『壹』 什麼是門型電路
那不叫門型電路來,叫門電路,源沒有「型」字。門電路就是邏輯門電路,實現邏輯運算的電路。
T型電路,顧名思義是「T」形狀的電路,兩個器件(阻、容、感、晶體管、有源器件都可以,可以相同,也可以不同)串聯,一端做輸入端,另一端做為公共端;在串聯節點處引出一根線再接另一個器件(可以是任何器件,如上),該器件與公共端之間形成一對輸出端。
此外,還有π型電路,也是顧名思義是希臘字母"π 「的形狀的電路,參考上述很容易理解。
『貳』 「門電路」內部結構能不能詳細講解一下三個「門電路
門電路」內部結構能不能詳細講解一下三個「門電路
「門」是這樣的一種電路:它規定各個輸入信號之間滿足某種邏輯關系時,才有信號輸出,通常有下列三種門電路:與門、或門、非門(反相器).從邏輯關系看,門電路的輸入端或輸出端只有兩種狀態,無信號以「0」表示,有信號以「1」表示.也可以這樣規定:低電平為「0」,高電平為「1」,稱為正邏輯.反之,如果規定高電平為「0」,低電平為「1」稱為負邏輯,然而,高與低是相對的,所以在實際電路中要選說明採用什麼邏輯,才有實際意義,例如,負與門對「1」來說,具有「與」的關系,但對「0」來說,卻有「或」的關系,即負與門也就是正或門;同理,負或門對「1」來說,具有「或」的關系,但對「0」來說具有「與」的關系,即負或門也就是正與門.
凡是對脈沖通路上的脈沖起著開關作用的電子線路就叫做門電路,是基本的邏輯電路.門電路可以有一個或多個輸入端,但只有一個輸出端.門電路的各輸入端所加的脈沖信號只有滿足一定的條件時,「門」才打開,即才有脈沖信號輸出.從邏輯學上講,輸入端滿足一定的條件是「原因」,有信號輸出是「結果」,門電路的作用是實現某種因果關系──邏輯關系.所以門電路是一種邏輯電路.基本的邏輯關系有三種:與邏輯、或邏輯、非邏輯.與此相對應,基本的門電路有與門、或門、非門.
門電路可用分立元件組成,也可做成集成電路,但目前實際應用的都是集成電路.由於單一品種的與非門可以構成各種復雜的數字邏輯電路,而器件品種單一,給備件、調試都會帶來很大方便,所以集成電路工業產品中並沒有與門、或門,而供應與非門.
與門電路真值表:
A B 結果
0 0 0
0 1 0
1 0 0
1 1 1
或門電路真值表:
A B 結果
0 0 0
0 1 1
1 0 1
1 1 1
非門電路真值表:
A 結果
0 1
1 0
『叄』 門電路是什麼電路它的作用是什麼怎樣應用
用以實現基本邏輯運算和復合邏輯運算的單元電路稱為門電路。
常用的門電路在邏輯專功能屬上有與門、或門、非門、與非門、或非門、與或非門、異或門等幾種。
例如:
兩只開關K1和K2並聯,用來控制一盞燈。這時閉合開關 K1 【或】K2 都可以使燈亮。這時就可以稱開關 K1、K2 構成了【或門】電路。
兩只開關K1和K2串聯聯,用來控制一盞燈。這時需要閉合開關 K1 【與】K2 才可以使燈亮。這時就可以稱開關 K1、K2 構成了【與門】電路。
開關、繼電器、電子線路、計算機功能模塊都可以構成門電路。但通常所說的門電路指具有邏輯功能的獨立或相對獨立的電子元件或單元電路。
『肆』 與門電路和非門電路的區別是什麼
邏輯電路
信號取值為0和1或有限個值,而且輸入信號與輸出信號之間存在確定邏輯關系的電路 。信號值為0的含義是 :電路斷開,或低電位信號 ,或無脈沖信號 ;信號為1的含義是 :電路導通,或高電位,或有脈沖信號。邏輯電路有兩種基本類型:一為組合邏輯電路,一為時序邏輯電路。
最簡單的二值邏輯電路在兩個輸入信號a、b與一個輸出信號 p之間的三種最基本的邏輯關系為「與」運算 、「或」運算和「非」運算(見表)。這三種基本運算可用相應的門電路實現。
由各種門電路和記憶元件(如觸發器)等組成的電路通稱為數字電路。研究邏輯電路主要是研究數字電路和其他具有開關特性的元件所構成的電路中各點信號之間的邏輯關系(包括時間關系)及所實現的功能。早期的邏輯電路主要是繼電器接點電路。隨著電子計算機的出現,數字電路成為研究邏輯電路的主要對象。20世紀60年代以前,研究的重點在於如何用最少的元件實現給定的邏輯功能。後來隨數字集成電路技術的發展,電路的可靠性、易測性、模塊化,以及工作速度的提高和故障診斷等遂成為研究的主要課題。利用計算機對邏輯電路進行分析、設計,也是研究邏輯電路的重要方向。邏輯電路的應用范圍十分廣泛,特別是在計算機、數字控制、通信、生產過程自動化和儀表方面應用更多。它與大規模、超大規模數字集成電路的研究和發展有密切的關系。
英國數學家G.布爾為了研究思維規律(邏輯學、數理邏輯 )於1847和1854年提出的數學模型。此後R.戴德金把它作為一種特殊的格。所謂一個布爾代數,是指一個有序的四元組〈B,∨,∧,*〉 ,其中B是一個非空的集合 ,∨與∧是定義在B上的兩個二元運算 ,* 是定義在B上的一個一元運算,並且它們滿足一定的條件。
布爾代數由於缺乏物理背景,所以研究緩慢,到了20世紀30~40年代才又有了新的進展,大約在 1935年, M.H.斯通首先指出布爾代數與環之間有明確的聯系,他還得到了現在所謂的斯通表示定理:任意一個布爾代數一定同構於某個集上的一個集域;任意一個布爾代數也一定同構於某個拓撲空間的閉開代數等,這使布爾代數在理論上有了一定的發展。布爾代數在代數學(代數結構)、邏輯演算、集合論、拓撲空間理論、測度論、概率論、泛函分析等數學分支中均有應用;1967年後,在數理邏輯的分支之一的公理化集合論以及模型論的理論研究中也起著一定的作用。近幾十年來,布爾代數在自動化技術、電子計算機的邏輯設計等工程技術領域中有重要的應用。
『伍』 門電路工作原理
第五節 CMOS邏輯門電路
http://www.fjtu.com.cn/fjnu/courseware/0321/course/_source/web/lesson/char2/j6.htm 看看把
CMOS邏輯門電路是在TTL電路問世之後 ,所開發出的第二種廣泛應用的數字集成器件,從發展趨勢來看,由於製造工藝的改進,CMOS電路的性能有可能超越TTL而成為佔主導地位的邏輯器件 。CMOS電路的工作速度可與TTL相比較,而它的功耗和抗干擾能力則遠優於TTL。此外,幾乎所有的超大規模存儲器件 ,以及PLD器件都採用CMOS藝製造,且費用較低。
早期生產的CMOS門電路為4000系列 ,隨後發展為4000B系列。當前與TTL兼容的CMO器件如74HCT系列等可與TTL器件交換使用。下面首先討論CMOS反相器,然後介紹其他CMO邏輯門電路。
MOS管結構圖
MOS管主要參數:
1.開啟電壓VT
·開啟電壓(又稱閾值電壓):使得源極S和漏極D之間開始形成導電溝道所需的柵極電壓;
·標準的N溝道MOS管,VT約為3~6V;
·通過工藝上的改進,可以使MOS管的VT值降到2~3V。
2. 直流輸入電阻RGS
·即在柵源極之間加的電壓與柵極電流之比
·這一特性有時以流過柵極的柵流表示
·MOS管的RGS可以很容易地超過1010Ω。
3. 漏源擊穿電壓BVDS
·在VGS=0(增強型)的條件下 ,在增加漏源電壓過程中使ID開始劇增時的VDS稱為漏源擊穿電壓BVDS
·ID劇增的原因有下列兩個方面:
(1)漏極附近耗盡層的雪崩擊穿
(2)漏源極間的穿通擊穿
·有些MOS管中,其溝道長度較短,不斷增加VDS會使漏區的耗盡層一直擴展到源區,使溝道長度為零,即產生漏源間的穿通,穿通後
,源區中的多數載流子,將直接受耗盡層電場的吸引,到達漏區,產生大的ID
4. 柵源擊穿電壓BVGS
·在增加柵源電壓過程中,使柵極電流IG由零開始劇增時的VGS,稱為柵源擊穿電壓BVGS。
5. 低頻跨導gm
·在VDS為某一固定數值的條件下 ,漏極電流的微變數和引起這個變化的柵源電壓微變數之比稱為跨導
·gm反映了柵源電壓對漏極電流的控制能力
·是表徵MOS管放大能力的一個重要參數
·一般在十分之幾至幾mA/V的范圍內
6. 導通電阻RON
·導通電阻RON說明了VDS對ID的影響 ,是漏極特性某一點切線的斜率的倒數
·在飽和區,ID幾乎不隨VDS改變,RON的數值很大 ,一般在幾十千歐到幾百千歐之間
·由於在數字電路中 ,MOS管導通時經常工作在VDS=0的狀態下,所以這時的導通電阻RON可用原點的RON來近似
·對一般的MOS管而言,RON的數值在幾百歐以內
7. 極間電容
·三個電極之間都存在著極間電容:柵源電容CGS 、柵漏電容CGD和漏源電容CDS
·CGS和CGD約為1~3pF
·CDS約在0.1~1pF之間
8. 低頻雜訊系數NF
·雜訊是由管子內部載流子運動的不規則性所引起的
·由於它的存在,就使一個放大器即便在沒有信號輸人時,在輸 出端也出現不規則的電壓或電流變化
·雜訊性能的大小通常用雜訊系數NF來表示,它的單位為分貝(dB)
·這個數值越小,代表管子所產生的雜訊越小
·低頻雜訊系數是在低頻范圍內測出的雜訊系數
·場效應管的雜訊系數約為幾個分貝,它比雙極性三極體的要小
一、CMOS反相器
由本書模擬部分已知,MOSFET有P溝道和N溝道兩種,每種中又有耗盡型和增強型兩類。由N溝道和P溝道兩種MOSFET組成的電路稱為互補MOS或CMOS電路。
下圖表示CMOS反相器電路,由兩只增強型MOSFET組成,其中一個為N溝道結構,另一個為P溝道結構。為了電路能正常工作,要求電源電壓VDD大於兩個管子的開啟電壓的絕對值之和,即
VDD>(VTN+|VTP|) 。
1.工作原理
首先考慮兩種極限情況:當vI處於邏輯0時 ,相應的電壓近似為0V;而當vI處於邏輯1時,相應的電壓近似為VDD。假設在兩種情況下N溝道管 TN為工作管P溝道管TP為負載管。但是,由於電路是互補對稱的,這種假設可以是任意的,相反的情況亦將導致相同的結果。
下圖分析了當vI=VDD時的工作情況。在TN的輸出特性iD—vDS(vGSN=VDD)(注意vDSN=vO)上 ,疊加一條負載線,它是負載管TP在 vSGP=0V時的輸出特性iD-vSD。由於vSGP<VT(VTN=|VTP|=VT),負載曲線幾乎是一條與橫軸重合的水平線。兩條曲線的交點即工作點。顯然,這時的輸出電壓vOL≈0V(典型值<10mV ,而通過兩管的電流接近於零。這就是說,電路的功耗很小(微瓦量級)
下圖分析了另一種極限情況,此時對應於vI=0V。此時工作管TN在vGSN=0的情況下運用,其輸出特性iD-vDS幾乎與橫軸重合 ,負載曲線是負載管TP在vsGP=VDD時的輸出特性iD-vDS。由圖可知,工作點決定了VO=VOH≈VDD;通過兩器件的電流接近零值 。可見上述兩種極限情況下的功耗都很低。
由此可知,基本CMOS反相器近似於一理想的邏輯單元,其輸出電壓接近於零或+VDD,而功耗幾乎為零。
2.傳輸特性
下圖為CMOS反相器的傳輸特性圖。圖中VDD=10V,VTN=|VTP|=VT=
2V。由於 VDD>(VTN+|VTP|),因此,當VDD-|VTP|>vI>VTN 時,TN和TP兩管同時導通。考慮到電路是互補對稱的,一器件可將另一器件視為它的漏極負載。還應注意到,器件在放大區(飽和區)呈現恆流特性,兩器件之一可當作高阻值的負載。因此,在過渡區域,傳輸特性變化比較急劇。兩管在VI=VDD/2處轉換狀態。
3.工作速度
CMOS反相器在電容負載情況下,它的開通時間與關閉時間是相等的,這是因為電路具有互補對稱的性質。下圖表示當vI=0V時 ,TN截止,TP導通,由VDD通過TP向負載電容CL充電的情況。由於CMOS反相器中,兩管的gm值均設計得較大,其導通電阻較小,充電迴路的時間常數較小。類似地,亦可分析電容CL的放電過程。CMOS反相器的平均傳輸延遲時間約為10ns。
二、CMOS門電路
1.與非門電路
下圖是2輸入端CMOS與非門電路,其中包括兩個串聯的N溝道增強型MOS管和兩個並聯的P溝道增強型MOS管。每個輸入端連到一個N溝道和一個P溝道MOS管的柵極。當輸入端A、B中只要有一個為低電平時,就會使與它相連的NMOS管截止,與它相連的PMOS管導通,輸出為高電平;僅當A、B全為高電平時,才會使兩個串聯的NMOS管都導通,使兩個並聯的PMOS管都截止,輸出為低電平。
因此,這種電路具有與非的邏輯功能,即
n個輸入端的與非門必須有n個NMOS管串聯和n個PMOS管並聯。
2.或非門電路
下圖是2輸入端CMOS或非門電路。其中包括兩個並聯的N溝道增強型MOS管和兩個串聯的P溝道增強型MOS管。
當輸入端A、B中只要有一個為高電平時,就會使與它相連的NMOS管導通,與它相連的PMOS管截止,輸出為低電平;僅當A、B全為低電平時,兩個並聯NMOS管都截止,兩個串聯的PMOS管都導通,輸出為高電平。
因此,這種電路具有或非的邏輯功能,其邏輯表達式為
顯然,n個輸入端的或非門必須有n個NMOS管並聯和n個PMOS管並聯。
比較CMOS與非門和或非門可知,與非門的工作管是彼此串聯的,其輸出電壓隨管子個數的增加而增加;或非門則相反,工作管彼此並聯,對輸出電壓不致有明顯的影響。因而或非門用得較多。
3.異或門電路
上圖為CMOS異或門電路。它由一級或非門和一級與或非門組成。或非門的輸出。而與或非門的輸出L即為輸入A、B的異或
如在異或門的後面增加一級反相器就構成異或非門,由於具有的功能,因而稱為同或門。異成門和同或門的邏輯符號如下圖所示。
三、BiCMOS門電路
雙極型CMOS或BiCMOS的特點在於,利用了雙極型器件的速度快和MOSFET的功耗低兩方面的優勢,因而這種邏輯門電路受到用戶的重視
。
1.BiCMOS反相器
上圖表示基本的BiCMOS反相器電路,為了清楚起見,MOSFET用符號M表示BJT用T表示。T1和T2構成推拉式輸出級。而Mp、MN、M1、M2所組成的輸入級與基本的CMOS反相器很相似。輸入信號vI同時作用於MP和MN的柵極。當vI為高電壓時MN導通而MP截止;而當vI為低電壓時,情況則相反,Mp導通,MN截止。當輸出端接有同類BiCMOS門電路時,輸出級能提供足夠大的電流為電容性負載充電。同理,已充電的電容負載也能迅速地通過T2放電。
上述電路中T1和T2的基區存儲電荷亦可通過M1和M2釋放,以加快
電路的開關速度。當vI為高電壓時M1導通,T1基區的存儲電荷迅速消散。這種作用與TTL門電路的輸入級中T1類似。同理 ,當vI為低電壓時,電源電壓VDD通過MP以激勵M2使M2導通,顯然T2基區的存儲電荷通過M2而消散。可見,門電路的開關速度可得到改善。
2.BiCMOS門電路
根據前述的CMOS門電路的結構和工作原理,同樣可以用BiCMOS技術實現或非門和與非門。如果要實現或非邏輯關系,輸入信號用來驅動並聯的N溝道MOSFET,而P溝道MOSFET則彼此串聯。正如下圖所示的
2輸入端或非門。
當A和B均為低電平時,則兩個MOSFET MPA和MPB均導通,T1導通而MNA和MNB均截止,輸出L為高電平。與此同時,M1通過MPA和MpB被VDD所激勵,從而為T2的基區存儲電荷提供一條釋放通路。
另一方面,當兩輸入端A和B中之一為高電平時 ,則MpA和MpB的通路被斷開,並且MNA或MNB導通,將使輸出端為低電平。同時,M1A或M1B為T1的基極存儲電荷提供一條釋放道路。因此 ,只要有一個輸入端接高電平,輸出即為低電平。
四、CMOS傳輸門
MOSFET的輸出特性在原點附近呈線性對稱關系,因而它們常用作模擬開關。模擬開關廣泛地用於取樣——保持電路、斬波電路、模數和數模轉換電路等。下面著重介紹CMOS傳輸門。
所謂傳輸門(TG)就是一種傳輸模擬信號的模擬開關。CMOS傳輸門由一個P溝道和一個N溝道增強型MOSFET並聯而成,如上圖所示。TP和TN是結構對稱的器件,它們的漏極和源極是可互換的。設它們的開啟電壓|VT|=2V且輸入模擬信號的變化范圍為-5V到+5V 。為使襯底與漏源極之間的PN結任何時刻都不致正偏 ,故TP的襯底接+5V電壓,而TN的襯底接-5V電壓 。兩管的柵極由互補的信號電壓(+5V和-5V)來控制,分別用C和表示。
傳輸門的工作情況如下:當C端接低電壓-5V時TN的柵壓即為-5V,vI取-5V到+5V范圍內的任意值時,TN均不導通。同時,TP的柵壓為+5V
,TP亦不導通。可見,當C端接低電壓時,開關是斷開的。
為使開關接通,可將C端接高電壓+5V。此時TN的柵壓為+5V ,vI在-5V到+3V的范圍內,TN導通。同時TP的棚壓為-5V ,vI在-3V到+5V的范圍內TP將導通。
由上分析可知,當vI<-3V時,僅有TN導通,而當vI>+3V時,僅有TP導通當vI在-3V到+3V的范圍內,TN和TP兩管均導通。進一步分析
還可看到,一管導通的程度愈深,另一管的導通程度則相應地減小。換句話說,當一管的導通電阻減小,則另一管的導通電阻就增加。由於兩管系並聯運行,可近似地認為開關的導通電阻近似為一常數。這是CMOS傳輸出門的優點。
在正常工作時,模擬開關的導通電阻值約為數百歐,當它與輸入阻抗為兆歐級的運放串接時,可以忽略不計。
CMOS傳輸門除了作為傳輸模擬信號的開關之外,也可作為各種邏輯電路的基本單元電路。
『陸』 門電路有幾種電路
「門」是復這樣的一種電路:它制規定各個輸入信號之間滿足某種邏輯關系時,才有信號輸出,通常有下列三種門電路:與門、或門、非門(反相器)。從邏輯關系看,門電路的輸入端或輸出端只有兩種狀態,無信號以「0」表示,有信號以「1」表示。也可以這樣規定:低電平為「0」,高電平為「1」,稱為正邏輯。反之,如果規定高電平為「0」,低電平為「1」稱為負邏輯,然而,高與低是相對的,所以在實際電路中要選說明採用什麼邏輯,才有實際意義,例如,負與門對「1」來說,具有「與」的關系,但對「0」來說,卻有「或」的關系,即負與門也就是正或門;同理,負或門對「1」來說,具有「或」的關系,但對「0」來說具有「與」的關系,即負或門也就是正與門。
建議你看一下數字邏輯電路或者數字電子技術方面的書籍
『柒』 門電路有哪幾種狀態
電路有三種狀態。 1.通路 通路就是電源與負載之間形成閉合迴路,回電路中有工作電流,這是答用電設備正常工作時的電路狀態。 2.斷路斷路就是指電源與負載之間沒有形成閉合迴路,也稱之為開路,電路中沒有電流,種狀態下用電設備不工作。 3.短路短路是指電流未經負載而直接流回電源。
『捌』 數字電路中的門電路空懸是什麼功能
數字電路中的門電路空懸是有講究的:
TTL電路,輸入腳懸空代表輸入「1」,專即「高電平」,所以與門、與屬非門都不用的多餘腳可以「懸空」,但對或門電路不行,多餘腳只能接地。
對CMOS電路,任何門電路的輸入腳都不可懸空。
另外對三態門等電路的控制腳也要區分情況,不可任意懸空,否則無法選中實現控制。
『玖』 求問:圖里的電路那個空白的格子是什麼意思,把與門和或門連在一起是什麼意思
左邊上和下都是與門,上邊是兩輸入與門,下邊空白格子是單輸入與門;上下兩與門輸出再輸入到或非門。
『拾』 門空電路和門空雙穩什麼關系
門空電路和門空雙穩什麼關系
一種電源門控電路,包括連接電源和電路模塊之間的輸出功率管,以及上拉電路、弱電流源、下拉電路、電壓檢測電路;在關閉所述輸出功率管時,上拉電路將輸出功率