率。

Ⅳ 數字鍾電路設計

根據設計任務和要求,對照數字電子鍾的框圖,可以分以下幾部分進行模塊化設計。

1. 秒脈沖發生器

脈沖發生器是數字鍾的核心部分,它的精度和穩定度決定了數字鍾的質量,通常用晶體振盪器發出的脈沖經過整形、分頻獲得1Hz的秒脈沖。如晶振為32768 Hz,通過15次二分頻後可獲得1Hz的脈沖輸出.

2. 計數解碼顯示

秒、分、時、日分別為60、60、24、7進制計數器、秒、分均為60進制,即顯示00~59,它們的個位為十進制,十位為六進制。時為二十四進制計數器,顯示為00~23,個位仍為十進制,而十位為三進制,但當十進位計到2,而個位計到4時清零,就為二十四進制了。

周為七進制數,按人們一般的概念一周的顯示日期「日、1、2、3、4、5、6」,所以我們設計這個七進制計數器,應根據解碼顯示器的狀態表來進行,如表1.1所示。

按表1.1狀態表不難設計出「日」計數器的電路(日用數字8代替)。

所有計數器的解碼顯示均採用BCD—七段解碼器,顯示器採用共陰或共陽的顯示器。

Q4 Q3 Q2 Q1
顯示

1 0 0 0


0 0 0 1
1

0 0 1 0
2

0 0 1 1
3

0 1 0 0
4

0 1 0 1
5

0 1 1 0
6

表1.1 狀態表

3. 校時電路

在剛剛開機接通電源時,由於日、時、分、秒為任意值,所以,需要進行調整。

置開關在手動位置,分別對時、分、秒、日進行單獨計數,計數脈沖由單次脈沖或連續脈沖輸入。

4. 整點報時電路

當時計數器在每次計到整點前六秒時,需要報時,這可用解碼電路來解決。即

當分為59時,則秒在計數計到54時,輸出一延時高電平去打開低音與門,使報時聲按500Hz頻率嗚叫5聲,直至秒計數器計到58時,結束這高電平脈沖;當秒計數到59時,則去驅動高音1KHz頻率輸出而鳴叫1聲。

五、參考電路

數字電子鍾邏輯電路參考圖如圖1.3所示。

參考電路簡要說明

1. 秒脈沖電路

由晶振32768Hz經14分頻器分頻為2Hz,再經一次分頻,即得1Hz標准秒脈沖,供時鍾計數器用。

2. 單次脈沖、連續脈沖

這主要是供手動校時用。若開關K1打在單次端,要調整日、時、分、秒即可按單次脈沖進行校正。如K1在單次,K2在手動,則此時按動單次脈沖鍵,使周計數器從星期1到星期日計數。若開關K1處於連續端,則校正時,不需要按動單次脈沖,即可進行校正。單次、連續脈沖均由門電路構成。

3. 秒、分、時、日計數器

這一部分電路均使用中規模集成電路74LS161實現秒、分、時的計數,其中秒、分為六十進制,時為二十四進制。從圖3中可以發現秒、分兩組計數器完全相同。當計數到59時,再來一個脈沖變成00,然後再重新開始計數。圖中利用「非同步清零」反饋到/CR端,而實現個位十進制,十位六進制的功能。

時計數器為二十四進制,當開始計數時,個位按十進制計數,當計到23時,這時再來一個脈沖,應該回到「零」。所以,這里必須使個位既能完成十進制計數,又能在高低位滿足「23」這一數字後,時計數器清零,圖中採用了十位的「2」和個位的「4」相與非後再清零。

對於日計數器電路,它是由四個D觸發器組成的(也可以用JK觸發器),其邏輯功能滿足了表1,即當計數器計到6後,再來一個脈沖,用7的瞬態將Q4、Q3、Q2、Q1置數,即為「1000」,從而顯示「日」(8)。

4.解碼、顯示

解碼、顯示很簡單,採用共陰極LED數碼管LC5011-11和解碼器74LS248,當然也可用共陽數碼管和解碼器。

1. 整點報時

當計數到整點的前6秒鍾,此時應該准備報時。圖3中,當分計到59分時,

將分觸發器QH置1,而等到秒計數到54秒時,將秒觸發器QL置1,然後通過QL與QH相與後再和1s標准秒信號相與而去控制低音喇叭嗚叫,直至59秒時,產生一個復位信號,使QL清0,停止低音嗚叫,同時59秒信號的反相又和QH相與後去控制高音喇叭嗚叫。當計到分、秒從59:59—00:00時,嗚叫結束,完成整點報時。

2. 嗚叫電路

嗚叫電路由高、低兩種頻率通過或門去驅動一個三極體,帶動喇叭嗚叫。1KHz

和500Hz從晶振分頻器近似獲得。如圖中CD4060分頻器的輸出端Q5和Q6。Q5輸出頻率為1024Hz,Q6輸出頻率為512Hz。

Ⅳ 單片機電子鍾原理圖,幫我大概解釋一下這個圖的工作原理就可以了,謝謝。帶圖!5分

本電子鍾採用PIC16C55單片機控制,適於溫室的定時恆溫或自來水的定時定壓控制等。PIC16C55單片機工作電壓為2.5~6.25V,功耗低、驅動能力強。本電子鍾可以控制一路負載在24小時內的3次開/關;一個雙限觸發的定時輸出口,既可接傳統的功率保持型繼電器,也可接脈沖繼電器。本機用四位LED數碼管掃描式顯示,還有消隱(省電)工作方式,使用起來非常靈活、方便。

一、 電子鍾工作原理

電子鍾電路見圖1。RB7口是定時指示端,在定時開期間輸出高電平,驅動V1發光,該口也可經緩沖作定時輸出口;RB6是雙限觸發控制的定時輸出口,其工作方式是:在RB7高電平期間,若RB1為高電平,則RB6輸出高電平;若RB0為高電平,RB6輸出低電平;若RB1、RB0同為低電平,RB6保持原態; 同為高電平時,RB6輸出低電平。RB5、RB4用於驅動脈沖繼電器,RB6上升沿觸發RB5輸出高電平開脈沖;在RB6下降沿觸發RB4時,RB4端輸出高電平關脈沖,開/關脈沖的持續時間均為125ms。

圖 1

RB3是消隱控制器,接高電平(即SK1閉合)時,顯示屏及秒閃正常;否則,顯示消隱。顯示消隱時,時鍾及各控制邏輯都正常運行,如忽略RB4至RB7各口的驅動電流,則在3V供電時,整機電流不足20μA,即兩節5號電池可用數月!RB2選擇數碼管極性,RB2為低電平,使用共陰LED;RB2為高電平,則用共陽LED。數碼管的極性是在上電初始化時,根據 RB2口狀態確定的,工作過程中改變RB2的電平則不起作用。

本機設S1~S4四個按鍵,S1是功能選擇鍵,S2是小時增量調整,S3是分鍾增量,S4用於分鍾減量調節,其使用方法為:

上電時,RB5至RB7均為低電平,RB4端送出一個關脈沖,使SK1閉合,整機正常顯示、工作,RC7口送出秒閃脈沖,RC6~RC0送欄位碼。RA3~RA0分別為10時、時、10分、分位的位碼輸出。這時,按一下S2或S3(時增量/ 分增量鍵),可使RB7端置位或復位。

在正常走時期間,秒閃正常;在校對或設置定時時,秒停閃。例如:在正常走時期間,按一下S1鍵,秒閃停止,屏幕顯示J-,表示可以校對時間。這時再按S2~S4中任一鍵,屏幕顯示現在時間,但秒不閃,此刻可按S2~S4校對時鍾。再次按S1,屏幕顯示 1∪,表示可以設定第一次開時間,此時按S2~S4對時間進行查看及設置。繼續按S1,系統顯示1∩,表示可設置第一次關時間……依次進行。設置好系統及 3次開關時間後,整機回到正常顯示狀態,秒閃恢復。

如欲取消某次開/關定時,只需把該次的開與關時間設置成相同值即可。

筆者曾把該時鍾用於定時定壓供水控制系統,RB6端用於驅動繼電器(也可用RB5與RB4兩端驅動脈沖繼電器),RB1端接水壓(水位)的低限輸入,RB0 端接高限輸入,設置好定時,一個簡易的定時定壓自動供水系統即告完成。

二、 編程技巧

PIC16C55單片機程序存儲器只有512位元組,加上採用外接32768Hz晶體振盪方式,時鍾速度較低,因此,統籌好系統的工作時序與人機界面之間的關系是軟體設計成敗的關鍵。本機編程採用如下方案:軟體工作流程見附圖2。

圖 2

PIC16C55單片機的一個機器周期是4個時鍾周期,不難算出,本系統中每秒有8192個機器周期。在編制軟體時,先設定單片機內部定時計數器F1的計數方式為機器周期的64分頻。這樣,每當F1溢出時,系統遞加2秒。平時,系統每128個機器周期內用RC口與RA口驅動掃描一次顯示屏,可保證每秒內掃描64次顯示屏,基本上無閃爍感。而 128個機器周期正是F1的第0位(為便於敘述以下簡記為F1?0)每次下降沿的間隔時間,我們可以編一段程序,當F1?0的下降沿到來時,掃描一次顯示屏,每當F1的低4位為全0時(125ms一次)使系統檢測一次RB口與按鍵狀態,並進行相關處理,部分相關程序如下:

WAIT BTFSC 1,0 ;等待F1?0的下降沿,編程時

GOTO WAIT ;要保證每次下降沿前到此

MOVFW 1

SKPNZ

GOTO CLOCK ;F1=0,滿2秒,轉時鍾處理

ANDLW 0FH ;屏蔽F1高4位

SKPZ

GOTO DISPLAY;F1低4位不為0,轉顯示

MOVLW 0C0H ;滿125mS,使RB口脈沖復位

ANDWF 6,1

MOVLW 0FH ;檢測按鍵

TRIS 7

MOVFW 7

ANDLW 0FH ;保留按鍵數據

SKPZ

GOTO AN;有鍵值,轉按鍵處理

DISPLAY …… ;顯示掃描,定時管理RB口

CLOCK …… ;時鍾,定時處理程序

AN …… ;按鍵管理程序

Ⅵ 用74LS160的數字鍾電路圖

用74LS160的數字鍾電路圖如下:



用電路元件符號表示電路連接的圖,叫電路圖。電路圖是人們為回研究、工答程規劃的需要,用物理電學標准化的符號繪制的一種表示各元器件組成及器件關系的原理布局圖。由電路圖可以得知組件間的工作原理,為分析性能、安裝電子、電器產品提供規劃方案。

在設計電路中,工程師可從容在紙上或電腦上進行,確認完善後再進行實際安裝。通過調試改進、修復錯誤、直至成功。採用電路模擬軟體進行電路輔助設計、虛擬的電路實驗,可提高工程師工作效率、節約學習時間,使實物圖更直觀。

Ⅶ 數字鍾課程設計原理圖以及製作方法

數字中電子技術課程設計報告

數字電子技術課程設計報告
題 目: 數字鍾的設計與製作
學內 年
學 期:
專 業 班容 級:
學 號: 姓 名:

指導教師及職稱:講師
時 間:
地點:
設計目的
熟悉集成電路的引腳安排.
掌握各晶元的邏輯功能及使用方法.
了解麵包板結構及其接線方法.
了解數字鍾的組成及工作原理.
熟悉數字鍾的設計與製作.
設計要求
1.設計指標
時間以24小時為一個周期;
顯示時,分,秒;
有校時功能,可以分別對時及分進行單獨校時,使其校正到標准時間;
計時過程具有報時功能,當時間到達整點前5秒進行蜂鳴報時;
為了保證計時的穩定及准確須由晶體振盪器提供表針時間基準信號.
2.設計要求
畫出電路原理圖(或模擬電路圖);
元器件及參數選擇;
電路模擬與調試;
PCB文件生成與列印輸出.
3.製作要求 自行裝配和調試,並能發現問題和解決問題.
4.編寫設計報告 寫出設計與製作的全過程,附上有關資料和圖紙,

閱讀全文

與數字電子鍾電路圖相關的資料

熱點內容
啄木鳥防水補漏大概多少錢 瀏覽:227
天冷了怎麼做防水 瀏覽:797
維修費小規模納稅人稅率 瀏覽:542
芭比傢具和衣服褲子怎麼做 瀏覽:682
能率熱水器凍壞漏水怎怎麼維修 瀏覽:857
愛仕達廣州壓力鍋售後維修點 瀏覽:484
維修樓房頂業主維修費怎樣分配 瀏覽:388
50恆壓閥漏氣維修視頻 瀏覽:392
如圖所示電路中電動勢 瀏覽:163
美的家電維修大良店 瀏覽:308
小戶型家居 瀏覽:834
南龍家居用品有限公司 瀏覽:701
昌盛維修服務中心怎麼樣 瀏覽:394
青島三星售後維修電話 瀏覽:235
陽江市區有什麼店鋪上門修家電的 瀏覽:717
滎陽市五菱汽車維修點 瀏覽:503
宗申三輪維修點 瀏覽:519
兒童傢具軟文 瀏覽:479
上海飛機維修有哪些公司 瀏覽:892
貴港哪裡有縫紉機維修點 瀏覽:196