1. 液压系统的修理维护
一个液压系统的好坏不仅取决于系统设计的合理性和系统元件性能的的优劣,还因系统的污染防护和处理,系统的污染直接影响液压系统工作的可靠性和元件的使用寿命,据统计,国内外的的液压系统故障大约有70%是由于污染引起的。 油液污染对系统的危害主要如下:
1)元件的污染磨损
油液中各种污染物引起元件各种形式的磨损,固体颗粒进入运动副间隙中,对零件表面产生切削磨损或是疲劳磨损。高速液流中的固体颗粒对元件的表面冲击引起冲蚀磨损。油液中的水和油液氧化变质的生成物对元件产生腐蚀作用。此外,系统的油液中的空气引起气蚀,导致元件表面剥蚀和破坏。
2)元件堵塞与卡紧故障
固体颗粒堵塞液压阀的间隙和孔口,引起阀芯阻塞和卡紧,影响工作性能,甚至导致严重的事故。
3)加速油液性能的劣化
油液中的水和空气以其热能是油液氧化的主要条件,而油液中的金属微粒对油液的氧化起重要催化作用,此外,油液中的水和悬浮气泡显著降低了运动副间油膜的强度,使润滑性能降低。
一、污染物的种类
污染物是液压系统油液中对系统起危害作用的的物质,它在油液中以不同的形态形式存在,根据其物理形态可分成:固态污染物、液态污染物、气态污染物。
固态污染物可分成硬质污染物,有:金刚石、切削、硅沙、灰尘、磨损金属和金属氧化物;软质污染物有:添加剂、水的凝聚物、油料的分解物与聚合物和维修时带入的棉丝、纤维。
液态污染物通常是不符合系统要求的切槽油液、水、涂料和氯及其卤化物等,通常我们难以去掉,所以在选择液压油时要选择符合系统标准的液压油,避免一些不必要的故障。
气态污染物主要是混入系统中的空气。
这些颗粒常常是如此的细小,以至于不能沉淀下来而悬浮于油液之中,最后被挤到各种阀的间隙之中,对一个可靠的液压系统来说,这些间隙的对实现有限控制、重要性和准确性是极为重要的。
二、污染物的来源:
系统油液中污染物的来源途径主要有以下几个方面:
1)外部侵入的污染物:外部侵入污染物主要是大气中的沙砾或尘埃,通常通过油箱气孔,油缸的封轴,泵和马达等轴侵入系统的。主要是使用环境的影响。
2)内部污染物:元件在加工时、装配、调试、包装、储存、运输和安装等环节中残留的污染物,当然这些过程是无法避免的,但是可以降到最低,有些特种元件在装配和调试时需要在洁净室或洁净台的环境中进行。3)液压系统产生的污染物:系统在运作过程当中由于元件的磨损而产生的颗粒,铸件上脱落下来的砂粒,泵、阀和接头上脱落下来的金属颗粒,管道内锈蚀剥落物以其油液氧化和分解产生的颗粒与胶状物,更为严重的是系统管道在正式投入作业之前没有经过冲洗而有的大量杂质。 液压传动系统由于其独特的优点,即具有广泛的工艺适应性、优良的控制性能和较低廉的成本,在各个领域中获得愈来愈广泛的应用。但由于客观上元件、辅件质量不稳定和主观上使用、维护不当,且系统中各元件和工作液体都是在封闭油路内工作,不象机械设备那样直观,也不象电气设备那样可利用各种检测仪器方便地测量各种参数,液压设备中,仅靠有限几个压力表、流量计等来指示系统某些部位的工作参数,其他参数难以测量,而且一般故障根源有许多种可能,这给液压系统故障诊断带来一定困难。
在生产现场,由于受生产计划和技术条件的制约,要求故障诊断人员准确、简便和高效地诊断出液压设备的故障;要求维修人员利用现有的信息和现场的技术条件,尽可能减少拆装工作量,节省维修工时和费用,用最简便的技术手段,在尽可能短的时间内,准确地找出故障部位和发生故障的原因并加以修理,使系统恢复正常运行,并力求今后不再发生同样故障。
液压系统故障诊断的一般原则
正确分析故障是排除故障的前提,系统故障大部分并非突然发生,发生前总有预兆,当预兆发展到一定程度即产生故障。引起故障的原因是多种多样的,并无固定规律可寻。统计表明,液压系统发生的故障约90%是由于使用管理不善所致为了快速、准确、方便地诊断故障,必须充分认识液压故障的特征和规律,这是故障诊断的基础。
以下原则在故障诊断中值得遵循:
(1)首先判明液压系统的工作条件和外围环境是否正常需首先搞清是设备机械部分或电器控制部分故障,还是液压系统本身的故障,同时查清液压系统的各种条件是否符合正常运行的要求。
(2)区域判断根据故障现象和特征确定与该故障有关的区域,逐步缩小发生故障的范围,检测此区域内的元件情况,分析发生原因,最终找出故障的具体所在。
(3)掌握故障种类进行综合分析根据故障最终的现象,逐步深入找出多种直接的或间接的可能原因,为避免盲目性,必须根据系统基本原理,进行综合分析、逻辑判断,减少怀疑对象逐步逼近,最终找出故障部位。
(4)验证可能故障原因时,一般从最可能的故障原因或最易检验的地方开始,这样可减少装拆工作量,提高诊断速度。
(5)故障诊断是建立在运行记录及某些系统参数基础之上的。建立系统运行记录,这是预防、发现和处理故障的科学依据;建立设备运行故障分析表,它是使用经验的高度概括总结,有助于对故障现象迅速做出判断;具备一定检测手段,可对故障做出准确的定量分析。
2、故障诊断方法
日常查找液压系统故障的传统方法是逻辑分析逐步逼近断。
基本思路是综合分析、条件判断。即维修人员通过观察、听、触摸和简单的测试以及对液压系统的理解,凭经验来判断故障发生的原因。当液压系统出现故障时,故障根源有许多种可能。采用逻辑代数方法,将可能故障原因列表,然后根据先易后难原则逐一进行逻辑判断,逐项逼近,最终找出故障原因和引起故障的具体条件。
故障诊断过程中要求维修人员具有液压系统基础知识和较强的分析能力,方可保证诊断的效率和准确性。但诊断过程较繁琐,须经过大量的检查,验证工作,而且只能是定性地分析,诊断的故障原因不够准确。为减少系统故障检测的盲目性和经验性以及拆装工作量,传统的故障诊断方法已远不能满足现代液压系统的要求。随着液压系统向大型化、连续生产、自动控制方向发展,又出现了多种现代故障诊断方法。如铁谱技断,可从油液中分离出来的各种磨粒的数量、形状、尺寸、成分以及分布规律等情况,及时、准确地判断出系统中元件的磨损部位、形式、程度等。而且可对液压油进行定量的污染分析和评价,做到在线检测和故障预防。
基于人工智能的专家诊断系断,它通过计算机模仿在某一领域内有经验专家解决问题的方法。将故障现象通过人机接口输入计算机,计算机根据输入的现象以及知识库中的知识,可推算出引起故障的原因,然后通过人机接口输出该原因,并提出维修方案或预防措施。这些方法给液压系统故障诊断带来广阔的前景,给液压系统故障诊断自动化奠定了基础。但这些方法大都需要昂贵的检测设备和复杂的传感控制系统和计算机处理系统,有些方法研究起来有一定困难,一般情况下不适应于现场推广使用。下面介绍一种简单、实用的液压系统故障诊断方法。
基于参数测量的故障诊断系统
一个液压系统工作是否正常,关键取决于两个主要工作参数即压力和流量是否处于正常的工作状态,以及系统温度和执行器速度等参数的正常与否。液压系统的故障现象是各种各样的,故障原因也是多种因素的综合。同一因素可能造成不同的故障现象,而同一故障又可能对应着多种不同原因。例如:油液的污染可能造成液压系统压力、流量或方向等各方面的故障,这给液压系统故障诊断带来极大困难。
参数测量法诊断故障的思路是这样的,任何液压系统工作正常时,系统参数都工作在设计和设定值附近,工作中如果这些参数偏离了预定值,则系统就会出现故障或有可能出现故障。即液压系统产生故障的实质就是系统工作参数的异常变化。因此当液压系统发生故障时,必然是系统中某个元件或某些元件有故障,进一步可断定回路中某一点或某几点的参数已偏离了预定值。这说明如果液压回路中某点的工作参数不正常,则系统已发生了故障或可能发生了故障,需维修人员马上进行处理。这样在参数测量的基础上,再结合逻辑分析法,即可快速、准确地找出故障所在。参数测量法不仅可以诊断系统故障,而且还能预报可能发生的故障,并且这种预报和诊断都是定量的,大大提高了诊断的速度和准确性。这种检测为直接测量,检测速度快,误差小,检测设备简单,便于在生产现场推广使用。适合于任何液压系统的检测。测量时,既不需停机,又不损坏液压系统,几乎可以对系统中任何部位进行检测,不但可诊断已有故障,而且可进行在线监测、预报潜在故障。
参数测量法原理
只要测得液压系统回路中所需任意点处工作参数,将其与系统工作的正常值相比较,即可判断出系统工作参数是否正常,是否发生了故障以及故障的所在部位。
液压系统中的工作参数,如压力、流量、温度等都是非电物理量,用通用仪器采用间接测量法测量时,首先需利用物理效应将这些非电量转换成电量,然后经放大、转换和显示等处理,被测参数则可用转换后的电信号代表并显示。由此可判断液压系统是否有故障。但这种间接测量方法需各种传感器,检测装置较复杂,测量结果误差大、不直观,不便于现场推广使用。
通过多年的教学和生产实践,设计出一种简单、实用的液压系统故障检测回路。检测回路通常和被检测系统并联连接,此连接需在被测点设置的双球阀三通接头,它主要用于对系统进行不拆卸检测。它对液压系统所需点的各种参数进行直接的快速检测,不需任何传感器,它可同时检测系统中的压力、流量和温度三个参数,而执行器的速度和转速则可通过测量出口流量的方法计算得到。例如:只要在泵出口及执行器进、出口安装双球阀三通,则通过测量1、2、3三点的压力、流量及温度值,则可立刻诊断出故障所在的大致部位(泵源、控制传动部分或执行器部分)。增加参数检测点,则可缩小故障发生区域。
系统正常工作时,阀门1开启,2关闭,检测口罩上防尘罩,以防污染。检测时,只要将检测回路与检测口接通,即旋紧活接头螺纹并打开阀门2。通过调节阀门1和溢流阀7即可方便地测出压力、流量、温度、速度等参数。但要求系统配管时,将双球阀三通在需检测系统参数的部位当作接管或弯管接头来配置。
1,2.截止球阀3,8.软管4.压力表5.流量计
6.温度计7.溢流阀9.过滤器
参数测量方法
第1步:测压力,首先将检测回路的软管接头与双球阀三通螺纹接口旋紧接通。打开球阀2,关死溢流阀3,切断回油通道,这时从压力表上可直接读出所测点的压力值(为系统的实际工作压力)。
第2步:测流量和温度——慢慢松开溢流阀7手柄,再关闭球阀1。重新调整溢流阀7,使压力表4读数为所测压力值,此时流量计5读数即为所测点的实际流量值。同时温度计6上可显示出油液温度值。
第3步:测转速(速度)——不论泵、马达或缸其转速或速度仅取决于两个因素,即流量和它本身的几何尺寸(排量或面积),所以只要测出马达或缸的输出流量(对泵为输入流量),除以其排量或面积即得到转速或速度值。
2.2参数测量法实例
此系统在调试中出现以下现象:泵能工作,但供给合模缸和注射缸的高压泵压力上不去(压力调至8.0Mpa左右,再无法调高),泵有轻微的异常机械噪声,水冷系统工作,油温、油位均正常,有回油。
从回路分析故障有以下可能原因:
(1)溢流阀故障。可能原因:调整不正确,弹簧屈服,阻尼孔堵塞,滑阀卡住。
(2)电液换向阀或电液比例阀故障。可能原因:复位弹簧折断,控制压力不够,滑阀卡住,比例阀控制部分故障。
(3)液压泵故障。可能原因:泵转速过低,叶片泵定子异常磨损,密封件损坏,泵吸入口进入大量空气,过滤器严重堵塞。
故障诊断方法:
(1)应用传统的逻辑分析逐步逼近法。需对以上所有可能原因逐一进行分析判断和检验,最终找出故障原因和引起故障的具体元件。此法诊断过程繁琐,须进行大量的装拆、验证工作,效率低,工期长,并且只能是定性分析,诊断不够准确。
(2)应用基于参数测量的故障诊断系统。只需在系统配管时,在泵的出口a、换向阀前b及缸的入口c三点设置双球阀三通,则利用故障诊断检测回路,在几秒钟内即可将系统故障限制在某区域内并根据所测参数值诊断出故障所在。检测过程如下:
(a)将故障诊断回路与检测口a接通,打开球阀2并旋松溢流阀7,再关死球阀1,这时调节溢流阀7即可从压力表4上观察泵的工作压力变化情况,看其是否能超过8.0Mpa并上升至所需高压值。若不能则说明是泵本身故障,若能说明不是泵故障,则应继续检测。
(b)若泵无故障,则利用故障诊断回路检测b点压力变化情况。若b点工作压力能超过8.0Mpa并上升至所需高压值,则说明系统主溢流阀工作正常,需继续检测。
若溢流阀无故障,则通过检测c点压力变化情况即可判断出是否换向阀或比例阀故障。
通过检测最终故障原因是叶片泵内漏严重所引起。拆卸泵后方知,叶片泵定子由于滑润不良造成异常磨损,引起内漏增大,使系统压力提不高,进一步发现是由于水冷系统的水漏入油中造成油乳化而失去润滑作用引起的。
3、结论
参数测量法是一种实用、新型的液压系统故障诊断方法,它与逻辑分析法相结合,大大提高了故障诊断的快速性和准确性。首先这种测量是定量的,这就避免了个人诊断的盲目性和经验性,诊断结果符合实际。其次故障诊断速度快,经过几秒到几十秒即可测得系统的准确参数,再经维修人员简单的分析判断即得到诊断结果。再者此法较传统故障诊断法降低系统装拆工作量一半以上。
此故障诊断检测回路具有以下功能:
(1)能直接测量并直观显示液流流量、压力和温度,并能间接测量泵、马达转速。
(2)可以利用溢流阀对系统中被测部分进行模拟加载,调压方便、准确;为保证所测流量准确性,可从温度表直接观察测试温差(应小于±3℃)。
(3)适应于任何液压系统,且某些系统参数可实现不停车检测。
(4)结构轻便简单,工作可靠,成本低廉,操作简便。
这种检测回路将加载装置和简单的检测仪器结合在一起,可做成便携式检测仪,测量快速、方便、准确,适于在现场推广使用。它为检测、预报和故障诊断自动化打下基础。 一个系统在正式投入之前一般都要经过冲洗,冲洗的目的就是要清除残留在系统内的污染物、金属屑、纤维化合物、铁心等,在最初两小时工作中,即使没有完全损坏系统,也会引起一系列故障。所以应该按下列步骤来清洗系统油路:
1)用一种易干的清洁溶剂清洗油箱,再用经过过滤的空气清除溶剂残渣。
2)清洗系统全部管路,某些情况下需要把管路和接头进行浸渍。
3)在管路中装油滤,以保护阀的供油管路和压力管路。
4)在集流器上装一块冲洗板以代替精密阀,如电液伺服阀等。
5)检查所有管路尺寸是否合适,连接是否正确。
要是系统中使用到电液伺服阀,我不妨多说两句,伺服阀得冲洗板要使油液能从供油管路流向集流器,并直接返回油箱,这样可以让油液反复流通,以冲洗系统,让油滤滤掉固体颗粒,冲洗过程中,没隔1~2小时要检查一下油滤,以防油滤被污染物堵塞,此时旁路不要打开,若是发现油滤开始堵塞就马上换油滤。
冲洗的周期由系统的构造和系统污染程度来决定,若过滤介质的试样没有或是很少外来污染物,则装上新的油滤,卸下冲洗板,装上阀工作!
有计划的维护:建立系统定期维护制度,对液压系统较好的维护保养建议如下:
1)至多500小时或是三个月就要检查和更换油液。
2)定期冲洗油泵的进口油滤。
3)检查液压油被酸化或其他污染物污染情况,液压油的气味可以大致鉴别是否变质。
4)修护好系统中的泄漏。
5)确保没有外来颗粒从油箱的通气盖、油滤的塞座、回油管路的密封垫圈以及油箱其他开口处进入油箱。
2. 你好,沃尔沃ⅹc60汽油泵怎么折卸,油泵控制器在什么位置
后备箱侧边保险盒。
释放燃油管路内的剩余压力后断开蓄电池负极电缆,燃油泵维修孔位于行李箱中,打开行李箱盖,拆卸底板垫;燃油泵维修孔位于后排座椅时,翻转后座垫,以露出维修孔,用一字螺钉旋具从边缘轻轻拨开燃油泵堵盖。
分离燃油泵电气插接件,按住卡扣按钮,脱开供油和回油管快速插头,使用油箱锁环扳手(通用维修工具)拆卸锁环,松开固定卡扣,然后取出燃油液面传感器单元、燃油滤清器和燃油泵总成。
对油泵的维护保养注意事项
水会腐蚀油泵,所以含水的物质禁止使用油泵抽真空,含有大量溶剂的物质请首先在烘箱中除去大部分的溶剂后,再使用油泵抽真空。
按正确的顺序使用真空泵,以防止倒吸现象发生,使用完真空烘箱后,务必做好清洁工作,擦干净真空烘箱的玻璃窗,擦净表面防锈油。
3. 真空泵漏油维修保养
真空泵是用各种方法在某一封闭空间中改善、产生和维持真空的装置,现已广泛地运用于冶金、化工、食品、电子镀膜等行业,在企业生产中扮演重要的角色,备受市场用户的推崇和喜爱。然任何东西用久了,都会磨损和出现故障,因此就需要我们及时维修或是更换,从而更好地保证其工作效率及其延长其寿命。下面就为大家介绍真空泵常见故障及其维修保养技巧。
真空泵常见故障维修保养技巧
真空泵常见故障及其维修保养方法,具体如下:
1、泵轴轴承位磨损:真空泵传动部位磨损是常见问题,包括轴承位、轴承座、轴承室、键槽及螺纹等部位磨损。
维修保养技巧:当代西方国家多采用高分子复合材料修复法,应用较多的是美国美嘉华技术体系,具有粘着力强、抗压强度大等性能。此方法修复可免拆卸,免机加工。既无补焊热应力影响,修复厚度也不受限制,同时产品所具有的退让性,可吸收设备的冲击震动,避免再次磨损,并大大延长设备部件使用寿命,为企业节省大量停机时间,创造巨大的经济价值。
2、腐蚀:真空泵腐蚀形态可分为全面腐蚀和局部腐蚀两大类,前者较均匀的发生在真空泵全部表面,后者只是发生在局部,如孔蚀、缝隙腐蚀、晶间腐蚀、应力腐蚀等。
维修保养技巧:采用高分子复合材料对真空泵实施表面有机涂层防腐,具有非常良好的耐化学性能及优异的力学性能和粘接性能,与传统的压力容器焊接修补相比,具有施工简便、成本低、安全性能和修复效果好的特点。
3、壳体裂纹破裂:真空泵因铸造、加工缺陷,内应力及超负荷运行等多种原因经常导致部件出现裂纹或断裂的现象。
维修保养技巧:常规修复方法是采用焊接,但有的零件材质是铸铁、铝合金、钛合金,难以做焊接处理。还有一些易发生爆炸的危险场合,更不易采用焊接修复方法。美嘉华技术是一种“冷焊”技术,可以避免热应力变形,同时材料具有良好的附着力和抗压、抗腐蚀等性能,可最大限度地满足各种设备部件的使用要求,从而在最低成本的投入下有效保证生产,安全、方便、可靠。
4、漏油:这是真空泵最常见的故障之一,主要发生在真空泵的油窗、油箱密封垫、电机轴承轴封三个位置上,其主要原因是真空泵使用时间过长而引起这些部位老化,密封失效,从而导致漏油。
解决办法:更换老化的油窗、轴封、密封垫和已吸满泵油的毛毡垫,维修完成后,注油前应用爱德华真空泵泵油冲洗真空泵,并用溶剂清洗注油口处的滤网,以保持油箱的清洁。
5、抽不到真空泵的极限真空度:首先检查真空系统的气密性,看是否有轻微漏气。其次应打开气镇,让泵运行30分钟左右,来抽干非泵油污染引起的可压缩蒸汽,排除可压缩蒸汽对极限真空度的影响。
解决方法:更换旋片和弹簧,并清洗转子和泵腔;检查排气阀门,观看其动作是否失灵,导致排气不畅,必要时应更换排气阀门。
6、真空泵不能启动:主要表现为真空泵加电后不能启动运转。这时应首先检查真空泵的电路部分,如保险管是否烧毁、电路部分有没有元气件烧坏。在排除电路部分的故障后,应考虑以下两个因素:
(1)电机烧坏。主要为电机定子线圈烧毁,引起原因较多,如瞬间电流过大,电机轴承使用久了被磨损,致使轴承摩擦阻力变大,电机功率加大,引起温度上升,烧毁电机。这时应先检查电机轴承,再检查电机线圈。轴承损坏就更换轴承;电机线圈烧毁则应维修电机,重新绕制定子线圈。轴承和线圈损坏严重时,就需更换电机了。
(2)旋片卡阻。主要表现为旋片与泵腔内表面的摩擦阻力过大,致使电机无法带动旋片。原因是旋片变形,转子内的弹簧张开后不能复位,或弹簧压力和旋片自身离心力的合力过大,导致旋片与泵腔内表面的摩擦阻力过大。这时就应及时修复旋片和弹簧,若不能修复则应更换。
4. 电动汽车真空泵不工作,是啥原因电
真空助力泵的作用是利用发动机工作时产生的真空为驾驶员在踩刹车时提供一定的助力,踩刹车时比较轻便,如果真空助力泵损坏,就没有助力,踩刹车比较沉或者效果不好,甚至没有刹车了。真空泵一般不能进行修理,只能选择更换,必须注意这个部件的性能,才能保证安全行驶。
真空泵的好坏决定于其机械结构和油的质量,使用真空泵时必须把它保护好。如果蒸馏挥发性较大的有机溶剂时,有机溶剂会被油吸收结果增加了蒸气压,从而降低了抽空效能,如果是酸性气体,那就会腐蚀油泵,如果是水蒸气就会使油成乳浊液而抽坏真空泵。
因此使用真空泵时必须注意下列几点:在蒸馏系统和真空泵之间,必须装有吸收装置。蒸馏前必须用水泵彻底抽去系统中有机溶剂的蒸气。如能用水泵抽气的,则尽量用水泵,如蒸馏物质中含有挥发性物质,可先用水泵减压抽降,然后改用油泵。
减压系统必须保持密不漏气,所有的橡皮塞的大小和孔道要合适,橡皮管要用真空用的橡皮管。磨口玻璃涂上真空油脂。
5. 液压系统维修及故障诊断技术有哪
一个液压系统在正式投入之前一般都要经过冲洗,冲洗的目的就是要清除残留在系统内的污染物、金属屑、纤维化合物、铁心等,在最初两小时工作中,即使没有完全损坏系统,也会引起一系列故障。所以应该按下列步骤来清洗系统油路:
1)用一种易干的清洁溶剂清洗油箱,再用经过过滤的空气清除溶剂残渣。
2)清洗系统全部管路,某些情况下需要把管路和接头进行浸渍。
3)在管路中装油滤,以保护阀的供油管路和压力管路。
4)在集流器上装一块冲洗板以代替精密阀,如电液伺服阀等。
5)检查所有管路尺寸是否合适,连接是否正确。
这里有篇网络经验倒是很详细介绍各种问题处理方法,希望可以帮到忙液压站、液压系统的故障怎么处理怎么维护保养
6. 实验室仪器设备的日常维护,保养规则有哪些
实验室设备日常保养与维护方法
实验仪器的保养与维护是实验室管理工作的重要组成部分,搞好仪器的保养与维护,关系到仪器的完好率、使用率和实验教学的开出率,关系到实验成功率。因此,作为实验教师应懂得教学仪器保养与维护的一般知识,掌握保养与维护的基本技能。
仪器一旦吸附灰尘、污垢,不仅影响仪器的性能,缩短使用寿命,直接影响实验效果,而且影响美观和实验者的身心健康。仪器在使用或贮藏中都会沾上灰尘和污垢,做到以防尘防污为主,经常地除尘清洗是搞好仪器保养与维护的重要环节。
(一)除尘
灰尘多为带有微量静电的微小尘粒,常飘浮于空气中,随气流而动,遇物便附着其上,几乎无孔不入。灰尘附着在模型标本上会影响其色泽,运动部件上有灰尘会增大磨损,电器上有灰尘,严重者会造成短路、漏电,贵重精密仪器上有灰尘,严重者会使仪器报废。
清除灰尘的方法很多,主要应依灰尘附着表面的状况及其灰尘附着的程度而定。在干燥的空气中,若灰尘较少或灰尘尚未受潮结成块斑,可用干布拭擦,毛巾掸刷,软毛刷刷等方法,清除一般仪器上的灰尘;对仪器内部的灰尘可用皮唧、洗耳球式打气筒吹气除尘,也可用吸尘器吸尘;对角、缝中的灰尘可将上述几种方法结合起来除尘。不过对贵重精密仪器,如光学仪器、仪表表头等,用上述方法除尘也会损坏仪器,此时应采用特殊除尘工具除尘,如用镜头纸拭擦,沾有酒精的棉球拭擦等。
在空气潮湿,灰尘已结成垢块时,除尘应采用湿布拭擦,对角、缝中的灰垢可先用削尖的软大条剔除,再用湿布试擦,但是对掉色表面、电器不宜用湿布拭擦。若灰垢不易拭擦干净,可用沾有酒精的棉球进行拭擦,或进行清洗。
(二)清洗
仪器在使用中会沾上油腻、胶液、汗渍等污垢,在贮藏保管不慎时会产生锈蚀、霉斑,这些污垢对仪器的寿命、性能会产生极其不良的影响。清洗的目的就在于除去仪器上的污垢。通常仪器的清洗有两类方法,一是机械清洗方法,即用铲、刮、刷等方法清洗;二是化学清洗方法,即用各种化学去污溶剂清洗。具体的清洗方法要依污垢附着表面的状况以及污垢的性质决定。下面介绍几种常见仪器和不同材料部件的清洗方法。
1. 玻璃器皿的清洗
附着玻璃器皿上的污垢大致有两类,一类是用水即可清洗干净的,另一类则是必须使用清洗剂或特殊洗涤剂才能清洗干净的。在实验中,无论附在玻璃器皿上的污垢属哪一类,用过的器皿都应立即清洗。
盛过糖、盐、淀粉、泥砂、酒精等物质的玻璃器皿,用水冲洗即可达到清洗目的。应注意,若附着污物已干硬,可将器皿在水中浸泡一段时间,再用毛刷边冲边刷,直至洗净。
玻璃器皿沾有油污或盛过动植物油,可用洗衣粉、去污粉、洗洁精等与配制成的洗涤剂进行清洗。清洗时要用毛刷刷洗,用此洗涤剂也可清洗附有机油的玻璃器皿。玻璃器皿用洗涤剂清洗后,还应用清水冲净。
对附有焦油、沥青或其他高分子有机物的玻璃器皿,应采用有机溶剂,如汽油、苯等进行清洗。若还难以洗净,可将玻璃器皿放入碱性洗涤剂中浸泡一段时间,再用浓度为5%以上的碳酸钠、碳酸氢钠、氢氧化钠或磷酸钠等溶液清洗,甚至可以加热清洗。
在化学反应中,往往玻璃器皿壁上附有金属、氧化物、酸、碱等污物。清洗时,应根据污垢的特点,用强酸、强碱清洗或动用中和化学反应的方法除垢,然后再用水冲洗干净。使用酸碱清洗时,应特别注意安全,操作者应带橡胶手套防护镜;操作时要使用镊子,夹子等工具,不能用手取放器皿。
此外,洗净的玻璃器皿,最后应用毛巾将其上沾附的水擦干。
2. 光学玻璃的清洗
光学玻璃用于仪器的镜头、镜片、棱镜、玻片等,在制造和使用中容易沾上油污、水湿性污物、指纹等,影响成像及透光率。清洗光学玻璃,应根据污垢的特点、不同结构,选用不同的清洗剂,使用不同的清洗工具,选用不同的清洗方法。
清洗镀有增透膜的镜头,如照相机、幻灯机、显微镜的镜头,可用20%左右的酒精配制清洗剂进行清洗。清洗时应用软毛刷或棉球沾有少量清洗剂,从镜头中心向外作圆运动。切忌把这类镜头浸泡在清洗剂中清洗;清洗镜头不得用力拭擦,否则会划伤增透膜,损坏镜头。
清洗棱镜、平面镜的方法,可依照清洗镜头的方法进行。
光学玻璃表面发霉,是一种常见现象。当光学玻璃生霉后,光线在其表面发生散射,使成像模糊不清,严重者将使仪器报废。光学玻璃生霉的原因多是因其表面附有微生物孢子,在温度、湿度适宜,又有所需″营养物″时,便会快速生长,形成霉斑。对光学玻璃做好防霉防污尤为重要,一旦产生霉斑应立即清洗。
消除霉斑,清洗霉菌可用0.1~0.5%的乙基含氢二氯硅烷与无水酒精配制的清洗剂清洗,或用环氧丙烷、稀氨水等清洗。
使用上述清洗剂也能清洗光学玻璃上的油脂性雾、水湿性雾和油水混合性雾,其清洗方法与清洗镜头的方法相仿。
3. 橡胶件的清洗
实验仪器中用橡胶制成的零部件很多,橡胶作为一种高分子有机物,在沾有油腻或有机溶剂后会老化,使零部件产生形变,发软变粘;用橡胶制成的传动带,若沾有油污会使摩擦系数减小,产生打滑现象。
清洗橡胶件上的油污,可用酒精、四氯化碳等作为清洗剂,而不能使用有机溶剂作为清洗剂。清洗时,先用棉球或丝布蘸清洗剂拭擦,待清洗剂自然挥发干净后即可。应注意,四氯化碳具有毒性,对人体有害,清洗时应在较好通风条件下进行,注意安全。
4. 塑料件的清洗
塑料的种类很多,有聚苯乙烯、聚氯乙烯、尼龙、有机玻璃等。塑料件一般对有机溶剂很敏感,清洗污垢时,不能使用如汽油、甲苯、丙酮等有机溶剂作为清洁剂。清洗塑料件用水、肥皂水或洗衣粉配制的洗涤剂洗擦为宜。
5. 钢铁零部件除锈
钢铁零部件极易锈蚀,为防止锈蚀,教学仪器产品中的钢铁件常涂有油层、油漆等防护层,但即使如此,锈蚀仍常发生。清除钢铁零部件的锈蚀,应根据锈蚀的程度以及零部件的特点采用不同的方法。
对尺寸较大,精密程度不高或用机械方法除锈不易除净钢铁零部件,可采用化学方法除锈,如用浓度为2~25%的磷酸浸泡欲除锈的部件,浸泡时加温至40~80℃为宜,待锈蚀除净后,其表层会形成一层防护膜,再将部件取出浸泡在浓度为0.5~2%的磷酸溶液中约一小时,最后取出烘干即可。
在实验室使用这类化学方法除锈中若操作稍有不当,反会损坏零部件,特别是精密零部件。因此在实验室,除锈不宜多用化学方法,而应采用机械除锈方法,即先用铲、剔、刮等方式将零部件上的锈蚀层块除去,再用砂纸砂磨、打光,最后涂上保护层。
对于有色金属及其合金材料构成的零部件,其除锈方法可参照钢铁零部件的除锈方法进行。但应注意两点,其一,采用化学方法除锈时,应根据零部件材料的化学特性配制和使用不同的化学除锈剂;其二,除去有色金属及其合金构成的零部件的锈蚀,一般采用机械除锈方法为宜。
7. 真空泵的常见故障与修理
真空泵的常见故障与修理:
1.无法达到极限压力
可能的原因是管道,系统或泵部件泄漏,前级泵的极限压力低,润滑油质量太差,油封不好。维护方法是检查系统的泵,修理和纠正前级泵,并更换润滑油或油封。
2.抽速低
可能的原因是管道通道容量低,前级泵的泵速低。这时,有必要增加管道的管道容量,修理或更换前级泵。
3.电机过载
原因可能是入口处的压力太高,转子的端面与端盖的单侧接触,并且前级泵将油返回到罗茨真空泵的泵室中。这是需要调整压力,转子和设备的防返回设置。
4.在极端压力下工作
在极端压力的工作状态下,由于真空泵旋转得非常快,因此气体不会通过壳体表面散热。由于温度突然升高,转子和壳体之间的间隙变小,真空泵停止工作。在其他情况下,真空泵将不能产生真空。
使用真空泵时必须注意下列几点:
①在蒸馏系统和真空泵之间,必须装有吸收装置。
②蒸馏前必须用水泵彻底抽去系统中有机溶剂的蒸气。
③如能用水泵抽气的,则尽量用水泵,如蒸馏物质中含有挥发性物质,可先用水泵减压抽降,然后改用油泵。
④减压系统必须保持密不漏气,所有的橡皮塞的大小和孔道要合适,橡皮管要用真空用的橡皮管。磨口玻璃涂上真空油脂。
8. 变换岗位系统压差
PC脱碳工序常见事故和不正常现象及处理方法序号 事故及不正常现象名称 原因分析 处理方法 1 吸收塔净化气带液 ⑴液位控制太高。⑵液位计产生假液位。⑶液位自动调节系统及报警系统失灵。⑷塔内填料堵塞严重。⑸进塔碳丙流量突然增大。⑹塔卸压过快。 ⑴开大富液出口阀。⑵捅液位计气液相阀,排出气体,使流体流动畅通。⑶检修液位自动调节系统和报警系统。⑷清洗填料。⑸减少碳丙流量和进塔气量。⑹卸压时要缓慢进行。 2 吸收塔富液串气 ⑴液位控制过低。⑵液位计产生假液位。⑶液位自动调节系统及报警系统失灵。⑷进塔碳丙流量突然减少。 ⑴暂时关闭富液出口阀,将液位恢复正常后再打开。。⑵捅液位计气、液相阀,使液体流动畅通。⑶检修液位自动调节系统和报警系统。⑷加大碳丙流量。 3 溶剂泵跳闸或电流超载 ⑴外电路影响。⑵泵或电动机发生故障。⑶涡轮机机械故障,离合器弹性金属片断裂。 ⑴打灯铃信号给合成压缩紧急停车。⑵立即开备用泵,对故障泵或电机进行检修。⑶立即开备用泵,对故障机械进行检修。 4 带压闪蒸器液位计爆破 ⑴超压或震动。⑵玻璃管安装不当。⑶玻璃管质量等其它原因。 ⑴关液位计气液相阀,更换玻璃管,同时要消除超压和震动现象。⑵关液位计气液相阀,更换玻璃管⑶关液位计气液相阀,更换玻璃管 5 溶剂泵抽空 ⑴溶剂泵入口缓冲槽液面过低。⑵进口阀开度太小。⑶系统有大量炭丙泄漏或气体带液太多。⑷开车时泵出口阀开得太大,溶剂来不及循环。 ⑴提高缓冲槽液位。⑵开大进口阀。⑶检查并及时果断处理。⑷开车的泵出口阀应开得小些,待溶剂开始循环后再逐渐开大碳丙流量。 6 常解气中CO2纯度降低 ⑴闪蒸压力高,富液中氢、氮气在闪蒸塔内释放量减少。⑵常解气管道法兰及洗涤塔人孔等处密封不严,造成空气漏入。⑶碱压缩岗位控制不当,造常解气管道真空度过高或波动大。 ⑴降低闪蒸压力,控制在0.5~0.6MPa范围内。⑵查找漏点并处理。⑶联系压缩降低真空度来减少空气漏入量。 7 碳酸丙烯酯被稀释 ⑴变换气温度高,其水蒸汽分压高进入系统后,水蒸汽冷凝成水混入碳丙造成稀释。⑵变换气带水。⑶空气湿含量大,气提空气带入水蒸气多。⑷稀液补充量多。 ⑴降低变换气温度,且始终控制进脱碳塔变换气温度低于溶液温度,让变换气中水份进塔为一蒸发过程⑵加强变换气油水分离器的排污,防止带水。⑶控制好稀液补充量及稀液最终浓度及气提气液比。⑷控制好稀液补充量,及时分析系统碳丙含水量,做到定量补充。 8 净化气中CO2含量超标 ⑴脱碳塔气液比太大,即进脱碳塔溶剂流量小。⑵进脱碳塔的碳丙液温度高。⑶进脱碳塔的碳丙流中CO2含量高⑷碳丙液被稀释。⑸脱碳塔压力低。⑹脱碳塔内填料有堵塞现象,气液偏流,接触不良。⑺生产负荷太大,超负荷运行。 ⑴适当加大进脱碳塔的碳丙流量,降低塔内气液比。⑵加大碳丙冷却器冷却水量或使用温度低的冷却水,以提高冷却效果,降低进脱碳塔碳丙温度,如果冷却器有结垢堵塞现象,应停车清洗。⑶提高气提气液比等相应措施,降低贫液中CO2含量,提高进脱碳塔的碳丙液贫度。⑷降低碳丙液中的水含量,可补充新碳丙液或更换部分,防止碳丙液被稀释。⑸脱碳压力控制在规定指标内。⑹清洗脱碳塔内填料,防止气液偏流。⑺降低负荷,不可超负荷运行。 9 CO2吸收塔塔底液位波动大 ⑴闪蒸塔压力波动大,造成富液流量波动。⑵溶剂泵打液量不稳,系统压力波动大。⑶空气压力低,造成吸收塔富液闪蒸塔气动阀失灵。⑷假液位,仪表显示液位计失灵。 ⑴通过补压控制闪蒸气相阀等措施稳定闪蒸塔压力。⑵稳定溶剂泵打液量及系统压力。⑶联系空压站迅速提高空气压力。⑷联系相关人员修理。
9. 计量加药泵打不出水是怎么回事
计量加药泵又叫溶剂泵,可以,满足多种工艺定量需求,也有出现故障的时候,如果计量加药泵不出水,可能是以下六个原因:
1、过滤器与进药的管子堵塞。解决办法:清洗即可;
2、进药口与出药口的球阀由于异物堵住。解决办法:清洗即可;
3、进药口与出药口的球阀封闭性不好,漏气。解决办法:将球阀用力旋几下,使之与底座紧密结合;
4、进出药口的密封圈松动或脱落。解决办法:检查时须小心上下共有4个;
5、膜片破损。解决办法:换掉,重新安装;
6、连杆组卡死。解决办法:一种是维修,把连杆组零部件拆开,生锈的部位用锉刀磨平再加上润滑油即可;二是换新的连杆组;
7、马达烧掉。解决办法:换掉;
8、调整凸轮被调到“0”的位置,流量为零也打不出药水。解决办法:将调整凸轮调整使其刻度不为0。