導航:首頁 > 電器電路 > 雙管放大電路

雙管放大電路

發布時間:2022-01-22 06:30:02

㈠ 說明甲類、乙類、甲乙類功率放大電路的有什麼區別

一、導通角不同

甲類:在放大電路中,當輸入信號為正弦波時,若晶體管在信號版的整個周期內均導通權(即導通角θ=360°)

乙類:半周導通(即θ=180°),則稱之工作在狀態;

甲乙類:若晶體管的導通時間大於半個周期且小於一個周期(即θ=180°~360°之間)

二、按靜態工作點在交流負載線上的位置不同

設置靜態工作點的目的就是要保證在被放大的交流信號加入電路時,不論是正半周還是負半周都能滿足發射結正向偏置,集電結反向偏置的三極體放大狀態。

三、聽感不同

甲類放大器由於用兩只功率管分別擔任正半周和負半周音頻放大。故聲音大,音質好,失真小。又稱推挽放大,被現在普遍使用。乙類放大器用單管作半周放大,缺點是功率小,失真大,音質差,使用較少。甲乙類相比乙類則性能更低。

㈡ 雙管自激推挽電路空載電流大,該如何解決

推挽電路結構為雙管工作在線性放大區,其共輸入端,共輸出端。輸入信號專正半周信號由屬NPN上管放大,發射極輸出;負半周信號由PNP下管放大,發射極輸出;正半周時,下管截止,負半周時,上管截止,二管各負其責分工明確。輸出端的負載RL,將正負半周波形合成為一完整波形。工作波形如下圖示:

其輸入信號,有通過變壓器耦合分離相位輸入方式,也有經前級三級管或場效應管倒相分離相位方式的。即將完整周期波分解為正負半波,供給對應的功率放大管處理。

㈢ 甲、乙類功率放大器各有什麼特點

一般說來,單管輸出的都是甲類,雙管輸出的都是乙類或者甲乙類,在電路上想看出要看偏置電路,也沒那麼容易~甲類發熱大效率低,乙類高,甲乙次之

㈣ 功率放大電路可分為哪三種

甲類,乙類,甲乙類,D類共4種目前。不過乙類應用的很少幾乎上沒有(由於交流信號放大時乙類會產聲交越失真)音質來說,甲類最好,不過效率最低10+%的效率。甲乙類次之,效率比甲類要好能達到50%~60%。D類又次之,但效率最高能達到80%~90%。

㈤ 自製調頻無線話筒功率放大部分為什麼不用OTL或OCL電路式的雙管對稱功率放大,大多數用9018做末級功率放大

丙類狀態其實是波形失真放大器,失真相當大,所以要做推挽放大,對放大器件要求高很多的,推挽放大一個放大正半周,另一個放大負半周,兩個相反的同峰值的波形在高頻放大器里要接合成一個正弦波,那是很難達到的,器件都有離散和非線性特性,很難達到一致性,到頭來,還不如用功率合成的方法來的爽快和簡單!

相對甲類功放而言,乙類推挽功放的效率比較高。但是這兩種功放都是線性功放,即使是乙類,效率也高不到哪去。
由於調頻波是等幅的,幅度失真對它沒有意義。所以調頻波多數採用效率更高的丙類功放。丙類功放的功放管工作在開關狀態,導通角很小。它只在波形的頂端導通很短的時間向諧振迴路補充能量,其餘時間處於截止狀態,而由諧振迴路補足波形的大部分。因此這種功放的效率很高,被絕大多數的調頻發射機使用。
如果在射頻波段做推挽功放,一是乙類功放效率不會很高,二是電路復雜,會引入很多引起諧振頻率改變和帶來相移的元件或分布電容分布電感,所以調試很麻煩,不容易成功。這些是網友觀點,我也進行了測試,發現用電感諧振得到的射頻電壓最高,推挽的輸出很弱的。

㈥ 帶有負反饋共發射極放大電路,求此圖詳細工作過程及原理。

這是一個雙管直接耦合放大電路。
信號流程容易看,前級信號經C1送到T1的B極,放大後從C極出送到T2的B極,再放大後由C2輸出給負載RL。
Rb1t和Rb2及Re1組成T1的偏置電路,Rc1是T1的負載電阻(也組成T2的偏置)。
Rc1和T1及Re2組成T2的偏置電路,Rc2是T2的負載電阻
直流工作點的穩定有兩點,分析如下:
一是Re1組成的負反饋,設T1的IC因某種原因增大,那麼IE也增大,但T1的VB是由Rb1t和Rb2固定的,所以T1的B-E之間的電壓減小,則Ib下降引起IC下降--實際是沒有增大即穩定。如果設T1的IC因某種原因變小,經過負反饋會使IC增大 --實際是沒有變小即穩定。
二是Re2,原理同Re1。
交流負反饋也有兩點,
一是Re1組成的負反饋,Re1既是直流負反饋,對於交流來說當然也是負反饋。分析參考上述。但Re2沒有交流負反饋作用,因為它並聯了旁路電容Ce。
二是Rf和Re1組成的負反饋。信號流程是由C2經Rf加至T1的E極,(這是理解的難點,不要認為信號不能由E極輸入三極體),對於T1來說有兩個輸入信號,一是由前極送至B極,二是由後極送至E極。但是三極體把這兩個信號放大後從C極輸出的相位是不同的,B極輸入信號被反相了,而E極輸入的信號沒有被反相(樓主不妨在T1的C極再加個紫色的「+」號) 。那麼,C極的信號就是一正一負兩個信號相疊加。既然是一正一負兩數相加,數學的和的絕對值就是變小。既是變小就是負反饋。調整Rf和Re1的比例就能調整負反饋量。
T1的B極等於右圖放大器的「+」輸入端,而T1的E極等於「-」輸入端。

㈦ 75NF75雙管自激迴路

你好: ——★1、3DD15D三極體在一般的逆變器中,工作在開關狀態,不能用放大倍數來考量。 ——★2、使用3DD15D三極體的逆變器,它的「最大電流」與負載有關。 ——★3、逆變器可以為電腦供電,也可以看彩電的,更可以為電子節能燈供電的。硬之城上面應該有這個,可以去看看有沒有教程之類的,因為畢竟上面的技術資料型號等都很全面也是最新的,所以能解決很多問題。

㈧ 雙管直接耦合放大電路有什麼優點

雙管直接耦合放大電路有什麼優點:
直接耦合放大是把原來的信號按原樣100%放大,直接耦合放大可以放大微弱信號和緩慢信號.
零點漂移對直接耦合放大電路的影響:在直接耦合放大電路中,由於前後級直接相連,前一級的漂移電壓會和有用信號一起被送到下一級,而且逐級放大,使放大電路不能正常工作。溫度漂移:由溫度變化所引起的半導體器件參數的變化是產生零點漂移現象的主要原因,因而也稱零點漂移為溫度漂移,簡稱溫漂。
在直接耦合線路上抑制溫度漂移的方法

1、採用高質量的穩壓電源和使用經過老化實驗的元件,可大大減小由此而產生的漂移。

2、在電路中引入直流負反饋,穩定靜態工作點。

3、採用溫度補償的方法,利用熱敏元件來抵消放大管的變化。

4、採用特性相同和管子,使它們的溫漂相互抵消,構成「差分放大電路」。
2.對共模信號的抑製作用

利用電路參數的對稱性抑制共模信號;

利用發射極電阻Re對共模信號的抑制:利用Re對共模信號的負反饋作用,Re阻值愈大,負反饋作用愈強,差分放大電路對共模信號的抑制能力愈強。

改進型差分放大電路
恆流源電路在不高的電源電壓下既為差分放大電路設置了合適的靜態工作電流,又大大增強了共模負反饋作用,使電路具有更強的抑制共模信號的能力。

消除交越失真的互補輸出級
如果晶體管與二極體採用同一種材料,就可使T1管和T2管均處於微導通狀態。可消除交越失真。
詳細參考資料:
http://blog.163.com/fuxiao18@126/blog/static/189916502008015724267/

㈨ 請問,放大電路有幾種分別介紹下

低頻電壓放大器
低頻電壓放大器是指工作頻率在 20 赫~ 20 千赫之間、輸出要求有一定電壓值而不要求很強的電流的放大器。

( 1 )共發射極放大電路

圖 1 ( a )是共發射極放大電路。 C1 是輸入電容, C2 是輸出電容,三極體 VT 就是起放大作用的器件, RB 是基極偏置電阻 ,RC 是集電極負載電阻。 1 、 3 端是輸入, 2 、 3 端是輸出。 3 端是公共點,通常是接地的,也稱「地」端。靜態時的直流通路見圖 1 ( b ),動態時交流通路見圖 1 ( c )。電路的特點是電壓放大倍數從十幾到一百多,輸出電壓的相位和輸入電壓是相反的,性能不夠穩定,可用於一般場合。

( 2 )分壓式偏置共發射極放大電路

圖 2 比圖 1 多用 3 個元件。基極電壓是由 RB1 和 RB2 分壓取得的,所以稱為分壓偏置。發射極中增加電阻 RE 和電容 CE , CE 稱交流旁路電容,對交流是短路的; RE 則有直流負反饋作用。所謂反饋是指把輸出的變化通過某種方式送到輸入端,作為輸入的一部分。如果送回部分和原來的輸入部分是相減的,就是負反饋。圖中基極真正的輸入電壓是 RB2 上電壓和 RE 上電壓的差值,所以是負反饋。由於採取了上面兩個措施,使電路工作穩定性能提高,是應用最廣的放大電路。

( 3 )射極輸出器

圖 3 ( a )是一個射極輸出器。它的輸出電壓是從射極輸出的。圖 3 ( b )是它的交流通路圖,可以看到它是共集電極放大電路。

這個圖中,晶體管真正的輸入是 V i 和 V o 的差值,所以這是一個交流負反饋很深的電路。由於很深的負反饋,這個電路的特點是:電壓放大倍數小於 1 而接近 1 ,輸出電壓和輸入電壓同相,輸入阻抗高輸出阻抗低,失真小,頻帶寬,工作穩定。它經常被用作放大器的輸入級、輸出級或作阻抗匹配之用。

( 4 )低頻放大器的耦合

一個放大器通常有好幾級,級與級之間的聯系就稱為耦合。放大器的級間耦合方式有三種: ①RC 耦合,見圖 4 ( a )。優點是簡單、成本低。但性能不是最佳。 ② 變壓器耦合,見圖 4 ( b )。優點是阻抗匹配好、輸出功率和效率高,但變壓器製作比較麻煩。 ③ 直接耦合,見圖 4 ( c )。優點是頻帶寬,可作直流放大器使用,但前後級工作有牽制,穩定性差,設計製作較麻煩。

功率放大器

能把輸入信號放大並向負載提供足夠大的功率的放大器叫功率放大器。例如收音機的末級放大器就是功率放大器。

( 1 )甲類單管功率放大器

圖 5 是單管功率放大器, C1 是輸入電容, T 是輸出變壓器。它的集電極負載電阻 Ri′ 是將負載電阻 R L 通過變壓器匝數比折算過來的:

RC′= ( N1 N2 ) 2 RL=N 2 RL

負載電阻是低阻抗的揚聲器,用變壓器可以起阻抗變換作用,使負載得到較大的功率。

這個電路不管有沒有輸入信號,晶體管始終處於導通狀態,靜態電流比較大,困此集電極損耗較大,效率不高,大約只有 35 %。這種工作狀態被稱為甲類工作狀態。這種電路一般用在功率不太大的場合,它的輸入方式可以是變壓器耦合也可以是 RC 耦合。

( 2 )乙類推挽功率放大器

圖 6 是常用的乙類推挽功率放大電路。它由兩個特性相同的晶體管組成對稱電路,在沒有輸入信號時,每個管子都處於截止狀態,靜態電流幾乎是零,只有在有信號輸入時管子才導通,這種狀態稱為乙類工作狀態。當輸入信號是正弦波時,正半周時 VT1 導通 VT2 截止,負半周時 VT2 導通 VT1 截止。兩個管子交替出現的電流在輸出變壓器中合成,使負載上得到純正的正弦波。這種兩管交替工作的形式叫做推挽電路。

乙類推挽放大器的輸出功率較大,失真也小,效率也較高,一般可達 60 %。

( 3 ) OTL 功率放大器

目前廣泛應用的無變壓器乙類推挽放大器,簡稱 OTL 電路,是一種性能很好的功率放大器。為了

易於說明,先介紹一個有輸入變壓器沒有輸出變壓器的 OTL 電路,如圖 7 。

這個電路使用兩個特性相同的晶體管,兩組偏置電阻和發射極電阻的阻值也相同。在靜態時, VT1 、 VT2 流過的電流很小,電容 C 上充有對地為 1 2 E c 的直流電壓。在有輸入信號時,正半周時 VT1 導通, VT2 截止,集電極電流 i c1 方向如圖所示,負載 RL 上得到放大了的正半周輸出信號。負半周時 VT1 截止, VT2 導通,集電極電流 i c2 的方向如圖所示, RL 上得到放大了的負半周輸出信號。這個電路的關鍵元件是電容器 C ,它上面的電壓就相當於 VT2 的供電電壓。

以這個電路為基礎,還有用三極體倒相的不用輸入變壓器的真正 OTL 電路,用 PNP 管和 NPN 管組成的互補對稱式 OTL 電路,以及最新的橋接推挽功率放大器,簡稱 BTL 電路等等。

直流放大器

能夠放大直流信號或變化很緩慢的信號的電路稱為直流放大電路或直流放大器。測量和控制方面常用到這種放大器。

( 1 )雙管直耦放大器

直流放大器不能用 RC 耦合或變壓器耦合,只能用直接耦合方式。圖 8 是一個兩級直耦放大器。直耦方式會帶來前後級工作點的相互牽制,電路中在 VT2 的發射極加電阻 R E 以提高後級發射極電位來解決前後級的牽制。直流放大器的另一個更重要的問題是零點漂移。所謂零點漂移是指放大器在沒有輸入信號時,由於工作點不穩定引起靜態電位緩慢地變化,這種變化被逐級放大,使輸出端產生虛假信號。放大器級數越多,零點漂移越嚴重。所以這種雙管直耦放大器只能用於要求不高的場合。

( 2 )差分放大器

解決零點漂移的辦法是採用差分放大器,圖 9 是應用較廣的射極耦合差分放大器。它使用雙電源,其中 VT1 和 VT2 的特性相同,兩組電阻數值也相同, R E 有負反饋作用。實際上這是一個橋形電路,兩個 R C 和兩個管子是四個橋臂,輸出電壓 V 0 從電橋的對角線上取出。沒有輸入信號時,因為 RC1=RC2 和兩管特性相同,所以電橋是平衡的,輸出是零。由於是接成橋形,零點漂移也很小。

差分放大器有良好的穩定性,因此得到廣泛的應用。

集成運算放大器

集成運算放大器是一種把多級直流放大器做在一個集成片上,只要在外部接少量元件就能完成各種功能的器件。因為它早期是用在模擬計算機中做加法器、乘法器用的,所以叫做運算放大器。它有十多個引腳,一般都用有 3 個端子的三角形符號表示,如圖 10 。它有兩個輸入端、 1 個輸出端,上面那個輸入端叫做反相輸入端,用「 — 」作標記;下面的叫同相輸入端,用「+」作標記。

集成運算放大器可以完成加、減、乘、除、微分、積分等多種模擬運算,也可以接成交流或直流放大器應用。在作放大器應用時有:

( 1 )帶調零的同相輸出放大電路

圖 11 是帶調零端的同相輸出運放電路。引腳 1 、 11 、 12 是調零端,調整 RP 可使輸出端( 8 )在靜態時輸出電壓為零。 9 、 6 兩腳分別接正、負電源。輸入信號接到同相輸入端( 5 ),因此輸出信號和輸入信號同相。放大器負反饋經反饋電阻 R2 接到反相輸入端( 4 )。同相輸入接法的電壓放大倍數總是大於 1 的。

( 2 )反相輸出運放電路

也可以使輸入信號從反相輸入端接入,如圖 12 。如對電路要求不高,可以不用調零,這時可以把 3 個調零端短路。

輸入信號從耦合電容 C1 經 R1 接入反相輸入端,而同相輸入端通過電阻 R3 接地。反相輸入接法的電壓放大倍數可以大於 1 、等於 1 或小於 1 。

( 3 )同相輸出高輸入阻抗運放電路

圖 13 中沒有接入 R1 ,相當於 R1 阻值無窮大,這時電路的電壓放大倍數等於 1 ,輸入阻抗可達幾百千歐。

放大電路讀圖要點和舉例

放大電路是電子電路中變化較多和較復雜的電路。在拿到一張放大電路圖時,首先要把它逐級分解開,然後一級一級分析弄懂它的原理,最後再全面綜合。讀圖時要注意: ① 在逐級分析時要區分開主要元器件和輔助元器件。放大器中使用的輔助元器件很多,如偏置電路中的溫度補償元件,穩壓穩流元器件,防止自激振盪的防振元件、去耦元件,保護電路中的保護元件等。 ② 在分析中最主要和困難的是反饋的分析,要能找出反饋通路,判斷反饋的極性和類型,特別是多級放大器,往往以後級將負反饋加到前級,因此更要細致分析。 ③ 一般低頻放大器常用 RC 耦合方式;高頻放大器則常常是和 LC 調諧電路有關的,或是用單調諧或是用雙調諧電路,而且電路里使用的電容器容量一般也比較小。 ④ 注意晶體管和電源的極性,放大器中常常使用雙電源,這是放大電路的特殊性。

例 1 助聽器電路

圖 14 是一個助聽器電路,實際上是一個 4 級低頻放大器。 VT1 、 VT2 之間和 VT3 、 VT4 之間採用直接耦合方式, VT2 和 VT3 之間則用 RC 耦合。為了改善音質, VT1 和 VT3 的本級有並聯電壓負反饋( R2 和 R7 )。由於使用高阻抗的耳機,所以可以把耳機直接接在 VT4 的集電極迴路內。 R6 、 C2 是去耦電路, C6 是電源濾波電容。

例 2 收音機低放電路

圖 15 是普及型收音機的低放電路。電路共 3 級,第 1 級( VT1 )前置電壓放大,第 2 級( VT2 )是推動級,第 3 級( VT3 、 VT4 )是推挽功放。 VT1 和 VT2 之間採用直接耦合, VT2 和 VT3 、 VT4 之間用輸入變壓器( T1 )耦合並完成倒相,最後用輸出變壓器( T2 )輸出,使用低阻揚聲器。此外, VT1 本級有並聯電壓負反饋( R1 ), T2 次級經 R3 送回到 VT2 有串聯電壓負反饋。電路中 C2 的作用是增強高音區的負反饋,減弱高音以增強低音。 R4 、 C4 為去耦電路, C3 為電源的濾波電容。整個電路簡單明了。

一個振盪器必須包括三部分:放大器、正反饋電路和選頻網路。放大器能對振盪器輸入端所加的輸入信號予以放大使輸出信號保持恆定的數值。正反饋電路保證向振盪器輸入端提供的反饋信號是相位相同的,只有這樣才能使振盪維持下去。選頻網路則只允許某個特定頻率 f 0 能通過,使振盪器產生單一頻率的輸出。

振盪器能不能振盪起來並維持穩定的輸出是由以下兩個條件決定的;一個是反饋電壓 u f 和輸入電壓 U i 要相等,這是振幅平衡條件。二是 u f 和 u i 必須相位相同,這是相位平衡條件,也就是說必須保證是正反饋。一般情況下,振幅平衡條件往往容易做到,所以在判斷一個振盪電路能否振盪,主要是看它的相位平衡條件是否成立。

振盪器按振盪頻率的高低可分成超低頻( 20 赫以下)、低頻( 20 赫~ 200 千赫)、高頻( 200 千赫~ 30 兆赫)和超高頻( 10 兆赫~ 350 兆赫)等幾種。按振盪波形可分成正弦波振盪和非正弦波振盪兩類。

正弦波振盪器按照選頻網路所用的元件可以分成 LC 振盪器、 RC 振盪器和石英晶體振盪器三種。石英晶體振盪器有很高的頻率穩定度,只在要求很高的場合使用。在一般家用電器中,大量使用著各種 L C 振盪器和 RG 振盪器。

LC 振盪器

LC 振盪器的選頻網路是 LC 諧振電路。它們的振盪頻率都比較高,常見電路有 3 種。

( 1 )變壓器反饋 LC 振盪電路

圖 1 ( a )是變壓器反饋 LC 振盪電路。晶體管 VT 是共發射極放大器。變壓器 T 的初級是起選頻作用的 LC 諧振電路,變壓器 T 的次級向放大器輸入提供正反饋信號。接通電源時, LC 迴路中出現微弱的瞬變電流,但是只有頻率和迴路諧振頻率 f 0 相同的電流才能在迴路兩端產生較高的電壓,這個電壓通過變壓器初次級 L1 、 L2 的耦合又送回到晶體管 V 的基極。從圖 1 ( b )看到,只要接法沒有錯誤,這個反饋信號電壓是和輸入信號電壓相位相同的,也就是說,它是正反饋。因此電路的振盪迅速加強並最後穩定下來。

變壓器反饋 LC 振盪電路的特點是:頻率范圍寬、容易起振,但頻率穩定度不高。它的振盪頻率是: f 0 =1 / 2π LC 。常用於產生幾十千赫到幾十兆赫的正弦波信號。

( 2 )電感三點式振盪電路

圖 2 ( a )是另一種常用的電感三點式振盪電路。圖中電感 L1 、 L2 和電容 C 組成起選頻作用的諧振電路。從 L2 上取出反饋電壓加到晶體管 VT 的基極。從圖 2 ( b )看到,晶體管的輸入電壓和反饋電壓是同相的,滿足相位平衡條件的,因此電路能起振。由於晶體管的 3 個極是分別接在電感的 3 個點上的,因此被稱為電感三點式振盪電路。

電感三點式振盪電路的特點是:頻率范圍寬、容易起振,但輸出含有較多高次調波,波形較差。它的振盪頻率是: f 0 =1/2π LC ,其中 L=L1 + L2 + 2M 。常用於產生幾十兆赫以下的正弦波信號。

( 3 )電容三點式振盪電路

還有一種常用的振盪電路是電容三點式振盪電路,見圖 3 ( a )。圖中電感 L 和電容 C1 、 C2 組成起選頻作用的諧振電路,從電容 C2 上取出反饋電壓加到晶體管 VT 的基極。從圖 3 ( b )看到,晶體管的輸入電壓和反饋電壓同相,滿足相位平衡條件,因此電路能起振。由於電路中晶體管的 3 個極分別接在電容 C1 、 C2 的 3 個點上,因此被稱為電容三點式振盪電路。

電容三點式振盪電路的特點是:頻率穩定度較高,輸出波形好,頻率可以高達 100 兆赫以上,但頻率調節范圍較小,因此適合於作固定頻率的振盪器。它的振盪頻率是: f 0 =1/2π LC ,其中 C= C 1 C 2 C 1 +C 2 。

上面 3 種振盪電路中的放大器都是用的共發射極電路。共發射極接法的振盪器增益較高,容易起振。也可以把振盪電路中的放大器接成共基極電路形式。共基極接法的振盪器振盪頻率比較高,而且頻率穩定性好。

㈩ 模擬電子電路里求Q點是什麼意思有哪些需要求

Q點是靜態工作來點。

需要用基源極電流IBQ、集電極電流ICQ和集射極電壓UCEQ在晶體管輸出特性曲線上來確定,Q點在進行靜態分析時,主要是求解以上一組晶體管的電流、電壓值。

晶體管的電流、電壓關系可用輸入特性曲線和輸出特性曲線表示,可以在特性曲線上,直接用作圖的方法來確定靜態工作點。



(10)雙管放大電路擴展閱讀:

特點:

1、函數的取值為無限多個;

2、當圖像信息和聲音信息改變時,信號的波形也改變,即模擬信號待傳播的信息包含在它的波形

中(信息變化規律直接反映在模擬信號的幅度、頻率和相位的變化上)。

3.初級模擬電路主要解決兩個大的方面:1放大、2信號源。

4、模擬信號具有連續性。

直流放大器的另一個更重要的問題是零點漂移。所謂零點漂移是指放大器在沒有輸入信號時,由於工作點不穩定引起靜 態電位緩慢地變化,這種變化被逐級放大。

使輸出端產生虛假信號。放大器級數越多,零點漂移越嚴重。所以這種雙管直耦放大器只能用於要求不高的場合。

閱讀全文

與雙管放大電路相關的資料

熱點內容
北京家居電子商務有限公司 瀏覽:253
蘋果指紋保修嗎 瀏覽:270
木質傢具摔裂怎麼固定 瀏覽:296
防水塗料如何用滾筒刷 瀏覽:563
華苑冠華維修電話 瀏覽:698
頂樓雨棚多久需要維修 瀏覽:864
海爾空調武漢維修點 瀏覽:603
北碚長安4s店維修電話號碼 瀏覽:924
小米售後維修大概需要多久 瀏覽:949
電腦保修鍵盤進水保修嗎 瀏覽:398
維修車子需要帶什麼 瀏覽:829
維修電腦與家電怎麼辦理執照 瀏覽:518
瑞士珠寶保修單 瀏覽:284
中式古典傢具質量怎麼樣 瀏覽:296
合肥傢具除甲醛如何處理 瀏覽:457
樓頂開裂用什麼防水材料 瀏覽:441
蘋果廣西售後維修點嗎 瀏覽:739
廣州市蘋果維修電話 瀏覽:46
家電的市場部活動怎麼寫 瀏覽:535
開平二手家電市場在哪裡 瀏覽:202