導航:首頁 > 電器電路 > 停止復位電路

停止復位電路

發布時間:2023-01-04 03:23:14

❶ 故障復位電氣原理圖

復位電路工作原理

復位電路是一種用來使電路恢復到起始狀態的電路設備,它的操作原理與計算器有著異曲同工之妙,只是啟動原理和手段有所不同。

復位電路都是比較簡單的大都是只有電阻和電容組合就可以辦到了,再復雜點就有三極體等配合程序來進行了。為確保微機系統中電路穩定可靠工作,復位電路是必不可少的一部分,復位電路的第一功能是上電復位。一般微機電路正常工作需要供電電源為5V±5%,即4.75~5.25V。由於微機電路是時序數字電路,它需要穩定的時鍾信號,因此在電源上電時,只有當VCC超過4.75V低於5.25V以及晶體振盪器穩定工作時,復位信號才會撤除,微機電路開始正常工作。

復位電路的作用

在上電或復位過程中,控制CPU的復位狀態:這段時間內讓CPU保持復位狀態,而不是一上電或剛復位完畢就工作,防止CPU發出錯誤的指令、執行錯誤操作,也可以提高電磁兼容性能。

無論用戶使用哪種類型的單片機,總要涉及到單片機復位電路的設計。而單片機復位電路設計的好壞,直接影響到整個系統工作的可靠性。許多用戶在設計完單片機系統,並在實驗室調試成功後,在現場卻出現了「死機」、「程序走飛」等現象,這主要是單片機的復位電路設計不可靠引起的。

基本的復位方式

單片機在啟動時都需要復位,以使CPU及系統各部件處於確定的初始狀態,並從初態開始工作。89系列單片機的復位信號是從RST引腳輸入到晶元內的施密特觸發器中的。當系統處於正常工作狀態時,且振盪器穩定後,如果RST引腳上有一個高電平並維持2個機器周期(24個振盪周期)以上,則CPU就可以響應並將系統復位。單片機系統的復位方式有:手動按鈕復位和上電復位
典型復位電路圖

手動按鈕復位

手動按鈕復位需要人為在復位輸入端RST上加入高電平(圖1)。一般採用的辦法是在RST端和正電源Vcc之間接一個按鈕。當人為按下按鈕時,則Vcc的+5V電平就會直接加到RST端。手動按鈕復位的電路如所示。由於人的動作再快也會使按鈕保持接通達數十毫秒,所以,完全能夠滿足復位的時間要求。

看門狗型復位電路

看門狗型復位電路主要利用CPU正常工作時,定時復位計數器,使得計數器的值不超過某一值;當CPU不能正常工作時,由於計數器不能被復位,因此其計數會超過某一值,從而產生復位脈沖,使得CPU恢復正常工作狀態。典型應用的Watchdog復位電路如圖7所示。此復位電路的可靠性主要取決於軟體設計,即將定時向復位電路發出脈沖的程序放在何處。一般設計,將此段程序放在定時器中斷服務子程序中。然而,有時這種設計仍然會引起程序走飛或工作不正常。原因主要是:當程序「走飛」發生時定時器初始化以及開中斷之後的話,這種「走飛」情況就有可能不能由Watchdog復位電路校正回來。因為定時器中斷一真在產生,即使程序不正常,Watchdog也能被正常復位。為此提出定時器加預設的設計方法。即在初始化時壓入堆棧一個地址,在此地址內執行的是一條關中斷和一條死循環語句。在所有不被程序代碼佔用的地址盡可能地用子程序返回指令RET代替。這樣,當程序走飛後,其進入陷阱的可能性將大大增加。而一旦進入陷阱,定時器停止工作並且關閉中斷,從而使Watchdog復位電路會產生一個復位脈沖將CPU復位。當然這種技術用於實時性較強的控制或處理軟體中有一定的困難

❷ 單片機復位電路(高低電平復位分別)

當單片機上電瞬間由於電容電壓不能突變會使電容兩邊的電位相同,此時為低電平,之後隨著時間推移電源通過電阻對電容充電,充滿電時RST為高電平。正常工作為高電平,低電平復位。

當單片機上電瞬間由於電容電壓不能突變會使電容兩邊的電位相同,此時RST為高電平,之後隨著時間推移電源負極通過電阻對電容放電,放完電時RST為低電平。正常工作為低電平,高電平復位。

單片機的復位引腳RST(全稱RESET)出現2個機器周期以上的高電平時,單片機就執行復位操作。如果RST持續為高電平,單片機就處於循環復位狀態。當單片機處於低電平時就掃描程序存儲器執行程序。

(2)停止復位電路擴展閱讀

基本結構

1、運算器

運算器由運算部件——算術邏輯單元(Arithmetic & Logical Unit,簡稱ALU)、累加器和寄存器等幾部分組成。ALU的作用是把傳來的數據進行算術或邏輯運算,輸入來源為兩個8位數據,分別來自累加器和數據寄存器。

2、ALU能完成對這兩個數據進行加、減、與、或、比較大小等操作,最後將結果存入累加器。例如,兩個數6和7相加,在相加之前,操作數6放在累加器中,7放在數據寄存器中,當執行加法指令時,ALU即把兩個數相加並把結果13存入累加器,取代累加器原來的內容6。

3、運算器有兩個功能:

(1)執行各種算術運算。

(2)執行各種邏輯運算,並進行邏輯測試,如零值測試或兩個值的比較。

(3)運算器所執行全部操作都是由控制器發出的控制信號來指揮的,並且,一個算術操作產生一個運算結果,一個邏輯操作產生一個判決。

4、控制器

控制器由程序計數器、指令寄存器、指令解碼器、時序發生器和操作控制器等組成,是發布命令的「決策機構」,即協調和指揮整個微機系統的操作。其主要功能有:

(1) 從內存中取出一條指令,並指出下一條指令在內存中的位置。

(2) 對指令進行解碼和測試,並產生相應的操作控制信號,以便於執行規定的動作。

(3) 指揮並控制CPU、內存和輸入輸出設備之間數據流動的方向。

5、主要寄存器

(1)累加器A

累加器A是微處理器中使用最頻繁的寄存器。在算術和邏輯運算時它有雙功能:運算前,用於保存一個操作數;運算後,用於保存所得的和、差或邏輯運算結果。

(2)數據寄存器DR

數據寄存器通過數據匯流排向存儲器和輸入/輸出設備送(寫)或取(讀)數據的暫存單元。它可以保存一條正在解碼的指令,也可以保存正在送往存儲器中存儲的一個數據位元組等等。

(3)程序計數器PC

PC用於確定下一條指令的地址,以保證程序能夠連續地執行下去,因此通常又被稱為指令地址計數器。在程序開始執行前必須將程序的第一條指令的內存單元地址(即程序的首地址)送入PC,使它總是指向下一條要執行指令的地址。

(4)地址寄存器AR

地址寄存器用於保存當前CPU所要訪問的內存單元或I/O設備的地址。由於內存與CPU之間存在著速度上的差異,所以必須使用地址寄存器來保持地址信息,直到內存讀/寫操作完成為止。

硬體特性

晶元

1、主流單片機包括CPU、4KB容量的RAM、128 KB容量的ROM、 2個16位定時/計數器、4個8位並行口、全雙工串口行口、ADC/DAC、SPI、I2C、ISP、IAP。

2、系統結構簡單,使用方便,實現模塊化。

3、單片機可靠性高,可工作到10^6 ~10^7小時無故障。

4、處理功能強,速度快。

5、低電壓,低功耗,便於生產攜帶型產品。

6、控制功能強。

7、環境適應能力強。

❸ 想要一個啟動---延時--正轉--停止--反轉--停止復位電路

看你碼了那麼多的字不容易,給你個建議,這個電路改造起來不容易,循版環一個周期後就停止不容易權實現!建議你採用三個時間繼電器很容易就實現你的要求,並且用啟動/停止按鈕控制,符合電器控制的習慣。三個時間繼電器分別控制正轉、停止、反轉時間。並且三段時間調整很容易。

❹ 怎樣判斷主板時鍾電路復位電路是否正常

時鍾電路主要是在系統主板上,它是大規模集成電路賴以工作的基本條件。它是以晶體振盪器(俗稱晶振)為基礎,在電路中產生恆定的方波信號。晶體停振,就像人的心臟停止跳動一樣,使系統處於癱瘓狀態。晶振工作正常後,系統電路才能在CPU的指揮下按晶振時鍾的節拍工作。晶振的數量和頻率隨數控系統的不同而有所不同,但一般至少有一個,其餘電路所需的不同的時鍾頻率由分頻電路或另外的晶振來解決。

晶振的損壞率較高,其故障常見有以下幾種:

(1) 晶振漏電損壞。可用萬用表P×10K擋測量,若其電阻為無窮大,則為正常;若有阻值則為漏電。

(2) 晶振內部開路。用萬用表測其電阻雖無窮大,但在電路中不能產生振盪脈沖。

(3) 晶振變質使其參數改變。只有用示波器和頻率計才能檢測。晶振雖能振盪,但其時鍾頻率偏離其標稱值,此時雖有振盪脈沖,但由於脈沖數量錯誤,系統電路也不能工作。此時只有用頻率計才能准確測出其偏差。

(4) 在實際時鍾電路中,晶振的兩端到地均接有一個幾皮法到幾十皮法的瓷片電容,該電容漏電、變質而引起的時鍾電路的故障也較為常見。檢測晶振的好壞最好用示波器和頻率計測量,萬用表很難判定其好壞。

如一台由FANUC 6M控制的加工中心,工作一段時間後,突然CRT黑屏,機床無動作。關掉電源,再送上電源,機床又能工作一段時間。檢查電源一切正常。故障可能在系統主板上。經檢修主板A16B-1000-0220/04A,發現兩個晶振中的一個16.3840MHz晶振內部接觸不良,更換後使用至今未再發生同類故障。

3、復位電路

復位電路也是存在於系統主板上的電路,它是大規模數字集成電路特有的電路。微處理器、介面電路等都有復位端子。

復位電路產生的復位脈沖把程序計數器清零,使CPU從存儲器中調出初始化文件,對各控制晶元埠進行初始化。如果復位電路不良,系統會發生紊亂、死機等故障。

一般用示波器觀察復位脈沖時,應反復通斷電源,在開關每次接通的瞬間觀察復位脈沖。復位脈沖應為理想的矩形方波。若無復位脈沖,應檢查復位電路中的電阻、電容、晶體管等。集成電路復位端應為規則的低或高電平,否則,應為復位電路故障或集成電路損壞。

如一台使用PLASMA數控系統的大型加工中心,系統不能啟動,CRT無報警顯示。經檢查±5V、±12V、±24V電源電壓正常,時鍾電路正常。懷疑是系統主板的問題,在檢查復位電路時,發現CPU復位端無復位脈沖。進一步檢查發現復位端一個3.3k/0.5W電阻開路,更換後系統啟動正常。

❺ 什麼是復位電路,它在電路中起到什麼作用

復位電路是一種用來使電路恢復到起始狀態的電路設備,它的操作原理與計算器有著異曲同工之妙,只是啟動原理和手段有所不同。復位電路,就是利用它把電路恢復到起始狀態。就像計算器的清零按鈕的作用一樣,以便回到原始狀態,重新進行計算。

復位電路的作用:在上電或復位過程中,控制CPU的復位狀態:這段時間內讓CPU保持復位狀態,而不是一上電或剛復位完畢就工作,防止CPU發出錯誤的指令、執行錯誤操作,也可以提高電磁兼容性能。

無論用戶使用哪種類型的單片機,總要涉及到單片機復位電路的設計。而單片機復位電路設計的好壞,直接影響到整個系統工作的可靠性。

(5)停止復位電路擴展閱讀

1、上電復位
上電復位就是直接給產品上電,上電復位與低壓 LVR操作有聯系,電源上電的過程是逐漸上升的曲線過程,這個過程不是瞬間的完成的,一上電時候系統進行初始化,此時振盪器開始工作並提供系統時鍾,系統正常工作。

2、看門狗復位

看門狗定時器CPU內部系統,它是一個自振式的 RC振盪定時器,與外圍電路無關,也與CPU主時鍾無關,只要開啟看門狗功能也能保持計時,該溢出時候也會溢出,並產生復位。

3、LVR低壓復位
每個CPU都有一個復位電壓,這個電壓很低,有1.8V、2.5V等,當系統由於受到外界的影響導致輸入電壓過低,當低至復位電壓時候系統自動復位,當然,前提是系統要打開LVR功能,有時候也叫掉電復位。

當LVR<工作電壓<VDD時候,比如在V1時候工作是正常的,當VSS<工作電壓<LVR時候,系統有可能出錯,比如在V2時候,也就是我們常說的死區,這個狀態不確定。

❻ 復位電路的分類

單片機復位電路主要有四種類型:
(1)微分型復位電路:
(2)積分型復位電路:
(3)比較器型復位電路:
比較器型復位電路的基本原理。上電復位時,由於組成了一個RC低通網路,所以比較器的正相輸入端的電壓比負相端輸入電壓延遲一定時間.而比較器的負相端網路的時間常數遠遠小於正相端RC網路的時間常數,因此在正端電壓還沒有超過負端電壓時,比較器輸出低電平,經反相器後產生高電平.復位脈沖的寬度主要取決於正常電壓上升的速度.由於負端電壓放電迴路時間常數較大,因此對電源電壓的波動不敏感.但是容易產生以下二種不利現象:
(1)電源二次開關間隔太短時,復位不可靠:
(2)當電源電壓中有浪涌現象時,可能在浪涌消失後不能產生復位脈沖。
為此,將改進比較器重定電路,如圖9所示.這個改進電路可以消除第一種現象,並減少第二種現象的產生.為了徹底消除這二種現象,可以利用數字邏輯的方法和比較器配合,設計的比較器重定電路。此電路稍加改進即可作為上電復位和看門狗復位電路共同復位的電路,大大提高了復位的可靠性。
(4)看門狗型復位電路.
看門狗型復位電路主要利用CPU正常工作時,定時復位計數器,使得計數器的值不超過某一設定的值;當CPU不能正常工作時,由於計數器不能被復位,因此其計數會超過某一值,從而產生復位脈沖,使得CPU恢復正常工作狀態。此復位電路的可靠性主要取決於軟體設計,即將定時向復位電路發出脈沖的程序放在何處是最優的設計。一般設計,將此段程序放在定時器中斷服務子程序中。 然而,有時這種設計仍然會引起程序走飛或工作不正常。原因主要是:當程序"走飛"發生時,定時器初始化以及開中斷之後的話,這種"走飛"情況就有可能不能由Watchdog復位電路校正回來.因為定時器中斷一真在產生,即使程序不正常,Watchdog也能被正常復位.為此提出定時器加預設的設計方法.即在初始化時壓入堆棧一個地址,在此地址內執行的是一條關中斷和一條死循環語句.在所有不被程序代碼佔用的地址盡可能地用子程序返回指令RET代替.這樣,當程序走飛後,其進入陷阱的可能性將大大增加.而一旦進入陷阱,定時器停止工作並且關閉中斷,從而使Watchdog復位電路會產生一個復位脈沖將CPU復位.當然這種技術用於實時性較強的控制或處理軟體中有一定的困難。

❼ 復位電路原理圖

(1)復位電路之一。所示是微控制器中的一種實用復位電路。電路中,A105是機芯微控制器集成電路,A101是主軸伺服控制和數字信號處理集成電路, A104是伺服控制集成電路。

微控制器實用復位電路之一

這一電路的工作原理是這樣:在電源接通後,+5 V直流電壓通過電阻R216和電容C128加到集成電路A105的復位信號輸入引腳⑨腳,開機瞬間由於電容C128兩端的電壓不能突變,所以A105的⑨腳上是高電平,隨著+5 V直流電壓對C128充電的進行,⑨腳的電壓下降。

由此可見,加到集成電路A105的復位引腳⑨腳上的復位觸發信號是一個正脈沖。這一正脈沖復位信號經集成電路⑨腳內電路反相處理,使內電路完成復位。

重要提示
這一復位電路在使集成電路A105復位的同時,A1的⑥腳還輸出一個低電平復位脈沖信號,分別加到集成電路A101的復位信號輸入端16腳和集成電路A104的復位信號輸入端①腳,使A101和A104兩個集成電路同時復位。

(2)復位電路之二。所示是微控制器中的另一種實用復位電路。電路中, A1是微控制器集成電路,其42腳是電源引腳,33腳是復位引腳。

這一電路的工作原理是這樣:在電源開關接通後,+5 V直流電壓給集成電路A1的電源引腳42腳供電,當電源開關剛接通時,+5 V 電壓還沒有上升到穩壓二極體VZ1 的擊穿電壓,所以VZ1處於截止狀態,此時VT1管截止,這樣+5 V電源電壓經電阻R3加到VT2管的基極,使VT2管飽和導通,其集電極為低電平,即使集成電路A1的復位引腳33腳為低電平。

實用復位電路之二

隨著 +5 V 電壓升到穩定的 +5 V 後,這一電壓使穩壓二極體VZ1擊穿,導通的VZ1和R1給VT1管的基極加上足夠的直流偏置電壓,使VT1飽和導通,其集電極為低電平,這一低電平加到VT2管的基極,使VT2 管處於截止狀態,這樣+5 V 電壓經電阻R4加到復位引腳33腳上,使33腳為高電平。

通過上述分析可知,在電源開關接通後,復位引腳33腳上的穩定直流電壓的建立滯後一段時間,這就是復位信號,使集成電路A1的內電路復位。

斷電後,電容C1充到的電荷通過二極體VD1放掉,因為在電容C1上的電壓為上正下負,+5 V 端相接於接地,C1 上的充電電壓加到VD1上的是正向偏置電壓,使VD1導通放電,將C1中的電荷放掉,以供下一次開機時能夠起到復位作用。

(3)復位電路之三。所示是微控制器中的另一種實用復位電路。電路中, A1是微控制器集成電路,其41腳是電源引腳, 24腳是復位引腳,VZ002是穩壓二極體,VT002是PNP型三極體。

❽ 求正轉反轉停止復位電路圖

我暈,這個好像是要PLC編程吧?不過在電路中加入演示時間繼電器也是可以實現對電路的控制的。

❾ dsp三種復位方式

DSP系統的硬體復位有三種方式是:上電復位,手動復位,軟體復位。

硬體復位是復位啟動以後需要重新載入載入FPGA、DSP等,也有可能在這個操作之前初始化化CPU,載入系統文件等操作,具體視需要而定,然後初始化一些配置晶元;軟復位則不需要進行FPGA、DSP等的載入,只是一些配置晶元的初始化。

用最少的字來解釋:復位的概念:讓賽跑運動員各自回到自己的起跑線。硬復位:用拖車把運動員給拖到起跑線。軟復位:運動員自己走到起跑線。硬體復位是靠復位電路,而這種類型的復位從理論上講只是起到了軟體程序重啟的作用,之前所有保存的數據是依然存在的,當軟體重啟後有可能會清掉或者不清這些數據。

1Blackfin系列DSP的特點P5-6

微信號結構、動態電源管理、高度並行的計算單元、高性能的數據地址產生器、極佳的代碼密度、視頻指令、分層結構的內存、集成的更多的外圍設備、部分晶元配有專門的視頻介面、調試/JTAG介面、性能發展進程。

2DSP晶元特點P3-4

普遍採用哈佛結構及改進的哈佛結構、流水線技術、針對濾波相關矩陣運算配有獨立的乘法器和加法器、有多條匯流排、具有硬體介面邏輯和軟體等待功能、帶有多個DMA通道控制器、配有中斷處理器定時控制器及實時時鍾、低功耗、多機並行運行特性、豐富的外設介面。

改進哈弗結構的特點P3

將程序和數據存儲在不同的存儲空間中,程序存儲器和數據存儲器是兩個相互獨立的存儲器,每個存儲器獨立編制獨立訪問。對應的是系統中設置了程序匯流排和數據匯流排,使數據的吞吐率提高了一倍。

動態電源管理允許電壓和頻率獨立調整,使每一個單項任務所消耗的能量最少,使ADI的DSP性能提高4倍以上,功耗降低1/3.。使用外部電源管理控制器能夠操縱DSP內核的內部電壓,從而更進一步減少功耗。

2.2內核數據算術單元的基本處理過程(對數據寄存器的使用過程):數據首先經過匯流排從內存讀入數據寄存器,然後作為計算單元(ALU、MAC)的輸入,計算結果存入數據寄存器,作後寫入內存。ALU支持的特殊除法原語。

❿ 復位電路的工作原理是什麼呢

復位電路就是給晶元復位腳提供一個比電源稍微延後一段時間的電平的電路。比如最簡單的阻容復位電路,電阻電容串聯後電阻另一端接電源正,電容另一端接地,電阻電容相連著的一端接到晶元復位腳上就組成了低電平復位電路。工作過程如下,當上電時晶元電源端得電,但由於電容的特性是電壓不能突變,所以晶元的復位腳與地同電位,是低電平,此時電源通過電阻對電容充電,電容上的電壓上升,當上升到晶元的高電平值時,晶元完成復位。這個時間與電阻電容的值有關,電容電阻的值越大延時時間越長。相反的如果電容的另一端接電源,電阻的另一端接地則是高電平復位。

閱讀全文

與停止復位電路相關的資料

熱點內容
蘇泊爾電飯煲杭州維修點 瀏覽:605
衛生間翻新一般需要多少錢 瀏覽:333
英雄聯盟什麼時候才維修好 瀏覽:695
二手房廚衛翻新要多少錢 瀏覽:411
成長的鬧鍾如何翻新 瀏覽:45
金門路家電維修 瀏覽:445
展新家電維修部怎麼樣 瀏覽:250
200鍵盤維修要多少錢 瀏覽:899
地下室自粘防水卷材搭接倍數多少 瀏覽:250
耦合電路的等效電感 瀏覽:949
房屋維修金下層樓不同意怎麼辦 瀏覽:492
凱里最大的家電批發市場在哪裡 瀏覽:726
南方水泵維修視頻 瀏覽:910
酷派上海售後維修網點 瀏覽:7
武漢方太油煙機維修電話 瀏覽:975
杭州惠普維修點查詢 瀏覽:559
三星電視塘沽維修中心 瀏覽:804
博世電錘26維修視頻 瀏覽:466
長樂市美的售後維修 瀏覽:842
飛亞達維修中心廣州 瀏覽:276