Ⅰ 物理電學里所有靠手判斷方向的定則,例如左手定則
只有
左右手定則
左手定則可稱「電動機定則」。它是確定通電導體在外磁場中受力方向的定則。其方法是:伸開左手,使拇指與其餘四指垂直,並都與手掌在同一平面上。設想將左手放入磁場中,使磁感線垂直地進入手心,其餘四指指向電流方向,這時拇指所指的方向就是磁場對電流作用力的方向
。適用於電流方向與磁場方向垂直的情況。
右手定則可稱「發電機定則」。確定導體在磁場中運動時導體中感應電流方向的定則。伸開石手,使拇指與其餘四指垂直,並都和手掌在同一平面內。設想將右手放入磁場中,讓磁感線垂直地從手心進入,使拇指指向導體運動的方向,這時其餘四指所指的方向就是感應電流的方向。
右手定則只適於判斷閉合電路中部分導體做切割磁感線運動。右手定則判斷感應電流的方向與楞次定律是一致的,但比楞次定律簡單。
Ⅱ 暫態電路換路定則作用
換路定則僅用於換路瞬間來確定暫態過程中電容電壓和電感電流的初始值。
Ⅲ 關於大學電路換路定則 電容電流的無限值在什麼情況下存在
就是電流為無窮大時不適用,如下圖:
Ic(0-) = 0 ,Ic(0+) = ∞ ;Uc(0-) = 0 ,Uc(0+) = Us 。 電容電壓發生突變。
http://wenku..com/view/1a26938d8762caaedd33d4bc.html。
趨於無窮大的電流,對有限值的電容器充電,充電時間趨於零,電容電壓可以突變。
Ⅳ 電路有哪些基本定律
基爾霍夫電路定律(Kirchhoff Circuit Laws)簡稱為基爾霍夫定律,指的是兩條電路學定律,基爾霍夫電流定律與基爾霍夫電壓定律。它們涉及了電荷的守恆及電勢的保守性。1845年,古斯塔夫·基爾霍夫首先提出基爾霍夫電路定律。現在,這定律被廣泛地應用於電氣工程學。
基爾霍夫電路定律
基爾霍夫電路定律是集總電路的基本定律,它包括電流定律和電壓定律.
基爾霍夫電流定律(KCL)指出:在集總電路中,任何時刻,對任一節點,所有流出節點的支路電流的代數和恆等於零.
代數和是根據流入還是流出節點判斷的.流出為+,流入為-.對節點,I1+I2+...+In=0.
基爾霍夫電壓定律(KVL)指出:在集總電路中,任何時刻,對任一迴路,所有支路電壓的代數和恆等於零.
上式計算是要指定一個迴路繞行方向,支路電壓參考方向與迴路繞行方向一致,取+.反之,取-.
U1+U2+...+Un=0
應用
當電路中各電動勢[1]及電阻給定時,可任意標定電流方向,根據基爾霍夫方程組即可唯一地解出各支路的電流值。基爾霍夫定律是電路計算的理論基礎。根據基爾霍夫定律可導出其他一些有用的定理,它們在電路計算中非常有效和簡便。
基爾霍夫定律在穩恆條件下嚴格成立;在准穩條件下,即整個電路的尺度遠遠小於電路工作頻率下的電磁波長時,基爾霍夫定律也符合得相當好。基爾霍夫定律在交流電路中也可應用
Ⅳ 左手定則和右手定則有點搞混亂了,學霸們,幫我圖解一下吧。
左手定則可稱「電動機定則」,是判斷通電導線在磁場中的受力方向的法則,說的是磁場對電流的作用力,或者是磁場對運動電荷的作用力。
其內容是:將左手放入磁場中,使四個手指的方向與導線中的電流方向一致,那麼大拇指所指的方向就是受力方向。無論是直流發電機還是交流發電機,它們的工作原理都是相同的,區別是直流發電機有換向器,而交流發電機則沒有換向器。
右手定則可稱「發電機定則」,是判斷通電導線周圍的磁感線方向或螺線管的南北極的法則,磁場方向,切割磁感線運動,電動勢方向,就是感應電流的方向。
其內容是:用右手握住導線,大拇指指向電流的方向,那麼四指的環繞方向就是磁感線的方向。用右手握住螺線管,讓四指彎向螺線管中的電流方向,那麼大拇指所指的那端就是螺線管的北極。
左手定則與右手定則,一個判斷受力方向,一個判斷感應電流方向,而一般人是右手有勁,那麼用右手判斷感應電流的方向!伸出你強有力的右手,讓磁感線垂直穿透掌心,伸出你強有力的右手大拇指,讓右手手掌在強有力的大拇指的牽引下,向著大拇指所指的方向移動,源源不斷的電流正從你其餘的四指指尖流出。
左手是軟弱的,在電場力的作用下被動的移動,所以用來判斷通電直導線在磁場中受力方向!伸出你無力的左手,電流正流過你平伸而無力的四指,磁感線正穿透你的掌心,而你無力的右手,只能在電場力的作用下無奈的向著大拇指所指的方向移動(只是說拇指所指是電場力方向)。
這記法形象直觀,好好揣摩一下,一般右手能靈活的螺旋,而左手不能,所以右手定則又叫右手螺旋法則!用來判斷通電螺線圈或通電直導線產生磁場的方向。
Ⅵ 電路的基本定律是什麼
在換路前後電容電壓和電感電流為有限值的條件下,換路前後瞬間電容電壓和電感電流不能躍變。
由於電容通過電場儲能,所以在0+和0-這兩個時間點的U必然是相等的,也即U不能突變(能量不能突變)。同理,電感通過磁場儲能,所以在0+和0-這兩個時間點的I必然是相等的,也即I不能突變(能量不能突變)。對於電容,U(0+)=U(0-),對於電感,I(0+)=I(0-)。就是換路定理的核心。
換路定則:
在模擬電路中對動態電路進行時域分析時,一般採用三要素法求解電感中電流或電容上的電壓,此時在分析電路時設t=0為換路瞬間,以t=0-表示換路前的終了瞬間,t=0+表示換路後的初始瞬間。0+和0-在數值上都等於0,但是前者是指從負值趨於0,後者是指從正值趨於0。
從t=0-到t=0+瞬間,由電容元件和電感元件的性質可知,電容元件上電壓不能躍變,電感元件上電流不能躍變,這就是換路原則。
Ⅶ 左手定則和右手定則的區別及使用方法
左手定則和右手定則的概念與區別是什麼?「力」字朝左邊撇,所以左手判定力的;「電」字朝右邊,所以右手判定電的。具體使用方法如下:
1 左手定則的概念與應用
「左手定則」又叫電動機定則,用它來確定載流導體在磁場中的受力方向。
左手定則規定:伸平左手使姆指與四指垂直,手心向著磁場的N極,四指的方向與導體中電流的方向一致,姆指所指的方向即為導體在磁場中受力的方向。(洛倫茲力和安培力都是用左手定則來判定的)
使用左手定則的時候,我們不能死板,不能認為左手定則就是判定力的。比如帶電粒子在勻強磁場中偏轉時,我們知道B和偏轉方向,還可以反過來判斷帶電粒子帶點的正負性。
1 右手定則的概念和應用
「右手定則」又叫發電機定則,用它來確定在磁場中運動的導體感應電動勢的方向。
右手定則規定:伸平右手使姆指與四指垂直,手心向著磁場的N極,姆指的方向與導體運動的方向一致,四指所指的方向即為導體中感應電流的方向(感應電動勢的方向與感應電流的方向相同)。
在生產實踐中,左、右手定則的應用是較為廣泛的。例如,發電機的感應電動勢方向是用右手定則確定的;電動機的旋轉方向是用左手定則來確定的;我們還用這些定則來分析一些電路中的電磁感應現象。
1 右手定則概述
電磁學中,右手定則判斷的主要是與力無關的方向。如果是和力有關的則全依靠左手定則。即,關於力的用左手,其他的(一般用於判斷感應電流方向)用右手定則。(這一點常常有人記混,可以發現「力」字向左撇,就用左手;而「電」字向右撇,就用右手)記憶口訣:左通力右生電。 還可以記憶為:因電而動用左手,因動而電用右手,方法簡要:右手手指沿電流方向拳起,大拇指伸出,觀察大拇指方向。
可以用右手的手掌和手指的方向來記憶導線切割磁感線時所產生的電流的方向,即:伸開右手,使拇指與其餘四個手指垂直,並且都與手掌在同一平面內;讓磁感線從手心進入,並使拇指指向導線運動方向,這時四指所指的方向就是感應電流的方向。這就是判定導線切割磁感線時感應電流方向的右手定則。右手定則判斷線圈電流和其產生磁感線方向關系以及判斷導體切割磁感線電流方向和導體運動方向關系。
1 左手定則概述
左手定則是判斷通電導線處於磁場中時,所受安培力 F (或運動)的方向、磁感應強度B的方向 以及通電導體棒的電流I三者方向之間的關系的定律。左手定則和右手定則是在高中物理教材中電磁學部分出現的,是電磁學部分的重點之一。
左手定律是兩個相量叉乘判斷力方向的簡化形式
Ⅷ 電路 換路定則題
1.先畫「0-等效電路圖」(就是開關閉合前的電路圖 但要注意電感L要短路處理),求i L(0-)的版值
2.換路定則 就是iL(0-)=iL(0+)
3.畫「0+等效電權路」(就是開關閉合時的電路圖 但要注意 需要運用替代定理把電感換成電流值為iL(0+)的電流源)
4.差不多就可以做了 iR(0+)通過KCL求
這是我的看法 希望可以幫到你哇。。。
補充:這題求的只是換路後很短時間內的數值 所以用iL(0+)和uL(0+ )表示 並不是穩定的值
Ⅸ 常見電路定律
一、疊加原理
1.疊加原理內容
在線性電路中,當有兩個或兩個以上電源作用時,任一支路的電流或電壓,等於各個電源單獨作用時在該支路中產生的電流或電壓的代數和。
2.疊加原理的使用說明
1)疊加原理只適用於線性電路,不能用於非線性電路。
2)應用疊加原理分析計算電路時,應保持電路的結構不變。當某一電源單獨作用時,要將不作用的電源中的恆壓源短接,恆流源開路。
3)最後進行疊加時,要注意各電流或電壓分量的方向,與所有電源共同作用的支路電流或電壓方向一致的電流分量或電壓分量取正號,反之取負號。
4)在線性電路中,疊加原理只能計算電壓和電流,不能用來計算功率。
二、戴維南定理
圖 二端網路
1.戴維南定理的內容
戴維南定理指出:任何一個線性有源二端網路如上圖(a),對外電路來說,都可以用一個電壓源來代替,如下圖(a),(b)所示。該電壓源的電動勢E等於二端網路的開路電壓,如圖(c)所示。其內阻 等於將有源二端網路轉換成無源二端網路後(將有源二端網路中的恆壓源短路,恆流源開路),網路兩端的等效電阻,如圖(d)所示。
圖 戴維南定理
應用戴維南定理的解題步驟:
1)將待求支路斷開,剩餘部分是一有源二端網路,將其等效為一電壓源。
2)求出該有源二端網路的開路電壓,即為電源電動勢E。
3)求出將有源二端網路轉換成無源二端網路後(將有源二端網路中的恆壓源短路,恆流源開路)網路兩端的電阻,即為RO。
4)在由一個電壓源和待求支路構成的電路中,求出待求量。