『壹』 變頻器在電路中的一般接法怎樣接謝謝。
RST輸入接三相電源;UVW是輸出接三相電動機;K1、、CM為控制迴路接線端子;根據端子的組合可以控制電動機的啟動停止。
一、主電路的接線:
1、電源應接到變頻器輸入端R、S、T接線端子上,一定不能接到變頻器輸出端(U、V、W)上,否則將損壞變頻器。接線後,零碎線頭必須清除干凈,零碎線頭可能造成異常,失靈和故障,必須始終保持變頻器清潔。等進入變頻器中。
2、在端子+,PR間,不要連接除建議的制動電阻器選件以外的東西,或絕對不要短路。
3、電磁波干擾,變頻器輸入/輸出(主迴路)包含有諧波成分,可能幹擾變頻器附近的通訊設備。因此,安裝選件無線電噪音濾波器FR-BIF或FRBSF01或FR-BLF線路噪音濾波器,使干擾降到最小。
4、長距離布線時,由於受到布線的寄生電容充電電流的影響,會使快速響應電流限制功能降低,接於二次側的儀器誤動作而產生故障。因此,最大布線長度要小於規定值。不得已布線長度超過時,要把Pr.156設為1。
5、在變頻器輸出側不要安裝電力電容器,浪涌抑制器和無線電噪音濾波器。否則將導致變頻器故障或電容和浪涌抑制器的損壞。
6、為使電壓降在2%以內,應使用適當型號的導線接線。變頻器和電動機間的接線距離較長時,特別是低頻率輸出情況下,會由於主電路電纜的電壓下降而導致電機的轉矩下降。
7、運行後,改變接線的操作,必須在電源切斷10min以上,用萬用表檢查電壓後進行。斷電後一段時間內,電容上仍然有危險的高壓電。
二、控制電路的接線:
1、控制電路端子的接線應使用屏蔽線或雙絞線,而且必須與主迴路,強電迴路(含200V繼電器程序迴路)分開布線。
2、由於控制電路的頻率輸入信號是微小電流,所以在接點輸入的場合,為了防止接觸不良,微小信號接點應使用兩個並聯的節點或使用雙生接點。
3、控制迴路的接線一般選用0.3~0.75平方米的電纜。
三、地線的接線:
1、由於在變頻器內有漏電流,為了防止觸電,變頻器和電機必須接地。
2、變頻器接地用專用接地端子。接地線的連接,要使用鍍錫處理的壓接端子。擰緊螺絲時,注意不要將螺絲扣弄壞。
3、接地電纜盡量用粗的線徑,必須等於或大於規定標准,接地點盡量靠近變頻器,接地線越短越好。
(1)上變頻電路擴展閱讀:
一、變頻器的功能作用:
1、變頻節能:
當使用變頻調速時,如果流量要求減小,通過降低泵或風機的轉速即可滿足要求。電動機使用變頻器的作用就是為了調速,並降低啟動電流。
2、功率因數補償節能:
無功功率不但增加線損和設備的發熱,更主要的是功率因數的降低導致電網有功功率的降低,大量的無功電能消耗在線路當中,設備使用效率低下,浪費嚴重,使用變頻調速裝置後,由於變頻器內部濾波電容的作用,從而減少了無功損耗,增加了電網的有功功率。
3、軟啟動節能:
使用變頻節能裝置後,利用變頻器的軟啟動功能將使啟動電流從零開始,最大值也不超過額定電流,減輕了對電網的沖擊和對供電容量的要求,延長了設備和閥門的使用壽命。節省了設備的維護費用。
二、重要定律:
1、歐姆定律:在同一電路中,導體中的電流跟導體兩端的電壓成正比,跟導體的電阻阻值成反比,基本公式是I=U/R(電流=電壓/電阻)
2、諾頓定理:任何由電壓源與電阻構成的兩端網路, 總可以等效為一個理想電流源與一個電阻的並聯網路。
3、戴維寧定理:任何由電壓源與電阻構成的兩端網路, 總可以等效為一個理想電壓源與一個電阻的串聯網路。
分析包含非線性器件的電路,則需要一些更復雜的定律。實際電路設計中,電路分析更多的通過計算機分析模擬來完成。
它是線性元件的一個重要定理。在線性電阻中,某處電壓或電流都是電路中各個獨立電源單獨作用時,在該處分別產生的電壓或電流的疊加。
對於一個具有n個結點和b條支路的電路,假設各條支路電流和支路電壓取關聯參考方向,並令(i1,i2,···,ib)、(u1,u2,···,ub)分別為b條支路的電流和電壓,則對於任何時間t,有i1*u1+i2*u2+···+ib*ub=0。
在對偶電路中,某些元素之間的關系(或方程)可以通過對偶元素的互換而相互轉換。對偶的內容包括:電路的拓撲結構、電路變數、電路元件、一些電路的公式(或方程)甚至定理。
所有的電路在工作時,每一個元件或線路都會有能量的工作運用,即電能運用,而所有電路里的電能工作運用即稱為電路功率。
電路或電路元件的功率定義為:功率=電壓*電流(P=I*V)。
自然界里能量不會消滅,固有一定律:能量守恆定律。
電路總功率=電路功率+各電路元件功率。例如:電源(I*V)=電路(I*V)+ 各元件(I*V)。
『貳』 上下變頻器的原理是什麼
變頻器是利用電力半導體器件的通斷作用將工頻電源變換為另一頻率的電能控制裝置。
『叄』 變頻電路的主要作用是什麼它有哪幾部電路組成
通過改變交流電頻率的方式實現交流電控制的技術就叫變頻技術 另一種方法是改革變流器的工作機理,做到既抑制諧波,又提高功率因數,這種變流器稱單位功率因數變流器.大容量變流器減少諧波的主要方法是採用多重化技術:將多個方波疊加以消除次數較低的諧波,從而得到接近正弦的階梯波.重數越多,波形越接近正弦,但電路結構越復雜.幾千瓦到幾百千瓦的高功率因數變流器主要採用PWM整流技術.它直接對整流橋上各電力電子器件進行正弦PWM控制,使得輸入電流接近正弦波,其相位與電源相電壓相位相同.這樣,輸入電流中就只含與開關頻率有關的高次諧波,這些諧波次數高,容易濾除,同時也使功率因數接近1.採用PWM整流器作為AC/DC變換的 PWM逆變器,就是所謂的雙PWM變頻器.它具有輸入電壓、電流頻率固定,波形均為正弦,功率因數接近1,輸出電壓、電流頻率可變,電流波形也為正弦的特點.這種變頻器可實現四象限運行,從而達到能量的雙向傳送.小容量變流器為了實現低諧波和高功率因數,一般採用二極體整流加PWM斬波,常稱之為功率因數校正(PEC).典型的電路有升壓型、降壓型、升降壓型等.(2)電磁干擾抑制解決EMI的措施是克服開關器件導通和關斷時出現過大的電流上升率di/dt和電壓上升率/dt,目前比較引入注目的是零電流開關(ZCS)和零電壓開關(ZVS)電路.方法是:①開關器件上串聯電感,這樣可抑制開關器件導通時的di/dt,使器件上不存在電壓、電流重疊區,減少了開關損耗; ②開關器件上並聯電容,當器件關斷後抑制/dt上升,器件上不存在電壓、電流重疊區,減少了開關損耗; ③器件上反並聯二極體,在二極體導通期間,開關器件呈零電壓、零電流狀態,此時驅動器件導通或關斷能實現ZVS、ZCS動作.目前較常用的軟開關技術有:①部分諧振PWM.為了使效率盡量與硬開關時接近,必須防止器件電流有效值的增加.因此,在一個開關周期內,僅在器件開通和關斷時使電路諧振,稱之為部分諧振.②無損耗緩沖電路.串聯電感或並聯電容上的電能釋放時不經過電阻或開關器件,稱無損耗緩沖電路,常不用反並聯二極體.在電機控制中主開關器件多採用 IGBT,IGBT關斷時有尾部電流,對關斷損耗很有影響.因此,關斷時採用零電流時間長的ZCS更合適.2、功率因數補償早期的方法是採用同步調相機,它是專門用來產生無功功率的同步電機,利用過勵磁和欠勵磁分別發出不同大小的容性或感性無功功率.然而,由於它是旋轉電機,雜訊和損耗都較大,運行維護也復雜,響應速度慢,因此,在很多情況下已無法適應快速無功功率補償的要求.另一種方法是採用飽和電抗器的靜止無功補償裝置.它具有靜止型和響應速度快的優點,但由於其鐵心需磁化到飽和狀態,損耗和雜訊都很大,而且存在非線性電路的一些特殊問題,又不能分相調節以補償負載的不平衡,所以未能占據靜止無功補償裝置的主流.收音機變頻原理:所謂「變頻」,就是通過一種叫「變頻器」的電路,將接收到的電台信號變換成一個頻率比較低但節目內容一樣的「中頻」,然後對「中頻」進行放大和「檢波」(取出電台高頻信號中攜帶的音頻信號[「表示聲音的電信號」],供收聽).因為中頻比電台信號頻率低(現在有些機器的中頻比電台信號頻率高,另當別論),放大容易,不容易引起自激,靈敏度高,且可以針對固定的中頻做很多的「調諧迴路」,選擇性好.帶有自動增益(放大倍數)控制電路(即所謂的AGC),使強、弱電台的音量差距變小.
『肆』 誰知道關於變頻器電路圖和原理的書要有西門子的
這個我很早就上傳了,你沒有搜索么:
http://wenku..com/view/1318094e767f5acfa1c7cd0b.html
========
補充:國外的企業保密意識很強,不會隨意把細化到電路圖的資料發布出來的,如果真的有,而且還是中文版的,那基本上就是老掉牙的產品資料,故意拿來忽悠中國人的
『伍』 三相交-交變頻電路有哪兩種接線方式它們有什麼區別
第一種:公共交流母線方法。它由三組彼此獨立的,輸出電壓相位相互錯開120 的單相交-交變頻電路組成,他們的電源進線通過進線電抗器接在公共的交流母線上。因為電源進線端公用,所以三相單相變頻電路的輸出端必須隔離。為此,交流電動機的三個繞組必須拆開,同時引出六根線。
第二種:輸出星形連接方式。由三組彼此獨立的,輸出電位相互錯開120°的單相交—交變頻電路組成,共電源進線通過線電抗器接在公共的交流母線上。三相交-交變頻電路的輸出端星形聯結,電動機的三個繞組也是星形聯結,電動機中點和變頻器中點接在一起,電動機只引三根線即可。因為三組單相變頻器連接在一起,其電源進線就必須隔離,所以三組單相變頻器分別用三個變壓器供電。
『陸』 把直流變交流的電路是否可稱為變頻電路
不是,只能稱做是逆變,你可以找相關資料看一下。
『柒』 上變頻器和下變頻器有什麼區別
你指的是用在衛星通訊上的變頻器嗎?如果是的話,最大的區別是一個將高頻信號轉為低頻信號,另一個將低頻信號轉為高頻信號,你可以看下真尚有的,作為參考
『捌』 交交變頻電路的主要特點和不足之處是什麼其主要用途是什麼
變頻器按照主電路工作方式可以分為電壓型變頻器和電流型變頻器,特點:1.電壓型變頻器線路結構較復雜對晶閘管要求一般耐壓較低,關斷時間要求短,過電流及短路保護困難,輸出動態阻抗小,再生制動需要付加電源側反並聯逆變器。2.電流型變頻器線路結構較簡單,對晶閘管要求耐壓高對關斷時間武嚴格要求,過電流及短路保護容易,輸出動態阻抗大,再生制動方便不需附加設備。應用:淺析變頻器的應用摘要:變頻器有著很好的發展及應用前景。本文概述變頻器在我國的發展和應用及以後我們在此技術方面應做的工作。 近年來,隨著電力電子技術、計算機技術、自動控制技術的迅速發展,交流傳動與控制技術成為目前發展最為迅速的技術之一,電氣傳動技術面臨著一場歷史革命,即交流調速取代直流調速和計算機數字控制技術取代模擬控制技術已成為發展趨勢。電機交流變頻調速技術是當今節電、改善工藝流程以提高產品質量和改善環境、推動技術進步的一種主要手段。變頻調速以其優異的調速和起制動性能,高效率、高功率因數和節電效果,廣泛的適用范圍及其它許多優點而被國內外公認為最有發展前途的調速方式。深入了解交流傳動與控制技術的走向,具有十分積極的意義. 一、變頻器調速運行的節能原理 實現變頻調速的裝置稱為變頻器。變頻器一般由整流器、濾波器、驅動電路、保護電路以及控制器(MCU/DSP)等部分組成。首先將單相或三相交流電源通過整流器並經電容濾波後,形成幅值基本固定的直流電壓加在逆變器上,利用逆變器功率元件的通斷控制,使逆變器輸出端獲得一定形狀的矩形脈沖波形。在這里,通過改變矩形脈沖的寬度控制其電壓幅值;通過改變調制周期控制其輸出頻率,從而在逆變器上同時進行輸出電壓和頻率的控制,而滿足變頻調速對U/f協調控制的要求。PWM的優點是能消除或抑制低次諧波,使負載電機在近正弦波的交變電壓下運行,轉矩脈沖小,調速范圍寬。 採用PWM控制方式的電機轉速受到上限轉速的限制。如對壓縮機來講,一般不超過7000r/rain。而採用PAM控制方式的壓縮機轉速可提高1.5倍左右,這樣大大提高了快速增速和減速能力。同時,由於PAM在調整電壓時具有對電流波形的整形作用,因而可以獲得比PWM更高的效率。此外,在抗干擾方面也有著PWM無法比擬的優越性,可抑制高次諧波的生成,減小對電網的污染。採用該控制方式的變頻調速技術後,電機定子電流下降64% ,電源頻率降低30% ,出膠壓力降低57% 。由電機理論可知,非同步電機的轉速可表示為: n=60·f 8(1—8)/p f s為電機定子頻率(也即是電網頻率),P電機定子的繞組極對數,s為轉差率。由上式可知,只要轉差率不太大,可以近似認為轉速n與f s成正比,這就意味著連續平滑的改變電源頻率,就可以實現交流電動機大范圍的連續平滑調速。例如一個額定轉速3000轉/分的電動機,由變頻器供電,若啟動頻率設定為5HZ,那麼變頻器可以運行在5—50HZ之間的任一頻率上,則電動機可以運行在30o——3000轉/分之間的任一轉速上·電動機由市電啟動,啟動平衡,力矩大又節能。 50HZ380V的市電經過整流濾波環節後成為直流電,再經過逆變環節變成了頻率和幅度都可調的交流電。在變頻器主迴路中電能經過了交流— —直流— —交流的變換,所以這類變頻器稱作交— —直—— 交類變頻器。 二、我國變頻器技術的發展及應用概況 (一)變頻器的發展 隨著生產技術的不斷發展,直流拖動的薄弱環節逐步顯露出來。由於換向器的存,直流電機的維護量加大,單機容量、最高轉速以及使用環境都受到限制。人們開始轉向結構簡單、運行可靠、維護方便、價格低廉的非同步電動機。但非同步電動機的調速性能難以滿足生產的需要。於是,從20世紀30年代開始,人們致力於交流調速技術的研究,然而進展緩慢。在相當長的時期內,直流調速一直以其優異的性能統治著電氣傳動領域。20世紀60年代以後,特別是70年代以來,電力電子技術、控制技術和微電子技術的飛速發展,使得交流調速性能可以與直流調速相媲美。目前,交流調速已進入逐步代替直流調速的時代。 (二)我國變頻器的應用 變頻器主要用於交流電動機(非同步電機或同步電機)轉速的調節,是公認的交流電動機最理想、最有前途的調速方案,除了具有卓越的調速性能之外,變頻器還有顯著的節能作用,是企業技術改造和產品更新換代的理想調速裝置。自上世紀80年代被引進中國以來,變頻器作為節能應用與速度工藝控制中越來越重要的自動化設備,得到了快速發展和廣泛的應用。 1、變頻器與節能 變頻器產生的最初用途是速度控制,但目前在國內應用較多的是節能。中國是能耗大國,能源利用率很低,而能源儲備不足。在2003年的中國電力消耗中,60—70%為動力電,而在總容量為5.8億千瓦的電動機總容量中,只有不到2000萬千瓦的電動機是帶變頻控制的。據分析,在中國,帶變動負載、具有節能潛力的電機至少有1.8億千瓦。因此國家大力提倡節能措施,並著重推薦了變頻調速技術。 應用變頻調速,可以大大提高電機轉速的控制精度,使電機在最節能的轉速下運行。以風機水泵為例,根據流體力學原理,軸功率與轉速的三次方成正比。當所需風量減少,風機轉速降低時,其功率按轉速的三次方下降。因此,精確調速的節電效果非常可觀。與此類似,許多變動負載電機一般按最大需求來生產電動機的容量,故設計裕量偏大。而在實際運行中,輕載運行的時間所佔比例卻非常高。如採用變頻調速,可大大提高輕載運行時的工作效率。因此,變動負載的節能潛力巨大。 作為節能目的,變頻器廣泛應用於各行業。以電力行業為例,由於中國大面積缺電,電力投資將持續增長,同時,國家電改方案對電廠的成本控制提出了要求,降低內部電耗成為電廠關注焦點,因此變頻器在電力行業有著巨大的發展潛力,尤其是高壓變頻器和大功率變頻器。 2、變頻器與工藝控制(速度控制) 目前,中國的設備控制水平與發達國家相比還比較低,製造工藝和效率都不高,因此提高設備控制水平至關重要。由於變頻調速具有調速范圍廣、調速精度高、動態響應好等優點,在許多需要精確速度控制的應用中,變頻器正在發揮著提升工藝質量和生產效率的顯著作用。 3、變頻家電 除了工業相關行業,在普通家庭中,節約電費、提高家電性能、保護環境等受到越來越多的關注,變頻家電成為變頻器的另一個廣闊市場和應用趨勢。帶有變頻控制的冰箱、洗衣機、家用空調等,在節電、減小電壓沖擊、降低噪音、提高控制精度等方面有很大的優勢。 三、國內變頻技術的現狀和發展前景 國內已經有較多的變頻器生產廠,但大部分的產品都是V/F控制和電壓空間矢量控制變頻器,使用在調速精度和動態性能要求不高的負載上應該沒有問題。工業應用中絕大部分都是這種負載,變頻器在這種場合應用最重要的要求是可靠性,國產變頻器占國內市場份額不高的主要原因是產品品質不過硬。V/F控制和電壓空間矢量控制變頻器比矢量控制變頻器從技術上來看要簡單得多,由於國內廠家大部分都是手工作坊式的生產,工藝欠佳,檢測手段有限,品質的一致性和穩定性難以保證。同樣是V/F控制的變頻器,國外的產品比國內的產品品質要好,這可能是生產工藝方面的差距。差距最大的是半導體功率器件的製造業,至今在國內這仍是一個空白。 變頻器技術的另外一個層面是應用技術。多年來,國家經貿委一直會同國家有關部門致力於變頻器技術的開發及推廣應用,在技術開發及技術改造方面給予了重點扶持,組織了變頻調速技術的評測推薦工作,並把推廣應用變頻調速技術作為風機、水泵節能技改專項的重點投資方向,同時鼓勵單位開展同貸同還方式,抓開發、抓示範工程、抓推廣應用,還處理了風機、水泵節能中心,開展信息咨詢和培訓。1995—1997年,3年間我國風機、水泵變頻調速技術改造投入資金3.5億元,改造總容量達100萬千瓦,可年節電7億度,平均投資回收期約2年。據有關資料表明,我國變頻調速技術應用已經取得了相當大的成績,每年有數十億元的銷售額,說明我國的變頻器應用已非常廣泛。從簡單的手動控制到基於RS一485網路的多機控制,與計算機和PLC聯網組成復雜的控制系統。在大型綜合自動化系統,先進控制與優化技術,大型成套專用系統,如連鑄連軋生產線、高速造紙生產線、電纜光纖生產線、化纖生產線、建材生產線等,變頻器的作用是電氣傳動控制,其控制的復雜性、控制精度和動態響應都有很高的要求,已經完全取代了直流調速技術。近年來,變頻器在功能上,利用先進的控制理論,開發出了諸如卷取、提升、主從等控制功能,使應用系統的構成更加方便和容易,使變頻器的應用技術提高到一個新的水平。 四、結論 變頻調速這一技術正越來越廣泛的深入到行業中。它的節能、省力、易於構成自控系統的顯著優勢應用變頻調速技術也是改造挖潛、增加效益的一條有效途徑。尤其是在高能耗、低產出的設備較多的企業,採用變頻調速裝置將使企業獲得巨大的經濟利益,同時這也是國民經濟可持續發展的需要。
『玖』 變頻器的控制電路接線圖
,零碎線頭必須清除干凈,零碎線頭可能造成異常,失靈和故障,必須始終保持變頻器清潔。在控制台上打孔時,要注意不要使碎片粉末等進入變頻器中。
『拾』 變頻器在電氣圖上的表示符號是什麼
變頻器在電氣圖上的表示符號還沒有標准,常見的有:VVVF,機床「U」,「BP」,英文縮寫:INV,「V/F」,UF等。
變頻器通常分為4部分:整流單元、高容量電容、逆變器和控制器。
1、整流單元:將工作頻率固定的交流電轉換為直流電。
2、高容量電容:存儲轉換後的電能。
3、逆變器:由大功率開關晶體管陣列組成電子開關,將直流電轉化成不同頻率、寬度、幅度的方波。
4、控制器:按設定的程序工作,控制輸出方波的幅度與脈寬,使疊加為近似正弦波的交流電,驅動交流電動機。
需要控制的電機及變頻器自身
1、電機的極數。一般電機極數以不多於(極為宜,否則變頻器容量就要適當加大。
2、轉矩特性、臨界轉矩、加速轉矩。在同等電機功率情況下,相對於高過載轉矩模式,變頻器規格可以降額選取。
3、電磁兼容性。為減少主電源干擾,使用時可在中間電路或變頻器輸入電路中增加電抗器,或安裝前置隔離變壓器。一般當電機與變頻器距離超過50m時,應在它們中間串入電抗器、濾波器或採用屏蔽防護電纜