❶ 什麼是Class A,Class B,Class AB放大器
1、純甲類功率放大器
純甲類功率放大器又稱為A類功率放大器(Class A),它是一種完全的線性放大形式的放大器。在純甲類功率放大器工作時,晶體管的正負通道不論有或沒有信號都處於常開狀態,這就意味著更多的功率消耗為熱量,但失真率極低。純甲類功率放大器在汽車音響的應用中比較少見,像義大利的Sinfoni高級系列才有這類功率放大器。這是因為純甲類功率放大器的效率非常低,通常只有20-30%,但音響發燒友們對它的聲音表現津津樂道。2、乙類功率放大器
乙類功率放大器,也稱為B類功率放大器(Class B),它也被稱為線性放大器,但是它的工作原理與純甲類功率放大器完全不同。B類功放在工作時,晶體管的正負通道通常是處於關閉的狀態除非有信號輸入,也就是說,在正相的信號過來時只有正相通道工作,而負相通道關閉,兩個通道絕不會同時工作,因此在沒有信號的部分,完全沒有功率損失。但是在正負通道開啟關閉的時候,常常會產生跨越失真,特別是在低電平的情況下,所以B類功率放大器不是真正意義上的高保真功率放大器。在實際的應用中,其實早期許多的汽車音響功放都是B類功放,因為它的效率比較高。3、甲乙類功率放大器
甲乙類功率放大器也稱為AB類功率放大器(Class AB),它是兼容A類與B類功放的優勢的一種設計。當沒有信號或信號非常小時,晶體管的正負通道都常開,這時功率有所損耗,但沒有A類功放嚴重。當信號是正相時,負相通道在信號變強前還是常開的,但信號轉強則負通道關閉。當信號是負相時,正負通道的工作剛好相反。AB類功率放大器的缺陷在於會產生一點點的交越失真,但是相對於它的效率比以及保真度而言,都優於A類和B類功放,AB類功放也是目前汽車音響中應用最為廣泛的設計。4、D類功率放大器
D類放大器與上述A,B或AB類放大器不同,其工作原理基於開關晶體管,可在極短的時間內完全導通或完全截止。兩只晶體管不會在同一時刻導通,因此產生的熱量很少。這種類型的放大器效率極高(90%左右),在理想情況下可達100%,而相比之下AB類放大器僅能達到78.5%。不過另一方面,開關工作模式也增加了輸出信號的失真。D類放大器的電路共分為三級:輸入開關級、功率放大級以及輸出濾波級。D類放大器工作在開關狀態下可以採用脈寬調制(PWM)模式。利用PWM能將音頻輸入信號轉換為高頻開關信號,通過一個比較器將音頻信號與高頻三角波進行比較,當反相端電壓高於同相端電壓時,輸出為低電平;當反相端電壓低於同相端電壓時,輸出為高電平。 在D類放大器中,比較器的輸出與功率放大電路相連,功放電路採用金屬氧化物場效應管(MOSFET)替代雙極型晶體管(BJT),這是由於前者具有更快的響應時間,因而適用於高頻工作模式。D類放大器需要兩只MOSFET,它們在非常短的時間內可完全工作在導通或截止狀態下。當一隻MOSFET完全導通時,其管壓降很低;而當MOSFET完全截止時,通過管子的電流為零。兩只MOSFET交替工作在導通和截止狀態的開關速度非常快,因而效率極高,產生的熱量很低,所以D類放大器不需要很大的散熱器。 D類功放還有其它許多的稱法,如T類等,它們都是D類功放的一種變形。在實際應用中,直到1980以後,由於MOSFET的出現,這種開關式功放才得以迅速發展。在實際的發展過程中,雖然有高效率,但同時也有高失真,高雜訊以及較差的阻尼因素。隨著技術的發展,這類缺陷將越來越少,估計未來D類功放在汽車音響領域中會得到更加廣泛的應用。
❷ 什麼叫D類功放 有啥區別
一、定義:
功率放大器簡稱功放,其作用主要是將音源器材輸入的較微弱信號進行放大後,產生足夠大的電流去推動揚聲器進行聲音的重放。由於考慮功率、阻抗、失真、動態以及不同的使用范圍和控制調節功能,不同的功放在內部的信號處理、線路設計和生產工藝上也各不相同。
二、分類:
(一)按功放中功放管的導電方式不同,可以分為四類:
1.甲類功放(又稱A類)
甲類功放是指在信號的整個周期內(正弦波的正負兩個半周),放大器的任何功率輸出元件都不會出現電流截止(即停止輸出)的一類放大器。
特點:甲類放大器工作時會產生高熱,效率很低,但固有的優點是不存在交越失真。單端放大器都是甲類工作方式,推挽放大器可以是甲類,也可以是乙類或甲乙類。
2.乙類功放(又稱B類)
乙類功放是指正弦信號的正負兩個半周分別由推挽輸出級的兩「臂」輪流放大輸出的一類放大器,每一「臂」的導電時間為信號的半個周期。
特點:乙類放大器的優點是效率高,缺點是會產生交越失真。
3.甲乙類功放(又稱AB類)
甲乙類功放界於甲類和乙類之間,推挽放大的每一個「臂」導通時間大於信號的半個周期而小於一個周期。
特點:甲乙類放大有效解決了乙類放大器的交越失真問題,效率又比甲類放大器高,因此獲得了極為廣泛的應用。
4.丁類功放(又稱D類)
丁類功放也稱數字式放大器,利用極高頻率的轉換開關電路來放大音頻信號
特點:具有效率高,體積小的優點。許多功率高達1000W的丁類放大器,體積只不過像VHS錄像帶那麼大。這類放大器不適宜於用作寬頻帶的放大器,但在有源超低音音箱中有較多的應用。
(二)按功放輸出級放大元件的數量,可以分為兩類:
1.單端放大器
輸出級由一隻放大元件(或多隻元件但並聯成一組)完成對信號正負兩個半周的放大。單端放大機器只能採取甲類工作狀態。
2.推挽放大器
輸出級有兩個「臂」(兩組放大元件),一個「臂」的電流增加時,另一個「臂」的電流則減小,二者的狀態輪流轉換。對負載而言,好像是一個「臂」在推,一個「臂」在拉,共同完成電流輸出任務。盡管甲類放大器可以採用推挽式放大,但更常見的是用推挽放大構成乙類或甲乙類放大器。
(三)按功放中功放管的類型不同,可以分為三類:
1.膽機
是使用電子管的功放。
2.石機
是使用晶體管的功放。
3.IC功放
[集成電路功放]
由於音色比不上上兩種功放所以在HI-FI功放中很少看到他的影子。
❸ 簡單實用的d類功放製作原理及要點
在a、b類功放的音頻陣地中,d類功放漸漸的流行起來,它以其高效率和體積小的特點被音頻設計者所喜愛。d類功放在音頻設計電路中的頻頻出現,讓很對音樂愛好者對其燃起了興趣,想要自己設計製作一個d類功放。作為一個音樂發燒友,我對於d類功放的痴迷也是由來已久,試著製作過一個,效果還不錯,現將經驗和心得與各位發燒友一起分享探討。
d類功放的基本原理很簡單:就是把一個脈沖寬度調制的矩形波被放大並且過濾後進行音頻輸出。而這個矩形波是由很高頻率三角波與要放大的音頻信號用比較器相比較之後產生的。d類功放它包括三個基本的部分,調制器、開關放大器和低通濾波器。
d類功放與ab類不同之處在於,d類功放更注重飽和壓降、開關響應兩大因素。這是因為要想使功放管的散熱結構得到簡化,就要保證飽和管壓降小。近年來這種高頻大功率管市場價格已經非常平民,給想要嘗試製作的朋友們帶來了福音。
要製作一個d類功放首先要有一個完整且經過試驗的電路圖,這個如果對自己的設計能力不是很有信心的話,就去網上各大論壇去淘一個,有些電路圖的設計堪稱完美。有達人已經試驗過了,可以直接拿來使用。至於晶元,現在有很多已經設計好的一些集成的晶元可以買到。
接下來要解決調制器的問題了。這個簡單,可以直接到市場去購買運放構成比較器來當調節器。
需要注意的是開關放大器的購買。這個放大器一定要准備一個大電流的。不然的話可能會造成短路或根本帶不起來。
最後是低通濾波器。d類功放對低通濾波器的元件要求極高,這就需要在低通濾波器投入較大的成本比例。因為較便宜的就會導致音質失真,這在音樂發燒友那裡是行不通的,所以你可以根據需用二階低通濾波器或者用四階濾波器來保證音樂的原汁原味。
當你准備好了所需的基本器件,按照電路圖就可以開始製作自己的d類功放了。其實動手能力強的話,做一個簡單實用的d類功放還是比較容易的。我當時製作的時候用了大概一天的時間就完成了整個工序,而且還在外在造型上花了功夫。只注重實際效果的朋友們估計能夠更快的製作成功。這么簡單實用的d類功放看到還不心動,快動動手讓自己擁有一個吧。
❹ 什麼是d類功放
D類功放指的是D類音頻功率放大器(有時也稱為數字功放)。
通過控制開關單元的ON/OFF,驅動揚聲器的放大器稱D類放大器。D類放大器首次提出於1958年,近些年已逐漸流行起來。已經問世多年,與一般的線性AB類功放電路相比,D類功放有效率高、體積小等特點。
D類功放,是一個脈沖控制的大電流開關放大器,把比較器輸出的PWM信號變成高電壓、大電流的大功率PWM信號。能夠輸出的最大功率由負載、電源電壓和晶體管允許流過的電流來決定。
關於d類功放的優勢:
傳統的音頻功率放大器有a類、ab類、b類、c類等幾種,其功率放大器件(電子管、晶體管、場效應管、集成電路等)均工作於線性放大區域,屬線性放大器,其效率普遍不高,通常ab類放大器的效率不會超過60%。
採用d類開關放大電路可明顯提高功放的效率。d類功放將音頻信號轉變為寬度隨信號幅度變化的高頻脈沖,控制功率管以相應的頻率飽和導通或截止,功率管輸出的信號經低通濾波器驅動揚聲器發聲。
❺ D類放大器的優點
在傳統晶體管放大器中,輸出級包含提供瞬時連續輸出電流的晶體管。實現音頻系統放大器許多可能的類型包括a類放大器,ab類放大器和b類放大器。與d 類放大器設計相比較,即使是最有效的線性輸出級,它們的輸出級功耗也很大。這種差別使得d類放大器在許多應用中具有顯著的優勢,因為低功耗產生熱量較少,節省印製電路板(pcb)面積和成本,並且能夠延長攜帶型系統的電池壽命。
❻ A類 B類 AB類 D類功放的區別,有什麼不一樣
純甲類功率放大器又稱為A類功率放大器(Class A),它是一種完全的線性放大形式的放大器。在純甲類功率放大器工作時,晶體管的正負通道不論有或沒有信號都處於常開狀態,這就意味著更多的功率消耗為熱量,但失真率極低。
純甲類功率放大器在汽車音響的應用中比較少見,像義大利的Sinfoni高級系列才有這類功率放大器。這是因為純甲類功率放大器的效率非常低,通常只有20-30%,但音響發燒友們對它的聲音表現津津樂道。
乙類功率放大器,也稱為B類功率放大器(Class B),它也被稱為線性放大器,但是它的工作原理與純甲類功率放大器完全不同。B類功放在工作時,晶體管的正負通道通常是處於關閉的狀態除非有信號輸入,也就是說,在正相的信號過來時只有正相通道工作,而負相通道關閉,
兩個通道絕不會同時工作,因此在沒有信號的部分,完全沒有功率損失。但是在正負通道開啟關閉的時候,常常會產生跨越失真,特別是在低電平的情況下,所以B類功率放大器不是真正意義上的高保真功率放大器。在實際的應用中,其實早期許多的汽車音響功放都是B類功放,因為它的效率比較高。
甲乙類功率放大器也稱為AB類功率放大器(Class AB),它是兼容A類與B類功放的優勢的一種設計。當沒有信號或信號非常小時,晶體管的正負通道都常開,這時功率有所損耗,但沒有A類功放嚴重。當信號是正相時,負相通道在信號變強前還是常開的,但信號轉強則負通道關閉。
當信號是負相時,正負通道的工作剛好相反。AB類功率放大器的缺陷在於會產生一點點的交越失真,但是相對於它的效率比以及保真度而言,都優於A類和B類功放,AB類功放也是目前汽車音響中應用最為廣泛的設計。
D類放大器與上述A,B或AB類放大器不同,其工作原理基於開關晶體管,可在極短的時間內完全導通或完全截止。兩只晶體管不會在同一時刻導通,因此產生的熱量很少。這種類型的放大器效率極高(90%左右),在理想情況下可達100%,而相比之下AB類放大器僅能達到78.5%。不過另一方面,開關工作模式也增加了輸出信號的失真。
D類放大器的電路共分為三級:輸入開關級、功率放大級以及輸出濾波級。D類放大器工作在開關狀態下可以採用脈寬調制(PWM)模式。利用PWM能將音頻輸入信號轉換為高頻開關信號,通過一個比較器將音頻信號與高頻三角波進行比較,當反相端電壓高於同相端電壓時,輸出為低電平;
當反相端電壓低於同相端電壓時,輸出為高電平。 在D類放大器中,比較器的輸出與功率放大電路相連,功放電路採用金屬氧化物場效應管(MOSFET)替代雙極型晶體管(BJT),這是由於前者具有更快的響應時間,因而適用於高頻工作模式。
D類放大器需要兩只MOSFET,它們在非常短的時間內可完全工作在導通或截止狀態下。當一隻MOSFET完全導通時,其管壓降很低;而當MOSFET完全截止時,通過管子的電流為零。
兩只MOSFET交替工作在導通和截止狀態的開關速度非常快,因而效率極高,產生的熱量很低,所以D類放大器不需要很大的散熱器。
D類功放還有其它許多的稱法,如T類等,它們都是D類功放的一種變形。在實際應用中,直到1980以後,由於MOSFET的出現,這種開關式功放才得以迅速發展。
在實際的發展過程中,雖然有高效率,但同時也有高失真,高雜訊以及較差的阻尼因素。隨著技術的發展,這類缺陷將越來越少,估計未來D類功放在汽車音響領域中會得到更加廣泛的應用。
功率放大器簡稱功放,俗稱"擴音機",是音響系統中最基本的設備,它的任務是把來自信號源(專業音響系統中則是來自調音台)的微弱電信號進行放大以驅動揚聲器發出聲音。
功放的作用就是把來自音源或前級放大器的弱信號放大,推動音箱放聲。一套良好的音響系統功放的作用功不可沒。按功能不同,可以前置放大器(又稱前級)、功率放大器(又稱後級)與合並式放大器。
選購要點:
一是看介面是否齊全。
一部AV功放應當具備的最基本輸入輸出介面,應當包括以下這些:同軸、光纖、RCA多聲道輸入介面,用於輸入數碼或模擬音頻信號;喇叭輸出介面,用於向音響輸出信號。
二是看環繞聲格式是否齊備。
流行的環繞聲格式主要有DD和DTS,以上兩種均為5.1聲道。現在這兩種格式已發展到DD EX和DTS ES,均為6.1聲道。
三是看所有聲道功率是否單獨可調。
有的廉價功放是將雙聲道分成五個聲道,聲道要大就一塊大,要小就一塊小,而真正合格的AV功放每個聲道都可以單獨調節。
四是看功放的重量。
一般來說,應盡量選擇較重的機種,理由是較重的器材首先電源供應部分較強,功放大部分的重量都來自於電源與機箱,器材較重,就表示他使用的變壓器數值較大,或使用了容量較大的電容,這些對於放大器而言是提升品質的做法。其次是機箱較重,機箱的材料與重量對聲音有著一定程度的影響,某些材質做成的機箱,對於機箱內電路和外界散步的無線電波隔絕有著一定的幫助。機箱的重量較高或結構較穩定,還可以避免器材受到無謂的振動而影響聲音。三是較重的功放,用料通常較為豐富扎實。
功率是音響系統中最重要的參數,表示音響系統帶負載的能力。這也是我們在購買時首先應注意的地方。但如果各個廠家都用各自不同的測定基準來標識產品性能,缺少足夠的認識往往很難作出客觀比較。功放亦是如此,在查看功放功率的標識時應注意以下三點:
其一,電池電壓。
汽車電池的電壓是經常變化的,對於兩種常用標識:14.4V/100W、12V/100W的功放是完全不同的兩種功率說明。由於汽車在行駛過程中的電壓基本上在12V左右,因此在12V電壓狀態下所測得的功率值更為接近真實情況。而且以持續電壓12V為基準標識功率的功放在達到12V以上時可以達到獲得更大的功率。
其二,諧波失真率THD。
在比較功放的持續輸出功率時,需在相同(或是較為接近)THD值下進行。不同的THD值下測試出的音質差別是十分明顯的,有的時候其標識的最大功率很高,但很有可能它的失真和噪音也同樣很高。因此在檢查最大功率的同時也應留意其所標識的THD值。
其三,頻率范圍。
功放的持續功率輸出應在其實際使用的頻率范圍內進行檢測。對於功放的功率,應要求標識完整的檢測范圍,僅標識某個頻率時功率值沒有任何意義。在確定了同一基準後,我們就可以來比較功放功率了。通常,在選購音響系統時一般來說遵循大功率輸出原則。功放的輸出功率越大,表明它們驅動揚聲器的能力也越強。功放的功率應大於喇叭的指示功率,如果選用的功率偏小,在長期使用大功率輸出時,容易燒壞,還會導致音質差、失真等故障的出現。
❼ D類功放原理詳細介紹
D類功放是放大元件處於開關工作狀態的一種放大模式。無信號輸入時放大器處於截止狀態,不耗電。工作時,靠輸入信號讓晶體管進入飽和狀態,晶體管相當於一個接通的開關,把電源與負載直接接通。理想晶體管因為沒有飽和壓降而不耗電,實際上晶體管總會有很小的飽和壓降而消耗部分電能。這種耗電只與管子的特性有關,而與信號輸出的大小無關,所以特別有利於超大功率的場合。在理想情況下,D類功放的效率為100%,B類功放的效率為78.5%,A類功放的效率才50%或25%(按負載方式而定)。
D類功放實際上只具有開關功能,早期僅用於繼電器和電機等執行元件的開關控制電路中。然而,開關功能(也就是產生數字信號的功能)隨著數字音頻技術研究的不斷深入,用與Hi-Fi音頻放大的道路卻日益暢通。20世紀60年代,設計人員開始研究D類功放用於音頻的放大技術,70年代Bose公司就開始生產D類汽車功放。一方面汽車用蓄電池供電需要更高的效率,另一方面空間小無法放入有大散熱板結構的功放,兩者都希望有D類這樣高效的放大器來放大音頻信號。其中關鍵的一步就是對音頻信號的調制。
圖1是D類功放的基本結構,可分為三個部分:
圖1D類功放基本結構
第一部分為調制器,最簡單的只需用一隻運放構成比較器即可完成。把原始音頻信號加上一定直流偏置後放在運放的正輸入端,另通過自激振盪生成一個三角形波加到運放的負輸入端。當正端上的電位高於負端三角波電位時,比較器輸出為高電平,反之則輸出低電平。若音頻輸入信號為零、直流偏置三角波峰值的1/2,則比較器輸出的高低電平持續的時間一樣,輸出就是一個占空比為1:1的方波。當有音頻信號輸入時,正半周期間,比較器輸出高電平的時間比低電平長,方波的占空比大於1:1;負半周期間,由於還有直流偏置,所以比較器正輸入端的電平還是大於零,但音頻信號幅度高於三角波幅度的時間卻大為減少,方波占空比小於1:1。這樣,比較器輸出的波形就是一個脈沖寬度被音頻信號幅度調制後的波形,稱為PWM(Pulse Width Molation脈寬調制)或PDM(Pulse Duration Molation脈沖持續時間調制)波形。音頻信息被調制到脈沖波形中。{{分頁}}
第二部分就是D類功放,這是一個脈沖控制的大電流開關放大器,把比較器輸出的PWM信號變成高電壓、大電流的大功率PWM信號。能夠輸出的最大功率有負載、電源電壓和晶體管允許流過的電流來決定。
第三部分需把大功率PWM波形中的聲音信息還原出來。方法很簡單,只需要用一個低通濾波器。但由於此時電流很大,RC結構的低通濾波器電阻會耗能,不能採用,必須使用LC低通濾波器。當占空比大於1:1的脈沖到來時,C的充電時間大於放電時間,輸出電平上升;窄脈沖到來時,放電時間長,輸出電平下降,正好與原音頻信號的幅度變化相一致,所以原音頻信號被恢復出來,
以上信息來自網路文庫,希望可以解決你的疑問。
❽ 如何了解A、B、C、D類功放
A、B、C、D類功放是按功放中功放管的導電方式不同劃分的。
功放,即功率放大器,俗稱「擴音機」,是音響系統中最基本的設備,它的任務是把來自信號源的微弱電信號進行放大以驅動揚聲器發出聲音。
❾ D類放大器的工作原理是什麼
所有的d類放大器調制技術都將音頻信號的相關信息編碼到一串脈沖內。通常,脈沖寬度與音頻信號的幅度相聯系,脈沖頻譜包括有用的音頻信號脈沖和無用的(但無法避免)的高頻成分。在所有方案中,總的綜合高頻功率大致相同,因為在時域內波形的總功率是相同的,並且根據parseval定理,時域功率必須等於頻域功率。但是,能量分布變化很大:在有些方案中,低雜訊本底之上有高能量音調,而在其它方案中,能量經過整形消除了高能量音調,但雜訊本底較高。
最常用的調制技術是脈寬調制(pwm)。從原理上講,pwm是將輸入音頻信號與以固定載波頻率工作的三角波或斜波進行比較。這在載波頻率條件下產生一串脈沖。在每個載波周期內,pwm脈沖的占空比正比於音頻信號的幅度。在圖7的例子中,音頻輸入和三角波都以0 v為中心,所以對於零輸入,輸出脈沖的占空比為50%。對於大的正輸入,占空比接近100%,對於大的負輸入,占空比接近0%。如果音頻幅度超過三角波的幅度,就會發生全調制,這時脈沖串停止開關,占空比在具體周期內為0%或100%。
pwm之所以具有吸引力是因為它在幾百千赫pwm載波頻率條件下(足夠低以限制輸出級開關損失)允許100 db或更好的音頻帶snr。許多pwm調制器在達到幾乎100%調制情況下也是穩定的,從原理上允許高輸出功率,達到過載點。但是,pwm存在幾個問題:首先,pwm過程在許多實現中會增加固有的失真(參看深入閱讀資料4);其次,pwm載波頻率的諧振在調幅(am)無線電波段內會產生emi;最後,pwm脈寬在全調制附近非常小。這在大多數開關輸出級柵極驅動電路中會引起問題,因為它們的驅動能力受到限制,不能以重新產生幾納秒(ns)短脈寬所需要的極快速度適當開關。因此,在基於pwm的放大器中經常達不到全調制,可達到的最大輸出功率要小於理論上的最大值,即只考慮電源電壓、晶體管導通電阻和揚聲器阻抗的情況。
一種替代pwm的方案是脈沖密度調制(pdm),它在給定時間窗口(脈沖寬度)的脈沖數正比於輸入音頻信號的平均值。其單個的脈寬不像pwm那樣是任意的,而是調制器時鍾周期的「量化」倍數。1 bit Σ-Δ調制是pdm的一種形式。
Σ-Δ調制中的大量高頻能量分布在很寬的頻率范圍內,而不是像pwm那樣集中在載波頻率的倍頻處,因而Σ-Δ調制潛在的emi優勢要好於pwm。在pdm采樣時鍾頻率的鏡像頻率處,能量依然存在;但在3 mhz~6 mhz典型時鍾頻率范圍,鏡像頻率落在在音頻頻帶之外,並且被lc低通濾波器強烈衰減。
Σ-Δ調制的另一個優點是最小脈寬是一個采樣時鍾周期,即使是對於接近全調制的信號條件。這樣簡化了柵極驅動器設計並且允許按照理論上的全功率安全工作。盡管如此,1 bitΣ-Δ調制在d類放大器中不經常使用(參看深入閱讀資料4),因為傳統的1 bit調制器只能穩定到50%調制。還需要至少64倍過采樣以達到足夠的音頻帶snr,因此典型的輸出數據速率至少為1 mhz並且功率效率受到限制。
最近已經開發出自振盪放大器,例如在深入閱讀資料5中介紹的一種。這種放大器總是包括一個反饋環路,以環路特性決定調制器的開關頻率,代替外部提供的時鍾。高頻能量經常要比pwm 分布平坦。由於反饋的作用可以獲得優良的音質,但該環路是自振盪的,因此很難與任何其它開關電路同步,也很難連接到無須先將數字信號轉換為模擬信號的數字音頻源。
全橋電路(見圖3)可使用「三態」調制以減少差分emi。在傳統的差分工作方式中,半橋a的輸出極性必須與半橋b的輸出極性相反。只存在兩種差分工作狀態:輸出a高,輸出b低;輸出a低,輸出b高。但是,還存在另外兩個共模狀態,即兩個半橋輸出的極性相同(都為高或都為低)。這兩個共模狀態之一可與差分狀態配合產生三態調制,lc濾波器的差分輸入可為正、零或負。零狀態可用於表示低功率水平,代替兩態方案中在正狀態和負狀態之間的開關。在零狀態期間,lc濾波器的差分動作非常小,雖然實際上增加了共模emi,但減少了差分emi。差分優勢只適用於低功率水平,因為正狀態和負狀態仍必須用於對揚聲器提供大功率。三態調制方案中變化的共模電壓電平對於閉環放大器是一個設計挑戰。