⑴ 维修伺服驱动器比维修变频器好吗
很不一样,变频针对三相电机(普通电机),目的多是调速,只要功率合适的三相电机一般都可匹配。
伺服驱动器,针对伺服电机,一般来说,一种型号的驱动器只能配一种伺服电机,使用伺服的目的多是精确定位,精确调速,伺服做到大功率很难,大功率伺服价格也很昂贵。
一般的使用状况,像高速高精度定位的设备使用伺服,大功率调速的地方使用变频。
像中央空调系统,电梯等等很多地方使用变频;
像纺机,贴片机,插件机多使用伺服。
其实很多情况都是两种系统配合使用,根据需要安排设计。
⑵ 伺服电机维修技巧
这种验证方法,也可以用作对齐方法。 此时C信号的过零点与电机电角度相位的-30度点对齐。 如果想直接和电机电角度的0度点对齐,可以考虑: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察编码器的C相信号由低到高的过零点和电机U相反电势波形由低到高的过零点,最终使2个过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 由于普通正余弦编码器不具备一圈之内的相位信息,而Index信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而在此也不作为讨论的话题。 如果可接入正余弦编码器的伺服驱动器能够为用户提供从C、D中获取的单圈绝对位置信息,则可以考虑: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.利用伺服驱动器读取并显示从C、D信号中获取的单圈绝对位置信息; 3.调整旋变轴与电机轴的相对位置; 4.经过上述调整,使显示的绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的绝对位置点,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算绝对位置点都能准确复现,则对齐有效。 此后可以在撤掉直流电源后,得到与前面基本相同的对齐验证效果: 1.用示波器观察正余弦编码器的C相信号和电机的UV线反电势波形; 2.转动电机轴,验证编码器的C相信号由低到高的过零点与电机的UV线反电势波形由低到高的过零点重合。 如果利用驱动器内部的EEPROM等非易失性存储器,也可以存储正余弦编码器随机安装在电机轴上后实测的相位,具体方法如下: 1.将正余弦随机安装在电机上,即固结编码器转轴与电机轴,以及编码器外壳与电机外壳; 2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 3.用伺服驱动器读取由C、D信号解析出来的单圈绝对位置值,并存入驱动器内部记录电机电角度初始安装相位的EEPROM等非易失性存储器中; 4.对齐过程结束。 由于此时电机轴已定向于电角度相位的-30度方向,因此存入的驱动器内部EEPROM等非易失性存储器中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻由编码器解析出来的与电角度相关的单圈绝对位置值与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。 这种对齐方式需要伺服驱动器的在国内和操作上予以支持和配合方能实现,而且由于记录电机电角度初始相位的EEPROM等非易失性存储器位于伺服驱动器中,因此一旦对齐后,电机就和驱动器事实上绑定了,如果需要更换电机、正余弦编码器、或者驱动器,都需要重新进行初始安装相位的对齐操作,并重新绑定电机和驱动器的配套关系。 旋转变压器的相位对齐方式 旋转变压器简称旋变,是由经过特殊电磁设计的高性能硅钢叠片和漆包线构成的,相比于采用光电技术的编码器而言,具有耐热,耐振。耐冲击,耐油污,甚至耐腐蚀等恶劣工作环境的适应能力,因而为武器系统等工况恶劣的应用广泛采用,一对极(单速)的旋变可以视作一种单圈绝对式反馈系统,应用也最为广泛,因而在此仅以单速旋变为讨论对象,多速旋变与伺服电机配套,个人认为其极对数最好采用电机极对数的约数,一便于电机度的对应和极对数分解。 旋变的信号引线一般为6根,分为3组,分别对应一个激励线圈,和2个正交的感应线圈,激励线圈接受输入的正弦型激励信号,感应线圈依据旋变转定子的相互角位置关系,感应出来具有SIN和COS包络的检测信号。旋变SIN和COS输出信号是根据转定子之间的角度对激励正弦信号的调制结果,如果激励信号是sinωt,转定子之间的角度为θ,则SIN信号为sinωt×sinθ,则COS信号为sinωt×cosθ,根据SIN,COS信号和原始的激励信号,通过必要的检测电路,就可以获得较高分辨率的位置检测结果,目前商用旋变系统的检测分辨率可以达到每圈2的12次方,即4096,而科学研究和航空航天系统甚至可以达到2的20次方以上,不过体积和成本也都非常可观。 商用旋变与伺服电机电角度相位的对齐方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出; 2.然后用示波器观察旋变的SIN线圈的信号引线输出; 3.依据操作的方便程度,调整电机轴上的旋变转子与电机轴的相对位置,或者旋变定子与电机外壳的相对位置; 4.一边调整,一边观察旋变SIN信号的包络,一直调整到信号包络的幅值完全归零,锁定旋变; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,信号包络的幅值过零点都能准确复现,则对齐有效 。 撤掉直流电源,进行对齐验证: 1.用示波器观察旋变的SIN信号和电机的UV线反电势波形; 2.转动电机轴,验证旋变的SIN信号包络过零点与电机的UV线反电势波形由低到高的过零点重合。 这个验证方法,也可以用作对齐方法。 此时SIN信号包络的过零点与电机电角度相位的-30度点对齐。 如果想直接和电机电角度的0度点对齐,可以考虑: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察旋变的SIN信号包络的过零点和电机U相反电势波形由低到高的过零点,最终使这2个过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 需要指出的是,在上述操作中需有效区分旋变的SIN包络信号中的正半周和负半周。由于SIN信号是以转定子之间的角度为θ的sinθ值对激励信号的调制结果,因而与sinθ的正半周对应的SIN信号包络中,被调制的激励信号与原始激励信号同相,而与sinθ的负半周对应的SIN信号包络中,被调制的激励信号与原始激励信号反相,据此可以区别判断旋变输出的SIN包络信号波形中的正半周和负半周,对齐时,需要取sinθ由负半周向正半周过渡点对应的SIN包络信号的过零点,如果取反了,或者未加准确判断的话,对齐后的电角度有可能错位180度,从而有可能造成速度外环进入正反馈。 如果可接入旋变的伺服驱动器能够为用户提供从旋变信号中获取的与电机电角度相关的绝对位置信息,则可以考虑: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.利用伺服驱动器读取并显示从旋变信号中获取的与电机电角度相关的绝对位置信息; 3.依据操作的方便程度,调整旋变轴与电机轴的相对位置,或者旋变外壳与电机外壳的相对位置; 4.经过上述调整,使显示的绝对位置值充分接近根据电机的极对数折算出来的电机-30度电角度所应对应的绝对位置点,锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,上述折算绝对位置点都能准确复现,则对齐有效。 此后可以在撤掉直流电源后,得到与前面基本相同的对齐验证效果: 1.用示波器观察旋变的SIN信号和电机的UV线反电势波形; 2.转动电机轴,验证旋变的SIN信号包络过零点与电机的UV线反电势波形由低到高的过零点重合。 如果利用驱动器内部的EEPROM等非易失性存储器,也可以存储旋变随机安装在电机轴上后实测的相位,具体方法如下: 1.将旋变随机安装在电机上,即固结旋变转轴与电机轴,以及旋变外壳与电机外壳; 2.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 3.用伺服驱动器读取由旋变解析出来的与电角度相关的绝对位置值,并存入驱动器内部记录电机电角度初始安装相位的EEPROM等非易失性存储器中; 4.对齐过程结束。 由于此时电机轴已定向于电角度相位的-30度方向,因此存入的驱动器内部EEPROM等非易失性存储器中的位置检测值就对应电机电角度的-30度相位。此后,驱动器将任意时刻由旋变解析出来的与电角度相关的绝对位置值与这个存储值做差,并根据电机极对数进行必要的换算,再加上-30度,就可以得到该时刻的电机电角度相位。 这种对齐方式需要伺服驱动器的在国内和操作上予以支持和配合方能实现,而且由于记录电机电角度初始相位的EEPROM等非易失性存储器位于伺服驱动器中,因此一旦对齐后,电机就和驱动器事实上绑定了,如果需要更换电机、旋变、或者驱动器,都需要重新进行初始安装相位的对齐操作,并重新绑定电机和驱动器的配套关系。
麻烦采纳,谢谢!
⑶ 哪里有专业维修伺服器,变频器,PLC的公司
湖北武汉啊来,我们是武汉森信电气工程自技术有限公司的维修技工,本公司专门维修国内外品牌变频器。
日本技术变频器:富士、三菱、安川、三垦、明电舍、日立、松下、春日、东芝、OMRON、东洋等变频器
欧美技术变频器:西门子、ABB、丹佛斯、伦茨、施耐德、瓦萨、KEB、SEW、CT、AB变频器
台湾技术变频器:台达、台安、东元、普传、爱德利变频器
韩国技术变频器:LG、三星、现代变频器
国产变频器:深圳易驱变频器、深圳正弦变频器、森兰、安邦信、康沃、英威腾、海利普、惠丰、华为、时代、星河、科姆龙、阿尔法、富凌、四方、日博、易能、三基变频器
电梯专用型变频器:富士VG3、VG5、VG7、科比F4洗涤设备专用变频器:安川616G5、LG、台达、西门子
其它工控设备
PLC、伺服驱动器、软启动器、直流调速器、触摸屏、工业电
⑷ 请问伺服电机抱闸失灵好修吗有必要换新电机吗
一个抱闸有问题就要想着换电机,我只想说如果是土豪请随意。
昆山朗版鑫威机电作为权一家有着15年伺服电机维修经验的老牌企业。
从专业的角度上来说,抱闸有故障问题不大,很多人都可以修
但重点就在于维修抱闸时,需要对伺服电机上的编码器,及轴承,转子进行拆卸后才能安装。
很多人就会卡在编码器的安装调试上,往往原问题不大,却能造成越修越坏
建议还是要找专业公司,像朗鑫威就只修伺服电机和电主轴,这是国内维一 一家专职修理伺服电机的。 苏州,东莞都有点,很方便选择
⑸ 伺服电机系统常见故障及维修措施是什么
检测器件是数控机床伺服系统的重要组成部分,用以检测各控制轴的位移和速度,在实际使用中,由于磨损和污染,经常会出现检测器件故障,造成伺服电机系统无法驱动机床正常运行。
1、机械振荡(加/减速时)
引发此类故障的常见原因有:
①脉冲编码器出现故障。此时应检查速度检测单元反馈线端子上的电压是否在某几点电压下降,如有下降表明脉冲编码器不良,更换编码器;
②脉冲编码器十字联轴节可能损坏,导致轴转速与检测到的速度不同步,更换联轴节;
③测速发电机出现故障。修复,更换测速机。维修实践中,测速机电刷磨损、卡阻故障较多,此时应拆下测速机的电刷,用纲砂纸打磨几下,同时清扫换向器的污垢,伺服电机再重新装好。
2、机械运动异常快速(飞车)
此类故障,应在检查位置控制单元和速度控制单元的同时,还应检查:①脉冲编码器接线是否错误;②脉冲编码器联轴节是否损坏;③检查测速发电机端子伺服电机是否接反和励磁信号线是否接错。
3、主轴不能定向移动或定向移动不到位
此类故障,应在检查定向控制电路的设置调整、检查定向板、主轴控制印刷电路板调整的同时,还应检查位置检测器(编码器)的输出波形是否正常来判断编码器的好坏(应注意在设备正常时测录编码器的正常输出波形,以便故障时查对)。
4、坐标轴进给时振动
应检查电机线圈、机械进给丝杠同电机的连接、伺服系统、脉冲编码器、联轴节、测速机。
5、出现NC错误报警
NC报警中因程序错误,操作错误引起的报警。如FANUC6ME系统的Nc出现090.091报警,原因可能是:①主电路故障和进给速度太低引起;②脉冲编码器不良;③脉冲编码器电源电压太低(此时调整电源15V电压,使主电路板的+5V端子上的电压值在4.95-5.10V内);④没有输人脉冲编码器的一转信号而不能正常执行参考点返回。
6、伺服系统报警
伺服系统故障时常出现如下的报警号,如FANUC6ME系统的416、426、436、446、456伺服报警;STEMENS880系统的1364伺服报警;STEEMENS8系统的114、104等伺服报警,此时应检查:①轴脉冲编码器反馈信号断线、短路和信号丢失,用示渡器测A、B相一转信号,看其是否正常;②编码器内部故障,造成信号无法正确接收,检查其受到污染、太脏、变形等。
(1)西门子伺服电机维修之OH报警。OH为速度控制单元过热报警,发生这个报警的可能原因有:
①印制电路板上S1设定不正确。
②伺服单元过热。散热片上热动开关动作,在驱动器无硬件损坏或不良时,可通过改变切削条件或负载,排除报警。
③再生放电单元过热。可能是Q1不良,当驱动器无硬件不良时,可通过改变加减速频率,减轻负荷,排除报警。
④电源变压器过热。当变压器及温度检测开关正常时,可通过改变切削条件,减轻负荷,排除报警,或更换变压器。
⑤电柜散热器的过热开关动作,原因是电柜过热。若在室温下开关仍动作,则需要更换温度检测开关。
(2)西门子伺服电机维修之OFAL报警。数字伺服参数设定错误,这时需改变数字伺服的有关参数的设定。对于FANUC0系统,相关参数是8100,8101,8121,8122,8123以及8153~8157等;对于10/11/12/15系统,相关参数为1804,1806,1875,1876,1879,1891以及1865~1869等。
(3)西门子伺服电机维修之FBAL报警。FBAL是脉冲编码器连接出错报警,出现报警的原因通常有以下几种:
①编码器电缆连接不良或脉冲编码器本身不良。
②外部位置检测器信号出错。
③速度控制单元的检测回路不良。
④电动机与机械间的间隙太大。
(4)伺服驱动器上的7段数码管报警FANUCC系列、α/αi系列数字式交流伺服驱动器通常无状态指示灯显示,驱动器的报警是通过驱动器上的7段数码管进行显示的。根据7段数码管的不同状态显示,可以指示驱动器报警的原因。
⑹ 伺服驱动器维修在哪里
可以发过来给您检测,专业伺服驱动器维修
⑺ 我想知道伺服电机如果坏了能维修吗
伺服电机一般是修不了的,有的是树脂封闭,就是不封闭的我们只能换轴承,线圈自己也绕不了的,
⑻ 伺服电机维修需要那些工具,怎么拆装伺服电机求那位大侠不吝赐教,非常感谢
拆卸要十字一字螺丝刀,拉力器,锤子,内六方,内六花扳手,内外卡簧钳等。拆下后维修编码器要万用表,示波器,信号发射器,电桥和配件等。
⑼ 如何维修伺服电机
华北地区最大的综合维修服务商-京电测维科技,尤其在伺服电机、伺服驱动器方面的维修能力突出。
伺服电机和伺服驱动器维修通常是相互的,属于弱电、工控领域,有别于纯电机机械,轴承,绕线圈等低技术含量维修,这里给出几点维修建议:
1,非专业人员请勿随便开盖拆卸,避免扩大故障,二次维修
该设备属于精密设备,不能受撞击,受灰尘,振动,编码器与电机体的同步关系导致了不能随意拆卸安装,否则会出现过流,过载,过速等问题。我们维修的故障类型30%以上是由业余人员或普通电机维修人员扩大二次故障送修的。
2,判断故障部位最佳的办法是替换
由于伺服控制本身闭环的复杂性,出故障时,需要判断是哪个部位坏了,伺服电机客户误判率也很高,这里的建议是,一是结合故障和报警号,有条件的能替换就替换测试,无条件的请与专业公司沟通后,带上驱动器,电机,编码器线送修
3,专业维修单位与业余的区别是,一要有投入巨大的测试平台,二是更偏重电子维修能力和经验。该设备最大功率通常不超过7.5KW,不同于大型普通电机,发电机的维修,通常体积都不大(主轴除外),不需要大开间的厂房设备,由于编码器的特殊性,一对一的特殊性,真正维修做到可以试机的投入成本很高。除测试平台,还需要用示波器,芯片测试仪,电桥等检测设备、必要的拆卸绕线工具及相关人员等。
我们拥有的测试平台包括数十种。欢迎参观咨询
提示:千万别找一般的偏机械维的普修通电机维修厂,别看厂房大,没啥大用,还是需要找找偏电子有机修的,最重要的是要有检测测试平台,所谓平台是带着编码器测试整机的
⑽ 变频器维修哪家修得好
可以找苏州东辉自动化维修
可以浏览一下该公司的网站,我们一直是找在一家公司维修的,是苏州地区比较专业的自动化维修中心。
利用变频技术对交流电机进行调速不仅在性能指标上远超过传统的直流调速,而且在诸多方面都优于真流电动机调速。因此,在各个领域,变频器都得到了广泛的使用。然而在长期的运行过程中,变频器中的元器件不可避免地会因为各种原因出现这样或那样的故障。
快速地对变频器故障进行修复,不但要有一定的理论基础,而且还必须有大量的实践经验。
现介绍。
1.逐步缩小法
就是通过对故障现象进行分析、对测量参数做出判断,把故障产生的范围逐步地缩小,最后落实到故障产生的具体电路或元器件上的判断过程。
例如,一台变频器通电后,发现操作盘上无显示。首先判断是无直流嵌电(可用万用表测量其直流电源电压),经查发现高压指示灯是亮的(测量PN电压进一步证实),说明不是主回路高压电路的故障,而是开关电源中给操作盘供电的一路电源有问题。测该路电源的交流电压正常.但无直流输出,又无短路现象,经查是该电源电路的整流管损坏。
上述检修过程就是典型的逐步缩小法。
它的整个过程就是通过分析和参数测量,判断、肯定、否定几个回合,最后肯定是整流管损坏。
2.顺藤摸瓜法
就是根据变频器工作原理,顺着故障现象,沿着信号通路,逐步深入,直达故障发生点,最终寻找到故障产生部位的一种方法。
例如,一台变频器输出电压三相不平衡。这种故障是由两种可能性造成的:一种可能是逆变桥内6个单元至少有1个单元损坏(开路),另一种可能是6组驱动信号中至少有1组损坏。假设已确定有1个逆变单元无驱动信号,欲进一步确定驱动电路中故障的产生部位,即可采用“顺藤摸瓜”法来寻找。具体到这个例子,可从上而下地查,即从驱动信号的源头,也就是CPU的输出端起往下查。
CPU输出有信号时检查光耦输入端有无信号,若无信号,则CPU到光耦输入端有断线现象。若有信号,则要检查光耦输出端,看光耦输出端有无信号。若无信号,则表明光耦损坏。若有信号,则再检查放大电路的输入端和输出端,若输入端有信号而输出端无信号,则表明故障产生在放大电路(放大管或相关元器件损坏)。
当然也可以从下向上来查,即从驱动信号输出端开始,也就是逆变器件的控制端往上查。逆变器件控制端无驱动信号,检查放大电路的输出端;有信号则表明放大电路与逆变器件控制端有断电现象。若无信号则再检查放大电路的输入端,输入端有信号则表明放大管或相关元器件损坏.若仍无信号此时检查光耦输出端看有无信号。若有信号,则放大电路输入端与光耦输出端有断线现象.若无信号,则继续向上检查光耦输入端看有无信号。
若此时有信号,则表明可能是光耦损坏或输出端电源不正常。若光耦输入端无信号而CPU输出端有信号,则CPU与光耦输入端之间有断线现象,或光耦输入端直流电源不正常。
3.直接切入法
就是根据故障现象直接判断故障位置,更换故障元器件,快速排出故障。对于各电路工作原理掌握得比较扎实又有丰富的修理经验,修理水平较高的人员,通常采用直接切入法。另外,对于一些比较典型的故障也可以采用直接切入法来处理。
例如一台安川616PC5型变频器接通电源后.操作盘上无任何显示,但高压指示灯亮.且其它低压直流供电正常。根据附图所示的开关电源部分电路图,我们判断为电源侧有短路现象(怀疑可能是滤波电容器老化损坏导致电源侧短路),直接更换新电容,短路现象消除。接通变频器电源,发现操作盘这一路仍无直流电压,结合原理分析,疑为整流二极管损坏开路。更换整流二极管后,这一路直流供电恢复正常,变频器也恢复正常工作。
由上述检修过程可知,如果维修人员对变频器各部分的原理很熟悉,根据此台变频器无显示故障,直接就可以判断出来这是由于提供给操作盘的低压直流供电这路电源出了问题,导致操作盘无直流供电,出现无任何显示故障。
4.电位、电压分析法
变频器在不同的状态下,各部分电路中各点都具有不同的电位分布,因此,可以通过测量和分析电路中某些检测点的电位.确定电路故障的类型和部位。另外阻抗的变化造成了电流的变化,电位的变化也造成了电压的变化,因此,也可采用电流分析法和电压分析法确定电路故障。5.菜单法
即根据故障现象和特征,将可能引起这种故障的各种原因顺序罗列出来,然后一个个地查找和验证,直到确诊出真正的故障原因和故障部位。此法比较适合初学者使用,此处不再详加赘述。