導航:首頁 > 電器電路 > 數字鍾電路設計74ls90

數字鍾電路設計74ls90

發布時間:2023-02-10 02:47:10

❶ 數字鍾的設計

數字電子鍾的設計

一、 緒論

(一)引言
20世紀末,電子技術獲得了飛速的發展,在其推動下,現代電子產品幾乎滲透了社會的各個領域,有力地推動了社會生產力的發展和社會信息化程度的提高,同時也使現代電子產品性能進一步提高,產品更新換代的節奏也越來越快。
時間對人們來說總是那麼寶貴,工作的忙碌性和繁雜性容易使人忘記當前的時間。忘記了要做的事情,當事情不是很重要的時候,這種遺忘無傷大雅。但是,一旦重要事情,一時的耽誤可能釀成大禍。例如,許多火災都是由於人們一時忘記了關閉煤氣或是忘記充電時間。尤其在醫院,每次護士都會給病人作皮試,測試病人是否對葯物過敏。注射後,一般等待5分鍾,一旦超時,所作的皮試試驗就會無效。手錶當然是一個好的選擇,但是,隨著接受皮試的人數增加,到底是哪個人的皮試到時間卻難以判斷。所以,要製作一個定時系統。隨時提醒這些容易忘記時間的人。
鍾表的數字化給人們生產生活帶來了極大的方便,而且大大地擴展了鍾表原先的報時功能。諸如定時自動報警、按時自動打鈴、時間程序自動控制、定時廣播、定時啟閉電路、定時開關烘箱、通斷動力設備,甚至各種定時電氣的自動啟用等,所有這些,都是以鍾表數字化為基礎的。因此,研究數字鍾及擴大其應用,有著非常現實的意義。
(二)論文的研究內容和結構安排
本系統採用石英晶體振盪器、分頻器、計數器、顯示器和校時電路組成。由LED數碼管來顯示解碼器所輸出的信號。採用了74LS系列中小規模集成晶元。使用了RS觸發器的校時電路。總體方案設計由主體電路和擴展電路兩大部分組成。其中主體電路完成數字鍾的基本功能,擴展電路完成數字鍾的擴展功能。論文安排如下:
1、緒論 闡述研究電子鍾所具有的現實意義。
2、設計內容及設計方案 論述電子鍾的具體設計方案及設計要求。
3、單元電路設計、原理及器件選擇 說明電子鍾的設計原理以及器件的選擇,主要從石英晶體振盪器、分頻器、計數器、顯示器和校時電路五個方面進行說明。
4、繪制整機原理圖 該系統的設計、安裝、調試工作全部完成。

二、設計內容及設計方案

(一)設計內容要求
1、設計一個有「時」、「分」、「秒」(23小時59分59秒)顯示且有校時功能的電子鍾。
2、用中小規模集成電路組成電子鍾,並在實驗箱上進行組裝、調試。
3、畫出框圖和邏輯電路圖。
4 、功能擴展:
(1)鬧鍾系統
(2)整點報時。在59分51秒、53秒、55秒、57秒輸出750Hz音頻信號,在59分59秒時,輸出1000Hz信號,音像持續1秒,在1000Hz音像結束時刻為整點。
(3)日歷系統。
(二)設計方案及工作原理
數字電子鍾的邏輯框圖如圖1所示。它由石英晶體振盪器、分頻器、計數器、解碼器顯示器和校時電路組成。振盪器產生穩定的高頻脈沖信號,作為數字鍾的時間基準,然後經過分頻器輸出標准秒脈沖。秒計數器滿60後向分計數器進位,分計數器滿60後向小時計數器進位,小時計數器按照「24翻1」規律計數。計數器的輸出分別經解碼器送顯示器顯示。計時出現誤差時,可以用校時電路校時、校分。

圖1 數字電子鍾邏輯框圖

三、單元電路設計、原理及器件選擇

(一)石英晶體振盪器
1、重要概念的解釋
(1) 反饋:將放大電路輸出量的一部分或全部,通過一定的方式送回放大電路的輸入端。
(2) 耦合:是指信號由第一級向第二級傳遞的過程。
2、石英晶體振盪器的具體工作原理
石英晶體振盪器的特點是振盪頻率准確、電路結構簡單、頻率易調整。它被廣泛應用於彩電、計算機、遙控器等各類振盪電路中。它還具有壓電效應:在晶體某一方向加一電場,晶體就會產生機械變形;反之,若在晶片的兩側施加機械壓力,則在晶片相應的方向上將產生電場,這種物理現象稱為壓電效應。在這里,我們在晶體某一方向加一電場,從而在與此垂直的方向產生機械振動,有了機械振動,就會在相應的垂直面上產生電場,從而使機械振動和電場互為因果,這種循環過程一直持續到晶體的機械強度限制時,才達到最後穩定,這種壓電諧振的頻率即為晶體振盪器的固有頻率。
用反相器與石英晶體構成的振盪電路如圖2所示。利用兩個非門G1和G2 自我反饋,使它們工作在線性狀態,然後利用石英晶體JU來控制振盪頻率,同時用電容C1來作為兩個非門之間的耦合,兩個非門輸入和輸出之間並接的電阻R1和R2作為負反饋元件用,由於反饋電阻很小,可以近似認為非門的輸出輸入壓降相等。電容C2是為了防止寄生振盪。例如:電路中的石英晶體振盪頻率是4MHz時,則電路的輸出頻率為4MHz。

圖2 石英晶體振盪電路

(二)分頻器
1、8421碼制,5421碼制
用四位二進制碼的十六種組合作為代碼,取其中十種組合來表示0-9這十個數字元號。通常,把用四位二進制數碼來表示一位十進制數稱為二-十進制編碼,也叫做BCD碼,見表1。
表1
8421碼 5421碼
0 0000 0000
1 0001 0001
2 0010 0010
3 0011 0011
4 0100 0100
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

2、分頻器的具體工作原理
由於石英晶體振盪器產生的頻率很高,要得到秒脈沖,需要用分頻電路。例如,振盪器輸出4MHz信號,通過D觸發器(74LS74)進行4分頻變成1MHz,然後送到10分頻計數器(74LS90,該計數器可以用8421碼制,也可以用5421碼制),經過6次10分頻而獲得1Hz方波信號作為秒脈沖信號。(見圖3)

圖3 分頻電路
3、圖中標志的含義
CP——輸入的脈沖信號
C0——進位信號
Q——輸出的脈沖信號
(三)計數器
秒脈沖信號經過6級計數器,分別得到「秒」個位、十位,「分」個位、十位以及「時」個位、十位的計時。「秒」、「分」計數器為60進制,小時為24進制。
1、60進制計數器
(1) 計數器按觸發方式分類
計數器是一種累計時鍾脈沖數的邏輯部件。計數器不僅用於時鍾脈沖計數,還用於定時、分頻、產生節拍脈沖以及數字運算等。計數器是應用最廣泛的邏輯部件之一。按觸發方式,把計數器分成同步計數器和非同步計數器兩種。對於同步計數器,輸入時鍾脈沖時觸發器的翻轉是同時進行的,而非同步計數器中的觸發器的翻轉則不是同時。
(2)60進制計數器的工作原理
「秒」計數器電路與「分」計數器電路都是60進制,它由一級10進制計數器和一級6進制計數器連接構成,如圖4所示,採用兩片中規模集成電路74LS90串接起來構成的「秒」、「分」計數器。

圖4 60進制計數電路
IC1是十進制計數器,QD1作為十進制的進位信號,74LS90計數器是十進制非同步計數器,用反饋歸零方法實現十進制計數,IC2和與非門組成六進制計數。74LS90是在CP信號的下降沿翻轉計數,Q A1和 Q C2相與0101的下降沿,作為「分」(「時」)計數器的輸入信號,通過與非門和非門對下一級計數器送出一個高電平1(在此之前輸出的一直是低電平0)。Q B2 和Q C2計數到0110,產生的高電平1分別送到計數器的清零R0(1), R0(2),74LS90內部的R0(1)和R0(2)與非後清零而使計數器歸零,此時傳給下一級計數器的輸入信號又變為低電平0,從而給下一級計數器提供了一個下降沿,使下一級計數器翻轉計數,在這里IC2完成了六進制計數。由此可見IC1和 IC2串聯實現了六十進制計數。
其中:74LS90——可二/五分頻十進制計數器
74LS04——非門
74LS00——二輸入與非門
2、24進制計數器
小時計數電路是由IC5和IC6組成的24進制計數電路,如圖5所示。
當「時」個位IC5計數輸入端CP5來到第10個觸發信號時,IC5計數器自動清零,進位端QD5向IC6「時」十位計數器輸出進位信號,當第24個「時」(來自「分」計數器輸出的進位信號)脈沖到達時,IC5計數器的狀態為「0100」,IC6計數器的狀態為「0010」,此時「時」個位計數器的QC5和「時」十位計數器的QB6輸出為「1」。把它們分別送到IC5和IC6計數器的清零端R0(1)和R0(2),通過7490內部的R0(1)和R0(2)與非後清零,從而完成24進制計數。

圖5 24進制計數電路
(四) 解碼與顯示電路
1、顯示器原理(數碼管)
數碼管是數碼顯示器的俗稱。常用的數碼顯示器有半導體數碼管,熒光數碼管,輝光數碼管和液晶顯示器等。
本設計所選用的是半導體數碼管,是用發光二極體(簡稱LED)組成的字形來顯示數字,七個條形發光二極體排列成七段組合字形,便構成了半導體數碼管。半導體數碼管有共陽極和共陰極兩種類型。共陽極數碼管的七個發光二極體的陽極接在一起,而七個陰極則是獨立的。共陰極數碼管與共陽極數碼管相反,七個發光二極體的陰極接在一起,而陽極是獨立的。
當共陽極數碼管的某一陰極接低電平時,相應的二極體發光,可根據字形使某幾段二極體發光,所以共陽極數碼管需要輸出低電平有效的解碼器去驅動。共陰極數碼管則需輸出高電平有效的解碼器去驅動。
2、解碼器原理(74LS47)
解碼為編碼的逆過程。它將編碼時賦予代碼的含義「翻譯」過來。實現解碼的邏輯電路成為解碼器。解碼器輸出與輸入代碼有唯一的對應關系。74LS47是輸出低電平有效的七段字形解碼器,它在這里與數碼管配合使用,表2列出了74LS47的真值表,表示出了它與數碼管之間的關系。
表2
輸 入 輸 出 顯示數字元號
LT(——) RBI(——-) A3 A2 A1 A0 BI(—)/RBO(———)
a(—) b(—) c(—) d(—) e(—) f(—) g(—)

1 1 0 0 0 0 1 0 0 0 0 0 0 1 0
1 X 0 0 0 1 1 1 0 0 1 1 1 1 1
1 X 0 0 1 0 1 0 0 1 0 0 1 0 2
1 X 0 0 1 1 1 0 0 0 0 1 1 0 3
1 X 0 1 0 0 1 1 0 0 1 1 0 0 4
1 X 0 1 0 1 1 0 1 0 0 1 0 0 5
1 X 0 1 1 0 1 1 1 0 0 0 0 0 6
1 X 0 1 1 1 1 0 0 0 1 1 1 1 7
1 X 1 0 0 0 1 0 0 0 0 0 0 0 8
1 X 1 0 0 1 1 0 0 0 1 1 0 0 9
X X X X X X 0 1 1 1 1 1 1 1 熄滅
1 0 0 0 0 0 0 1 1 1 1 1 1 1 熄滅
0 X X X X X 1 0 0 0 0 0 0 0 8
(1)LT(——):試燈輸入,是為了檢查數碼管各段是否能正常發光而設置的。當LT(——)=0時,無論輸入A3 ,A2 ,A1 ,A0為何種狀態,解碼器輸出均為低電平,若驅動的數碼管正常,是顯示8。
(2)BI(—):滅燈輸入,是為控制多位數碼顯示的滅燈所設置的。BI(—)=0時。不論LT(——)和輸入A3 ,A2 ,A1,A0為何種狀態,解碼器輸出均為高電平,使共陽極數碼管熄滅。
(3)RBI(——-):滅零輸入,它是為使不希望顯示的0熄滅而設定的。當對每一位A3= A2 =A1 =A0=0時,本應顯示0,但是在RBI(——-)=0作用下,使解碼器輸出全為高電平。其結果和加入滅燈信號的結果一樣,將0熄滅。
(4)RBO(———):滅零輸出,它和滅燈輸入BI(—)共用一端,兩者配合使用,可以實現多位數碼顯示的滅零控制。
3、解碼器與顯示器的配套使用
解碼是把給定的代碼進行翻譯,本設計即是將時、分、秒計數器輸出的四位二進制數代碼翻譯為相應的十進制數,並通過顯示器顯示,通常顯示器與解碼器是配套使用的。我們選用的七段解碼驅動器(74LS47)和數碼管(LED)是共陽極接法(需要輸出低電平有效的解碼器驅動)。解碼顯示電路如圖6所示。

圖6 解碼顯示電路
(五)校時電路
1、RS觸發器(見圖7)

圖7 基本RS觸發器
R(—) S(—)
Q Q(—)
說 明
0 1
1 0
1 1
0 0 0
1
0或1
1 1
0
1或0
1 置0
置1
保持原來狀態
不正常狀態,0信號消失後,觸發器狀態不定

2、無震顫開關電路
無震顫開關電路的原理:(見圖8)當開關K的刀扳向1點時,S(—)=0,R(—)=1,觸發器置1。S(—)端由於開關K的震顫而斷續接地幾次時,也沒有什麼影響,觸發器置1後將保持1狀態不變。因為K震顫只是使S(—)端離開地,而不至於使R(—)端接地,觸發器可靠置1。
當開關K從S(—)端扳向R(—)端時,有同樣的效果,觸發器可靠置0。從Q端或Q(—)端反映開關的動作,輸出電平是穩定的。
3、校時電路的實現原理
當電子鍾接通電源或者計時發現誤差時,均需要校正時間。校時電路分別實現對時、分的校準,由於4個機械開關具有震顫現象,因此用RS觸發器作為去抖動電路。採用RS基本觸發器及單刀雙擲開關,閘刀常閉於2點,每搬動一次產生一個計數脈沖,實現校時功能

❷ 用Multisim10.0畫出多功能數字鍾電路圖並模擬。

74LS90是10進制計數器,用兩個74LS90,第一個設為8進制,第二個設為3進制,就可以設計出24進制。再用兩個內74LS90,第容一個10進制,第二個6進制,就可以設計出60進制的計數器,用一個與或非門或與或門引出進位信號。計數器的輸出通過編碼器或者不需要接到LED上,共6個LED。秒的輸入為1Hz的信號,秒的進位是分的進位。電路很簡單的,沒有什麼難度

❸ 兩個74LS90,做出一60進制的計數器,加引腳標上數字。求圖

這是我設計的數字鍾秒部分

❹ 大學數字電子技術的課程設計:數字式電子鍾的設計或交通燈控制電路設計

設計題目:
數字鍾的設計與模擬
二.設計要求:
(1)設計一個有「時」、「分」、「秒」(12小時59分59秒)顯示,且有校時功能的電子鍾;
(2)顯示採用六隻LED數碼管分別顯示時分秒;
(3)時間的小時、分可手動調整;
(4)採用+5V電源供電。
三.題目分析:
根據題目,我們可以分析出:數字電子鍾是由多塊數字集成電路構成的,其中有振盪器,分頻器,校時電路,計數器,解碼器和顯示器六部分組成。振盪器和分頻器組成標准秒信號發生器,不同進制的計數器產生計數,解碼器和顯示器進行顯示,通過校時電路實現對時,分的校準。
1)振盪器又包括由集成電路555與RC組成的多諧振盪器,用石英晶體構成的振盪器和由邏輯門與RC組成的時鍾源振盪器。三種方案如下圖所示:
方案一:由集成電路定時器555與RC組成的多諧振盪器作為時間標准信號源。

555與RC組成的多諧振盪器圖

方案二:振盪器是數字鍾的核心。振盪器的穩定度及頻率的精確度決定了數字鍾計時的准確程度,通常選用石英晶體構成振盪器電路。石英晶體振盪器的作用是產生時間標准信號。因此,一般採用石英晶體振盪器經過分頻得到這一時間脈沖信號。

石英晶體振盪器圖
方案三:由集成邏輯門與RC組成的時鍾源振盪器。

門電路組成的多諧振盪器圖
集成電路555與RC組成的多諧振盪器電路:如果精度要求不高,則可以採用由集成電路定時器555與RC組成的多諧振盪器。如上圖所示。設振盪頻率f=1KHz,R為可調電阻,微調R1可以調出1KHz輸出。
石英晶體振盪電路:採用的32768晶體振盪電路,其頻率為32768Hz,然後再經過15分頻電路可得到標準的1Hz的脈沖輸出.R的阻值,對於TTL門電路通常在0.7~2KΩ之間;對於CMOS門則常在10~100MΩ之間。
由門電路組成的多諧振盪器的振盪周期不僅與時間常數RC有關,而且還取決於門電路的閾值電壓VTH,由於VTH容易受到溫度、電源電壓及干擾的影響,因此頻率穩定性較差,只能用於對頻率穩定性要求不高的場合。
綜上所述,因為本電路對精度沒有較高的要求,因此,我們選用由集成電路555與RC組成的多諧振盪器。
2)校時器的方案有如下兩種:
方案一:通常,校正時間的方法是:首先截斷正常的計數通路,然後再進行人工出觸發計數或將頻率較高的方波信號加到需要校正的計數單元的輸入端,校正好後,再轉入正常計時狀態即可。根據要求,數字鍾應具有分校正和時校正功能,因此,應截斷分個位和時個位的直接計數通路,並採用正常計時信號與校正信號可以隨時切換的電路接入其中。圖1所示為所設計的校時電路。

圖 1方案一校正電路圖

方案二:校準電路由基本RS觸發器和「與」門組成,基本RS觸發器的功能是產生單脈沖,主要作用是起防抖動作用。未撥動開關K時,「與非」門G2的一個輸入端接地,基本RS觸發器處於「1」狀態,這是數字鍾正常工作,「分」進位脈沖能進入「分」計數器。撥動開關K時,「與非」門G1的一個輸入端接地,於是基本RS觸發器轉為「0」狀態。秒狀態可以直接進入「分」計數器,而「分」進位脈沖被阻止進入,因而能較快地校準分計數器的計數值。校準後,將校正開關恢復原位,數字鍾繼續進行正常計時工作。

圖 2 方案二校正電路
通過比較可知,方案一和方案二相比,防抖動措施更好,更完備,但電路也更為復雜,成本也更高,通過比較選擇方案一,既能實現防抖動功能,做出事物也更經濟一些。
四.總體方案:
本電路是以555定時器組成多諧振盪器作為頻率發生器,多諧振盪器產生1000HZ的振盪波,經過分頻器分頻,分解成1HZ的脈沖波,隨後經過秒計數器,秒計時器是60進制計數器,當計數器計數到60時產生進位脈沖,到分計數器。分計數器也是60進制計數器,當分計數器計數到60時,再次產生更高一級的進位脈沖,脈沖送到時計數器,實現了分向時的進位。當需要進行校時時,打開對應的開關,進行對應位置上的校時,此時計數進位脈沖無效。
而計數器的工作是通過外接時鍾脈沖CP的作用下,秒的個位加法計數器開始記數,通過解碼器和數碼顯示管顯示數字即計數器。當經過10個脈沖信號後,秒個位計數器完成一次循環,秒十位計數器的CP與秒個位計數器的CP同步,秒個位計數器的Qcc使得秒十位的P和T端同時為1,從而秒十位開始計數,秒十位計數器工作1次,通過解碼器和數碼顯示管,秒十位數字加1。當經過60個脈沖信號,秒部分完成一個周期,分鍾個位計數器的CP通過秒十位計數器的Q2Q1與非得到脈沖,分鍾個位計數器工作一次,通過解碼器和數碼顯示管,分鍾的個位數字加1。分部分的工作方式與秒部分完全相同。當經過3600個脈沖信號,分鍾部分完成一個周期,小時個位計數器的CP通過分十位計數器的Q2Q1與非得到脈沖,小時個位計數器工作一次,通過解碼器和數碼顯示管,小時的個位數字加1。當小時個位部分完成一個周期,小時十位計數器的CP與小時個位計數器的CP同步, 小時個位計數器的Qcc使得小時十位的P和T端同時為1,從而小時十位開始計數,小時十位計數器工作1次,通過解碼器和數碼顯示管,小時的十位數字加1。當小時十位部分計數到2同時小時的個位部分計數到4,小時個位計數器的清零端和十位計數器的清零端通過小時個位計數器的Q2和小時十位計數器的Q1與非得到信號,小時部分清零,從而完成了1次24小時計時。
五.具體實現:
(1) 數字時鍾基本原理的邏輯框圖如下圖3所示:

由圖3我們可以看出,振盪器產生的信號經過分頻器作為產生秒脈沖,秒脈沖送入計數器,計數結果經過「時」、「分」、「秒」,解碼器,顯示器顯示時間。其中振盪器和分頻器組成標准秒脈沖信號發生器,由不同進制的計數器,解碼器和顯示電路組成計時系統。秒信號送入計數器進行計數,把累計的結果以「時」,「分」、「秒」的數字顯示出來。「時」顯示由二十四進制計數器,解碼器,顯示器構成;「分」、「秒」顯示分別由六十進制的計數器,解碼器,顯示器構成;校時電路實現對時,分的校準。
(2)數字鍾的原理圖如附一圖所示,其功能原理均與系統方框圖的一致。
六.各部分定性說明以及定量計算:
1.振盪器
秒發生電路---振盪器是計時器的核心,振盪器的穩定度和頻率的精確度決定了計時器的准確度。一般來說,振盪器的頻率越高,計時精度就越高,但耗電量將越大。所以,在設計電路時要根據需要而設計出最佳電路。
在此設計中,我採用的是精度不高的,由集成電路555與RC組成的多諧振盪器。其具體電路如下圖4所示:

圖4 振盪器電路圖

555定時器是一個模擬與數字混合型的集成電路。555定時器是一種應用極為廣泛的中規模集成電路。該電路使用靈活、方便,只需外接少量的阻容元件就可以構成單穩、多諧和施密特觸發器。因而廣泛用於信號的產生、變換、控制與檢測。
目前生產的定時器有雙極型和CMOS兩種類型,其型號分別有NE555(或5G555)和C7555等多種。它們的結構及工作原理基本相同。通常,雙極型定時器具有較大的驅動能力,而CMOS定時器具有低功耗、輸入阻抗高等優點。555定時器工作的電源電壓很寬,並可承受較大的負載電流。雙極型定時器電源電壓范圍為5~16V,最大負載電流可達200mA;CMOS定時器電源電壓范圍為3~18V,最大負載電流在4mA以下。
555的引腳圖如下圖5所示:
圖5
555的內部電路和功能如下圖6所示:

圖6

上面圖6 是555定時器內部組成框圖。它主要由兩個高精度電壓比較器A1、A2,一個RS觸發器,一個放電三極體和三個5KΩ電阻的分壓器而構成。
它的各個引腳功能如下:
1腳:外接電源負端VSS或接地,一般情況下接地。
8腳:外接電源VCC,雙極型時基電路VCC的范圍是4.5 ~ 16V,CMOS型時基電路VCC的范圍為3 ~ 18V。一般用5V。
3腳:輸出端Vo
2腳: 低觸發端
6腳:TH高觸發端
4腳: 是直接清零端。當 端接低電平,則時基電路不工作,此時不論 、TH處於何電平,時基電路輸出為「0」,該端不用時應接高電平。
5腳:VC為控制電壓端。若此端外接電壓,則可改變內部兩個比較器的基準電壓,當該端不用時,應將該端串入一隻0.01μF電容接地,以防引入干擾。
7腳:放電端。該端與放電管集電極相連,用做定時器時電容的放電。
在1腳接地,5腳未外接電壓,兩個比較器A1、A2基準電壓分別為
的情況下,其功能如下表:
555定時器的功能表
清零端
高觸發端TH 低觸發端
Qn+1 放電管T 功能
0

0 導通 直接清零
1

0 導通 置0
1

1 截止 置1
1

Qn 不變 保持

接通電源後,電容C1被充電,vC上升,當vC上升到大於2/3VCC時,觸發器被復位,放電管T導通,此時v0為低電平,電容C1通過R2和T放電,使vC下降。當vC下降到小於1/3VCC時,觸發器被置位,v0翻轉為高電平。電容器C1放電結束,所需的時間為 :

當C1放電結束時,T截止,VCC將通過R1、R2向電容器C1充電,vC由1/3VCC上升到2/3VCC所需的時為:

當vC上升到2/3VCC時,觸發器又被復位發生翻轉,如此周而復始,在輸出端就得到一個周期性的方波,其頻率為 :

本設計中,由電路圖可知R1、R2和C的值,然後再根據f的公式可以算出:其輸出的頻率為f=1KHz.
2.分頻器
分頻器的功能主要有兩個:一個是產生標准秒脈沖信號;二是提供功能擴展電路所需要的信號,如仿電台報時用的1000Hz的高音頻信號和500Hz的低音頻信號等。
本設計中,由於振盪器產生的信號頻率太高,要得到標準的秒信號,就需要對所得的信號進行分頻。這里所採用的分頻電路是由3個總規模計數器74LS90來構成的3級1/10分頻。
其電路圖如下圖7所示:

圖7 分頻器電路圖

74LS90的引腳圖及其功能圖如下圖所示:

74LS90引腳圖

74LS90 功能表

3.計數器
本設計所採用的是十進制計數器74SL160,根據時分秒各個部分的的不同功能,設計成不同進制的計數器。秒的個位,需要10進制計數器,十位需6進制計數器(計數到59時清零並進位),秒部分設計與分鍾的設計完全相同;時部分的設計為當時鍾計數到24時,使計數器的小時部分清零,從而實現整體循環計時的功能。
74LS160功能表和真值表如下表1和表2所示:

表1
輸入 輸出
(CR) ̅ (LD) ̅ CTT CTP CP D0 D1 D2 D3 Q0 Q1 Q2 Q3
0 × × × × × × × × 0 0 0 0
1 0 × × ↑ D0 D1 D2 D3 D0 D1 D2 D3
1 1 1 1 ↑ × × × × 計數
1 1 0 × × × × × × 觸發器保持,CO=0
1 1 × 0 × × × × × 保持

表2
74LS160的真值表
CLK Q
Q
Q
Q

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 0 0 0 0

74LS160的引腳介紹如下表3所示:
表3

74LS160邏輯符號 各引腳頓的名稱
D D D D
置數端
Q Q Q Q
輸出端
EP ET 工作狀態控制端
LD 預置數控制端
RD 非同步置零(復位)端
CO 進位輸出端
CLK 信號輸入端

計數部分:利用74LS160晶元和74LS00晶元組成的計數器,它們採用非同步連接,利用外接標准1Hz脈沖信號進行計數。
顯示部分: 將六片74LS160的Q0Q1Q2Q3腳分別接到實驗箱上的數碼顯示管上,根據脈沖的個數顯示時間。
秒信號經過計數器之後分別得到顯示電路,以便實現用數字顯示時、分、秒的要求,計時電路共分三部分:計秒、計分和計時。其中,計秒和計分都是60進制,而計時為24進制,可以採用十進制計數器74LS160實現24進制、60進制計數器。
(1)六十進制計數
由分頻器來的秒脈沖信號,首先送到「秒」計數器進行累加計數,秒計數器應完成一分鍾之內秒數目的累加,並達到60秒時產生一個進位信號,所以,選用2片74LS160和一片74LS00組成六十進制計數器,採用反饋歸零的方法來實現六十進制計數。其中,「秒」十位是六進制,「秒」個位是十進制。
秒部分具體設計如圖8所示:

圖8
秒的個位部分為逢十進一,十位部分為逢六進一,從而共同完成60進制計數器,當計數到59時清零並重新開始計數。如圖所示個位1腳接高電平,7腳、9腳及10腳接1,當7腳和10腳同時為1時計數器處於計數工作狀態。個位11腳和秒的十位的2腳相接,十位的9腳、10腳、7腳分別和個位的1腳相接。個位計數器由Q3Q2Q1Q0(0000)2增加到(1001)2時產生進位,從而實現10進制計數和進位功能,秒的十位在計數至0110時由與非門反饋清零實現6進制。
分鍾部分設計與秒完全相同。
(2)二十四進制計數器:
選用2片74LS160和一片74LS00組成24進制計數器,採用反饋歸零的方法來實現24進制計數。當十位為0010且個位為0100時使兩晶元非同步清零。
小時部分具體設計如圖9所示:

圖9
4.解碼器、顯示器
解碼是指把給定的代碼進行翻譯的過程。計數器採用的碼制不同,解碼電路也不同。74LS48驅動器是與8421BCD編碼計數器配合用的七段解碼驅動器。74LS48配有燈測試LT、動態滅燈輸入RBI,滅燈輸入/動態滅燈輸出BI/RBO,當LT=0時,74LS48出去全1。
本系統用七段發光二極體來顯示解碼器輸出的數字,顯示器有兩種:共陽極顯示器或共陰極顯示器。74LS48解碼器對應的顯示器是共陰極顯示器。
本實驗採用實驗箱中的74LS48解碼器和共陰極顯示器組成的顯示系統。
5.校時電路
數字種啟動後,每當數字鍾顯示與實際時間不符進,需要根據標准時間進行校時。校「秒」時,採用等待校時。校「分」、「時」的原理比較簡單,採用加速校時。
對校時電路的要求是 :
1)在小時校正時不影響分和秒的正常計數 。
2)在分校正時不影響秒和小時的正常計數 。
如圖10所示,當數字鍾走時出現誤差時,需要校正時間。校時電路實現對「時」「分」「秒」的校準。在電路中設有正常計時和校對位置。本實驗實現「時」「分」的校對。需要注意的是,校時電路是由與非門構成的組合邏輯電路,開關S1或S2為「0」或「1」時,可能會產生抖動,為防止這一情況的發生我們接入一個由RS觸發器組成的防抖動電路來控制。

校時電路圖 圖10
校時開關的功能表如下:
校時開關的功能表
S1 S2 功能
1 1 計數
0 1 校分
1 0 校時
6.整點報時電路
整點報時,只報時不報分。從59分50秒起,每隔2s發出一次信號,連續五次,最後一次結束時即達到正點。其原理圖如下所示:

圖11
電路圖如下圖12所示:

圖12
綜合以上多個電路,將其連接起來,就組成了一個具有時、分、秒計時功能,能夠手動校時、校分,並且整點報時的數字電子鍾。
七.實驗模擬:
在電子電路計算機模擬軟體Multisim中進行調試和模擬數字電子鍾,得到的模擬電路圖如附二圖所示。
由模擬電路實驗知道了當高頻信號經過分頻器後得到標準的秒脈沖信號,進入60進制的「秒」計時,「秒」的分位進入60進制的「分」計時,最後,由分的「時」進位進入24進制的「時」計時。再加上由門電路和開關構成的校時電路對電路的「時」,「分」進行校時,從而得到正確的時間的。
八.元器件清單
(1)74LS160( 6片) (2)74LS00(15片)
(3)數碼顯示器(6片) (4)74LS90(3片)
(5)74LS30(1片) (6)74LS04(1片)
(7)74LS02(1片) (8)555計時器(1片)
(9)可變電容(1個) (10)電容(2片)
(11)蜂鳴器(1個) (12)電阻(2個)
(13)數字電路實驗箱 (14)+5V電源若干
(15)導線,開關若干。
九.設計心得體會

在此次的數字鍾設計過程中,更進一步地熟悉了晶元的結構及掌握了各晶元的工作原理和其具體的使用方法。使我對已學過的電路、數電、模電等電子技術的知識有了更深一步的了解,鍛煉和培養了自己利用已學知識來分析和解決實際問題的能力。對自己以後的學習和工作有很大的幫助。
剛開始做這個設計的時候感覺自己什麼都不知道怎麼下手,腦子里比較浮躁和零亂。但通過一段時間的努力,通過重溫數電,模電等電子技術的書籍,還有通過查看相關的設計技術以及一些參考文獻,再加之在老師的指導和周圍同學的幫助下,使我對自己的本設計有了熟練的掌握。
在整個的設計過程中我充滿了渴望和用心。記得在精工實習的時候,也是用滿腔的熱情來完成各項實習任務,並在每項實習項目中都達到了優秀的成績。 所以,我相信自己的實際動手能力,並一向的加強自己在這方面的努力。在這次的電子技術設計中亦是如此,用自己的雙手和滿腔的熱情來完成各個環節,不斷的在圖書管查看相關資料和期刊文獻,特別在網路上也收收獲了很多新鮮的東西。這次設計更讓我熟悉了一些常用集成邏輯電路和其相應晶元的使用。
雖然,在本設計中所用的方案不是最好的,但我想其中的原理是最基本的;雖然其中可能出現誤差,不過在楊老師的答疑課上,這些問題還是基本解決了。
最後,我要衷心的感謝楊老師給了我一次實踐的機會和平時在學習上的莫大幫助,讓我更加深刻地了解和認識到了自己的優點和不足,通過這個課程設計我發現了我好多知識都不熟悉甚至有的東西我根本就不知道,這讓我感到了要學習的東西還有很多很多。因此使我更堅定了在以後的學習中要扎實好基礎,闊廣知識面。碰到的問題越讓人絕望,解決問題之後的喜悅程度就越高。作為工科類的學生,以後工作了難免要碰到許許多多的問題,不要絕望,堅持,直到看到勝利的曙光。

十.參考文獻

李中發主編. 電子技術. 北京:中國水利水電出版社.
毛期儉主編. 數字電路與邏輯設計實驗及應用. 北京: 人民郵電出版社.
呂思忠,施齊雲主編. 數字電路實驗與課程設計. 哈爾濱:哈爾濱工程大學出版社.
閻石主編.數字電子技術基礎(第四版). 北京:高等教育出版社.
黃智偉主編. 電子電路計算機模擬設計與分析. 北京:電子工業出版社.
程勇主編. Multisim10電路模擬實例講解. 北京: 人名出版社.
彭介華主編. 電子技術課程設計指導. 北京:高等教育出版社.
盧結成、高世忻等編. 電子電路實驗及應用課題設計. 合肥:中國科學技術大學出版社.
梁宗善主編. 電子技術基礎課程設計. 武漢:華中理工大學出版社.
歐陽星明主編. 數字系統邏輯設計. 北京:電子工業出版社.
李中發主編. 電子技術基礎課程設計. 武漢:華中理工大學出版社.

❺ 如何設計一個類似石英鍾的數字顯示的電子鍾

數字時鍾的設計與製作

摘要:本系統是採用555構成的多協振盪器、74LS90晶元組合做成的數子時鍾系統。其中用555構成的多協振盪器產生震盪頻率,再用74LS 90晶元組合成分頻電路對震盪頻率進行分頻,然後對選用74LS92和74LS90分別作為時計數器和分、秒計數器,再加一個校時電路。能讓該數子時鍾准確計時,以數字形式顯示時、分、秒的時間,小時的計時為「24翻1」分,秒的計時為60進位 ,和時間校正功能。

關鍵字: 震盪器 分頻 計數器 74LS90 校時

一、數字時鍾的總體設計

1 數字時鍾的原理方框圖如圖1所示:

圖1數字時鍾的原理方框圖

該電路系統由秒信號發生器、「時」、「分」、「秒」計數器、解碼器及顯示器等組成。秒信號產生器是整個系統是時基信號,它直接決定計數系統的精度。將標准秒信號送入「秒計數器」,「秒計數器」採用六十進制計數器,每累積60秒發出一個分脈沖信號,該信號將作為「分計數器」的時鍾脈沖,「分計數器」也採用60進制計數器,每累積60分鍾,發出一個「時脈沖」信號,該信號將被送入「時計數器」。「時計數器」採用24進制計數器,可實現對一天24小時的計數。解碼顯示電路將「時」、「分」、「秒」計數器的輸出狀態經7段解碼顯示器解碼,通過7段顯示器顯示出來。

二、模塊的設計與比較

1. 振盪電路及分頻電路

方案一:

(1)採用石英晶體振盪器

石英晶體振盪器的特點是振盪頻率准確,電路結構簡單,頻率易高調整。它還具有壓電效應,在晶體某一方向加一電場,則在與此垂直的方向產生機械振動和電場互為因果,這種循環過程一直持續到晶體的機械強度限制時,才達到最後的穩定,這種壓電諧振的頻率就是晶體振盪的固有頻率。

圖2 石音晶體振盪電路

圖2所示電路通過CMOS非門構成的輸出為方波的數字式晶體振盪電路,這個電路中,CMOS非門U1與晶體、電容和電阻構成晶體振盪器電路,U2實現整形功能,將振盪器輸出的近似於正弦波的波形轉換為較理想的方波。輸出反饋電阻R1為非門提供偏置,使電路工作於放大區域,即非門的功能近似於一

個高增益的反相放大器。電容C1、C2與晶體構成一個諧振型網路,完成對振盪頻率的控制功能,同時提供了一個180度相移,從而和非門構成一個正反饋網路,實現了振盪器的功能。由於晶體具有較高的頻率穩定性及准確性,從而保證了輸出頻率的穩定和准確。晶體X1的頻率選為32768HZ。該元件專為數字鍾電路而設計,其頻率較低,有利於減少分頻器級數。C1、C2均選擇為30pF。當要求頻率准確度和穩定度更高時,還可接入校正電容並採取溫度補償措施。由於CMOS電路的輸入阻抗極高,因此反饋電阻R1可選為10MΩ。較高的反饋電阻有利於提高振盪頻率的穩定性。

(2) 用CD4060計數作分頻器

數字鍾的晶體振盪器輸出頻率較高,為了得到1Hz的秒信號輸入,需要對振盪器的輸出信號進行分頻。本實驗中採用CD4060來構成分頻電路。CD4060在數字集成電路中可實現的分頻次數最高,而且CD4060還包含振盪電路所需的非門,使用更為方便。CD4060計數為14級2進制計數器,可以將32768HZ的信號分頻為2HZ,其次CD4060的時鍾輸入端兩個串接的非門,因此可以直接實現振盪和分頻的功能。

方案二:

(1)採用555構成的多偕振盪電路

振盪器電路選用555構成的多偕振盪器,設振盪頻率f=1000HZ,其中的電位器可以微調振盪器的輸出頻率。

圖5 多偕振盪電路

(2)用74LS90作分頻器

通常實現分頻器的電路是計數器電路,一般採用多級10進制計數器來實現。分頻器的功能有兩個:一是產生標准秒脈沖信號;二是提供功能擴展電路所需的信號。選用中規模集成電路74LS90可以完成以上功能。如圖所示,將3片74LS90級聯,每片為1/10分頻,三片級聯正好獲得1HZ的標准秒脈沖。

圖 6 分頻電路

比較: 秒信號發生器是數字電子鍾的核心部分,它的精度和穩度決定了數字鍾的質量,但是我們做實驗考慮到用石音晶體振盪電路時分頻電路用的元件較多 且價格較貴,而用555構成的電路元件容易得,電路簡單且易於實現,故選方案二

2. 秒、分、時計數器設計

秒脈沖信號經過6級計數器,分別得到「秒」個位,十位、「分」個位、十位、「時」個位,十位的計時,秒分計數器為60進制,小時為24進制。

(1)60進制計數電路:秒計數器電路與分計數器電路都是60進制,它由一級10進制計數器和一級6進制計數器連接構成,如圖7、8所示,採用兩片中規模集成電路7490串聯接起來構成的秒、分計數器。

IC2是十進制計數器,作為十進制的進位信號,7490計數器是十進制非同步計數器,用反饋歸零方法實現十進制計數。IC1和非門組成六進制計數。7490是在一秒時鍾或進位信號的下降沿翻轉計數, IC1的QA和QC相與0101的下降沿作為「分」或者「時」計數器的輸入信號。IC1的QB和QC高電平1分別送到計數器的清零RO1、RO2,7490內部的RO1 和RO2與非後清零而使計數器歸零,完成六進制計數。由此可見串聯實現了六進制計數。

圖7 秒計數電路

圖8 分計數電路

(2)24進制計數電路:小時計數電路是由和組成的24進制計數電路,採用兩片中規模集成電路7490串聯接起來構成。如圖9所示:

當「時」個位IC4計數輸入端CKA來到第10個觸發信號時,IC4計數器復零,進位端QD向IC3「時」十位計數器輸出進位信號,當第24個「時」脈沖到達時,IC4計數器的狀態為0100,IC3計數器的狀態為0100,此時「時」個位計數器的QC和「時」十位計數器的QB輸出為1。把它們分別送到IC4和IC3計數器的清零端RO1 和RO2通過7490內部的RO1 和RO2與非後清零,計數器復位,完成24進制計數。

圖9 時計數電路

3. 校時電路

校時電路實現對時分的校準。在電路中設有正常計時和校時位置。分、時的校準開關分別通過觸發器控制。通常,校正時間的方法是:首先截斷正常的計數通路,然後再進行人工出觸發計數或將頻率較高的方波信號加到需要校正的計數單元的輸入端,校正好後,再轉入正常計時狀態即可。根據要求,數字鍾應具有分校正和時校正功能,因此,應截斷分個位和時個位的直接計數通路,並採用正常計時信號與校正信號可以隨時切換的電路接入其中。

圖8所示為本實驗所用的完整的校時電路圖。

圖10 校時電路

4. 顯示器

本系統用七段發光二極體來顯示解碼器輸出的數字,顯示器有兩種:共陽極或共陰極顯示器。74LS48解碼器對應的是顯示器是共陰顯示器。

三、調試要點

我覺得假設在實際的實驗箱上組裝電子鍾時,注意器件管腳的連接一定要准確。「懸空端「、「清0端」、「置1端」要正確處理,調試步驟和方法如下:。

(1)、將頻率為1000HZ的信號送入分頻器,並用示波器檢查各級分頻器的輸出頻率是否符合設計要求。

(3)、將1秒信號分別送入「時」、「分」、「秒」計數器,檢查各級計數器的工作情況。

(4)、觀察校時電路的功能是否滿足校時要求。

(5)、當分頻器和計數器調試正常後,觀察電子鍾是否准確正常地工作。

四、供參考的元器件

(1)、七段顯示器(共陰極)6片 (2)、74LS90 9片 (3)、555多諧振盪器 1片 (4)、74LS00 8片 (5)、74LS04 4片

(6)、電阻、電容、導線等。

五、收獲體會

該電路的設計讓我對數字鍾的設計有了一定的了解。我知道了如何設計出1HZ的信號,也對時分秒的設計有了一定的了解。並且在實際電路一般步驟為由數字鍾系統組成框圖按照信號的流向分級安裝,逐級級聯,這里的每一級是指組成數字鍾的各功能電路。級聯時如果出現時序配合不同步,或尖峰脈沖干擾,引起邏輯混亂,可以增加多級邏輯門來延時。經過聯調並糾正設計方案中的錯誤和不足之處後,再測試電路的邏輯功能是否滿足設計要求。最後畫出滿足設計要求的總體邏輯電路圖。

參考文獻:

1.謝自美,電子線路設計*實驗*測試.武漢:華中科技大學出版社,2007

2.康光華,電子技術基礎(第五版)。北京:高等教育出版社,2006

3.蔣煥文,孫續。電子測量。北京:計量出版社,1998

4.P.F.格拉夫。電子電路網路全書。張殿等譯。北京:科學出版社,1999

5.王興亮主編現代音響和調音技術。西安電子科技大學出版,2006

❻ 74ls90設計的數字鍾不用程序嗎

74ls90設計的數字鍾不用程序。
由74ls90設計的數字鍾是由計數器控制的。而計數器在數字系統中主要是對脈沖的個數進行計數,以實現測量、計數和控制的功能,同時兼有分頻功能,所以不需要另外再設計程序。
程序是一組計算機能識別和執行的指令,運行於電子計算機上,滿足人們某種需求的信息化工具。它以某些程序設計語言編寫,運行於某種目標結構體繫上。為了使計算機程序得以運行,計算機需要載入代碼,同時也要載入數據。

閱讀全文

與數字鍾電路設計74ls90相關的資料

熱點內容
聯想客服維修電話是多少 瀏覽:610
冰箱維修費怎麼入科目 瀏覽:525
亞振傢具加盟 瀏覽:914
垂釣園除了水泥可以怎麼做防水 瀏覽:804
水龍頭不須防水膠帶怎麼裝 瀏覽:147
火焰色傢具 瀏覽:599
防水保溫卷材一平方用多少 瀏覽:433
窗檯刷防水用什麼材料 瀏覽:692
明星選取傢具 瀏覽:222
泰安啄木鳥家電維修 瀏覽:867
kx06防水效果怎麼樣 瀏覽:344
棗庄市海爾售後維修 瀏覽:737
肇事者不付維修費 瀏覽:252
淘寶箱子過保修期怎麼辦 瀏覽:952
如何識別純實木傢具床等 瀏覽:116
一般電信有時候地區維修多久 瀏覽:868
房子和傢具如何布置 瀏覽:482
酷晨售後北京維修 瀏覽:542
汽車維修換件保修多久 瀏覽:590
狗仔做電路 瀏覽:791