『壹』 紅外線探測器的工作原理
紅外線探測器的工作原理:
紅外探測器是靠探測人體發射的紅外線來進行工作的。
探測器收集外界的紅外輻射進而聚集到紅外感測器上。紅外感測器通常採用熱釋電元件,這種元件在接收了紅外輻射溫度發出變化時就會向外釋放電荷,檢測處理後產生報警。
紅外線探測器這種探測器是以探測人體輻射為目標的。所以輻射敏感元件對波長為10μm左右的紅外輻射必須非常敏感。
為了對人體的紅外輻射敏感,在它的輻射照面通常覆蓋有特殊的濾光片,使環境的干擾受到明顯的控製作用。
紅外探測器,其感測器包含兩個互相串聯或並聯的熱釋電元。而且製成的兩個電極化方向正好相反,環境背景輻射對兩個熱釋電元幾乎具有相同的作用,使其產生釋電效應相互抵消,於是探測器無信號輸出。
一旦入侵人進入探測區域內,人體紅外輻射通過部分鏡而聚焦,從而被熱釋電元接收,但是兩片熱釋電元接收到的熱量不同,熱釋電也不同,不能抵消,經信號處理而報警。
多視場的獲得,一是多法線小鏡而組成的反光聚焦,聚光到感測器上稱之為反射式光學系統。另一種是透射式光學系統,是多面組合一起的透鏡-菲涅爾透鏡,通過菲涅爾透鏡聚焦在紅外感測器上。
這要指出的是 紅外面的幾束光表示有幾個視場,並非 紅外發紅外光,視場越多,控制越嚴密。
紅外線探測器的優點:
本身不發任何類型輻射,器件功耗很小,隱蔽性較好。價格低廉
紅外線探測器的缺點:
容易受各種熱源、陽光源干擾。
紅外穿透力差,人體的紅外輻射容易被遮擋,不易被探測器接收。
易受射頻輻射的干擾。
環境溫度和人體溫度接近時,探測和靈敏度明顯下降,有時造成短時失靈。
『貳』 求紅外線報警器的電路圖,原理圖等等
有線抄的很簡單的
LM339+LM358+外圍元件+電源部分襲就可以了,都不需要單片機
一個雙元紅外感測器和繼電器
其實最重要的是菲涅耳鏡片與距離角度的調整,否則無法達到較遠的探測距離
紅外感測器只能到1.5米最遠,得配合菲涅耳鏡片才能達到8-12米的探測距離或更遠
要加上無線發射電路或微波探測模塊就更復雜些需要寫單片機
『叄』 紅外探測器的工作原理是怎樣的
你好
1、紅外探測器是一種紅外線光束遮擋型報警器,發射機中的紅外發光二極體在電源的激發下,發出一束經過調制的紅外光束(此光束的波長約在0.8~0.95微米之間),經過光學系統的作用變成平行光發射出去。此光束被接收機接收,由接收機中的紅外光電感測器把光信號轉換成信號,經過電路處理後傳給報警控制器。由發射機發射出的紅外線經過防範區到達接收機,構成了一條警戒線。正常情況下,接收機收到的是一個穩定的光信號,當有人入侵該警戒線時,紅外光束被遮擋,接收機收到的紅外信號發生變化,提取這一變化,經放大和適當處理,控制器發出的報警信號。
2、紅外探測器:採用主動紅外方式,以達到安保報警功能的探測器。紅外探測器由紅外發射機、紅外接收機和報警控制器組成。分別置於收、發端的光學系統一般採用的是光學透鏡,起到將紅外光束聚焦成較細的平行光束的作用,以使紅外光的能量能夠集中傳送。紅外光在人眼看不見的光譜范圍,有人經過這條無形的封鎖線,必然全部或部分遮擋紅外光束。接收端輸出的電信號的強度會因此產生變化,從而啟動報警控制器發出報警信號。
3、主動式紅外探測器有光束之分,光束越多防範的面積越大。以發射機與接收機設置的位置不同分為對向型安裝方式和反射式安裝方式,反射型安裝方式的接收機不是 直接接收發射機發出的紅外光束,而是接收由反射鏡或適當的反射物(如石灰牆、門板表面光滑的油漆層)反射回的紅外光束。當反射面的位置與方向發生變化或紅 外發射光束和反射光束之一被阻擋,而使接收機無法接收到紅外反射光束時觸發報警。
『肆』 怎麼將紅外探測器接入一個簡易門鈴電路
將紅外控測器的輸出做為控制信號,用一隻三極體做為被控制的開關,將三極體的輸出端接到門鈴開關的兩端就可以了。
『伍』 紅外線探測器工作原理
首先,我先聲明該篇選自某論壇!紅外探測器工作原理波長為2.0~1000微米的部分稱為熱紅外線。我們周圍的物體只有當它們的溫度高達1000℃以上時,才能夠發出可見光。相比之下,我們周圍所有溫度在絕對零度(-273℃)以上的物體,都會不停地發出熱紅外線。所以,熱紅外線(或稱熱輻射)是自然界中存在最為廣泛的輻射。
熱輻射除存在的普遍性之外,還有另外兩個重要的特性。
1.物體的熱輻射能量的大小,直接和物體表面的溫度相關。熱輻射的這個特點使人們可以利用它來對物體進行無接觸溫度測量和熱狀態分析,從而為工業生產,節約能源,保護環境等等方面提供了一個重要的檢測手段和診斷工具。
2.大氣、煙雲等吸收可見光和近紅外線,但是對3~5微米和8~14微米的熱紅外線卻是透明的。因此,這兩個波段被稱為熱紅外線的「大氣窗口」 。利用這兩個窗口,可以使人們在完全無光的夜晚,或是在煙雲密布的戰場,清晰地觀察到前方的情況。正是由於這個特點,熱紅外成像技術軍事上提供了先進的夜視裝備並為飛機、艦艇和坦克裝上了全天候前視系統。這些系統在海灣戰爭中發揮了非常重要的作用。
現代的熱成像裝置工作在中紅外區域(波長3~5um)或遠紅外區域(波長8~12um)。通過探測物體發出的紅外輻射,熱成像儀產生一個實時的圖像,從而提供一種景物的熱圖像。並將不可見的輻射圖像轉變為人眼可見的、清晰的圖像。熱成像儀非常靈敏,能探測到小於0.1℃的溫差。
工作時,熱成像儀利用光學器件將場景中的物體發出的紅外能量聚焦在紅外探測器上,然後來自與每個探測器元件的紅外數據轉換成標準的視頻格式,可以在標準的視頻監視器上顯示出來,或記錄在錄像帶上。由於熱成像系統探測的是熱而不是光,所以可全天候使用;又因為它完全是被動式的裝置,沒有光輻射或射頻能量,所以不會暴露使用者的位置。
紅外探測器分為兩類:光子探測器和熱探測器。光子探測器在吸收紅外能量後,直接產生電效應;熱探測器在吸收紅外能量後,產生溫度變化,從而產生電效應。溫度變化引起的電效應與材料特性有關。 光子探測器非常靈敏,其靈敏度依賴於本身溫度。要保持高靈敏度,就必須將光子探測器冷卻至較低的溫度。通常採用的冷卻劑為斯太林(Stirling)或液氮。
紅外探測器一般沒有光子探測器那麼高的靈敏度但在室溫下也有足夠好的性能,因此不需要低溫冷卻紅外熱像儀是通過非接觸探測紅外熱量,並將其轉換生成熱圖像和溫度值,進而顯示在顯示器上,並可以對溫度值進行計算的一種檢測設備。紅外熱像儀能夠將探測到的熱量精確量化,能夠對發熱的故障區域進行准確識別和嚴格分析。
照相機成像得到照片,電視攝像機成像得到電視圖像,都是可見光成像。自然界中,一切物體都可以輻射紅外線,因此利用探測儀測定目標的本身和背景之間的紅外線差並可以得到不同的紅外圖像,熱紅外線形成的圖像稱為熱圖。
目標的熱圖像和目標的可見光圖像不同,它不是人眼所能看到的目標可見光圖像,而是目標表面溫度分布圖像,換一句話說,紅外熱成像使人眼不能直接看到目標的表面溫度分布,變成人眼可以看到的代表目標表面溫度分布的熱圖像。
『陸』 高分求紅外線探測報警器電路設計圖 急!!!
我可以簡單點告訴你,工業上的,是通過紅外線探測器內部繼電器來控制外部電路的報警器,就是當探測器探測到光源,內部繼電器有動作,接通自身觸電,給外部報警器提供電源,從而起到報警作用;
家用的一般都是內部電路直接串聯報警器而已;
在下不會畫圖也,而且那個電路圖也各色各樣,就簡簡單單跟你說些!
『柒』 紅外發射 和接受電路的原理圖
遙控接收工作原理
遙控器部分:
遙控器部分的工作原理較為簡單,主要就是編碼IC通過三極體進行放大調變,然後將此電信號(脈沖波)經有紅外發射管(940nm波長)轉變為光信號發射出去。
現在國產遙控器的電路主要有:455K晶振,編碼IC,放大三極體,發射管等主要幾個電子原件組成,2節3V電池驅動;但目前一些國際大廠所用的遙控器,其編碼IC內已包括了晶振和放大三極體,電路設計更加方便,且只需要1節電池驅動,更加環保。
(7)紅外探測電路擴展閱讀:
紅外是紅外線的簡稱,它是一種電磁波。它可以實現數據的無線傳輸。自1800年被發現以來,得到很普遍的應用,如紅外線滑鼠,紅外線列印機,紅外線鍵盤等等。紅外的特徵:紅外傳輸是一種點對點的傳輸方式,無線,不能離的太遠,要對准方向,且中間不能有障礙物也就是不能穿牆而過,幾乎無法控制信息傳輸的進度;IrDA已經是一套標准,IR收/發的組件也是標准化產品。
自然界中的一切物體,只要它的溫度高於絕對溫度(-273℃)就存在分子和原子無規則的運動,其表面就不斷地輻射紅外線。紅外線是一種電磁波,它的波長范圍為760nm~ 1mm,不為人眼所見。紅外成像設備就是探測這種物體表面輻射的不為人眼所見的紅外線的設備。它反映物體表面的紅外輻射場,即溫度場。
注意:紅外成像設備只能反映物體表面的溫度場。
對於電力設備,紅外檢測與故障診斷的基本原理就是通過探測被診斷設備表面的紅外輻射信號,從而獲得設備的熱狀態特徵,並根據這種熱狀態及適當的判據,作出設備有無故障及故障屬性、出現位置和嚴重程度的診斷判別。
為了深入理解電力設備故障的紅外診斷原理,更好的檢測設備故障,下面將初步討論一下電力設備熱狀態與其產生的紅外輻射信號之間的關系和規律、影響因素和DL500E的工作原理。
紅外線通信技術適合於低成本、跨平台、點對點高速數據連接,尤其是嵌入式系統.
紅外線技術的主要應用:設備互聯、信息網關.設備互聯後可完成不同設備內文件與信息的交換。信息網關負責連接信息終端和互聯網.
紅外通訊技術已被全球范圍內的眾多軟硬體廠商所支持和採用,目前主流的軟體和硬體平台均提供對它的支持.紅外技術已被廣泛應用在移動計算和移動通訊的設備中.
紅外傳輸是一種點對點的傳輸方式,無線,不能離的太遠,要對准方向,且中間不能有障礙物也就是不能穿牆而過,幾乎無法控制信息傳輸的進度;IrDA已經是一套標准,IR收/發的組件也是標准化產品。
『捌』 紅外探測器的原理是
不知道你需要知道哪方面的,紅外探測器種類特別繁多,原理也差異很大,先介紹一個大概:
紅外探測器是一種輻射能轉換器,主要用於將接收到的紅外輻射能轉換為便於測量或觀察的電能,熱能等其他形式的能量.
根據能量轉換方式,紅外探測器可分為熱探測器和光子探測器兩大類.
熱探測器的工作機理是基於入射輻射的熱效應引起探測器某一電特性的變化,而光子探測器是基於入射光子流與探測材料相互作用產生的光電效應,具體表現為探測器響應元自由載流子(即電子和/或空穴)數目的變化.由於這種變化是由入射光子數的變化引起的,光子探測器的響應正比於吸收的光子數.而熱探測器的響應正比與所吸收的能量.
熱探測器的換能過程包括:熱阻效應,熱伏效應,熱氣動效應和熱釋電效應.光子探測器的換能過程包括:光生伏特效應,光電導效應,光電磁效應和光發射效應。
『玖』 紅外感測器電路圖
弄清其工作原理,電路圖呼之欲出了。
原理:
待測目標
根據待測目標的紅外輻射特性可進行紅外系統的設定。
大氣衰減
待測目標的紅外輻射通過地球大氣層時,由於氣體分子和各種氣體以及各種溶膠粒的散射和吸收,將使得紅外源發出的紅外輻射發生衰減。
光學接收器
它接收目標的部分紅外輻射並傳輸給紅外感測器。相當於雷達天線,常用是物鏡。
輻射調制器
對來自待測目標的輻射調製成交變的輻射光,提供目標方位信息,並可濾除大面積的干擾信號。又稱調制盤和斬波器,它具有多種結構。
紅外探測器
這是紅外系統的核心。它是利用紅外輻射與物質相互作用所呈現出來的物理效應探測紅外輻射的感測器,多數情況下是利用這種相互作用所呈現出的電學效應。此類探測器可分為光子探測器和熱敏感探測器兩大類型。
探測器製冷器
由於某些探測器必須要在高溫下工作,所以相應的系統必須有製冷設備。經過製冷,設備可以縮短響應時間,提高探測靈敏度。
信號處理系統
將探測的信號進行放大、濾波,並從這些信號中提取出信息。然後將此類信息轉化成為所需要的格式,最後輸送到控制設備或者顯示器中。
顯示設備
這是紅外設備的終端設備。常用的顯示器有示波器、顯像管、紅外感光材料、指示儀器和記錄儀等。
紅外感測系統是用紅外線為介質的測量系統,按照功能可分成五類, 按探測機理可分成為光子探測器和熱探測器。 紅外感測技術已經在現代科技、國防和工農業等領域獲得了廣泛的應用。
紅外技術已經眾所周知,這項技術在現代科技、國防科技和工農業科技等領域得到了廣泛的應用。紅外感測系統是用紅外線為介質的測量系統,按照功能能夠分成五類:
(1)輻射計,用於輻射和光譜測量;
(2)搜索和跟蹤系統,用於搜索和跟蹤紅外目標,確定其空間位置並對它的運動進行跟蹤;
(3)熱成像系統,可產生整個目標紅外輻射的分布圖像;
(4)紅外測距和通信系統;
(5)混合系統,是指以上各類系統中的兩個或者多個的組合。