⑴ 感应式快速充电电路设计如何完成的
简单,买一个拆开,依葫芦画瓢,就可得到pcb文件和器件清单。先照做后升级即可。
⑵ 谁能帮我看看这个电路图啊,电动汽车充电器的一部分,主要是分析一下放大电路都是什么作用吧,谢谢啦!
图纸不全分不清哪是电流检测、哪是电压检测,你让大家猜着帮你啊!
⑶ 无线充电器功率放大电路可以怎么改进
《关于以上无线充电器功率放大电路可以怎么改进》?
①、向以上这无线充电版器功率放大电路的改进权,那首先得有无线充电器的电路原理图,然后根据电路原理图中的每个集成电路芯片的背景资料以及芯片周围元件的设计和计算整改出一套完整资料,说实了,这并不是单独整改功率放大电路问题,比如说,那个纯铜线圈和PCB板分离设计等,以上那些想法、构思是可取的,但是,这需要有一定的专业技能,否则是很难搞定的。仅供参考!
⑷ 放大电路是如何放大交流小电流的
并不是你抄想象的那样的
你先当那三袭极管的C,E两极是一个开关
三极管截止的时候,等于没有,你把这三极管从电路去掉,直流电源会经过RC对电容进行充电,电流就会经过负载
当三极管导通的时候,CE两极相当于短路,由于电容在之前就充电过了,就是里面已经有电量了
电流就会经过三极管的CE两极放电,这个时候,电流和刚才的电流是反的
你再把这个理论套入交流的放大中就知道了
电容实际上在放大过程中,就是不断的充电放电的过程
⑸ 充电电路原理图解释
上图为充电器原理图,下面介绍工作原理。
1.恒流、限压、充电电路。该部分由02、R6、R8、ZD2、R9、R10和R13等元件组成。当接通市电叫,开关变压器T1次级感应出交流电压。经D4、C4整流滤波后提供约12.5V直流电压。一路通过R6、R1l、R14、LED3(FuL饱和指示灯)和R15形成回路,LED3点亮,表示待充状态:另一路电压通过R8限流,ZD2(5V1)稳压,再由并联的R9、R10和R13分压为Q2b极提供偏置,使Q2处于导通预充状态。恒流源机构由Q2与其基极分压电阻和ZD2等元件组成。当装入被充电池时12.5V电压即通过R6限流,经Q2的c—e极对电池恒流充电。这时由于Ul(Ul为软封装IC型号不详)与R6并联。R6两端的电压降使其①脚电位高于③脚,②脚就输出每秒约两个负脉冲。
使LED2(CH充电指示灯)频频闪烁点亮,表示正在正常充电。随着被充电池端电压的逐渐升高,即Q2 e极电位升高,升至设定的限压值(4.25V)时,由于Q2的b极电位不变,使Q2转入截止,充电结束。这时Q2c极悬空,Ul的③脚呈高电位,U1的②脚输出高电平,LED2熄灭。这时电流就通过R6、R11、R14限流对电池涓流充电,并点亮LED3。LED3作待充、饱和、涓流充电三重指示。
2.极性识别电路。此部分由R12和LEDl(TEST红色极性指示灯)构成。保护电路由Q3和R7等元件构成。假设被充电池极性接反了。
LED1就正偏点亮,警告应切换开关K,才能正常充电。如果电池一旦接反,Q3的I)极经R7获得正偏置,Q3导通,Q2的b极电位被下拉短路而截止,阻断了电流输出(否则电池就会被反充而报废),从而保护了电池和充电器两者的安全。
⑹ 1117-ADJ充电电路的工作原理
该充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。在150~250V、40mA的交流市电输入时,可输出300±50mA的直流电流。
该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。开关管的截止时间取决于负载电流的大小。开关管的导通/截止由电平开关从输出电压取样进行控制。因此这种电源也称非周期性开关电源。
220V市电经VD1~VD4桥式整流后在V2的集电极上形成一个300V左右的直流电压。由V2和开关变压器组成间歇振荡器。开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。由于正反馈作用,V2 Ic 迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使VD7导通,向负载输出一个9V左右的直流电压。开关变压器的反馈绕组产生的感应脉冲经VD5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。此电压若超过稳压管VD17的稳压值,VD17便导通,此负极性整流电压便加在V2的基极,使其迅速截止。V2的截止时间与其输出电压呈反比。VD17的导通/截止直接受电网电压和负载的影响。电网电压越低或负载电流越大,VD17的导通时间越短,V2的导通时间越长,反之,电网电压越高或负载电流越小,VD5的整流电压越高,VD17的导通时间越长,V2的导通时间越短。V1是过流保护管,R5是V2Ie的取样电阻。当V2Ie过大时,R5上的电压降使V1导通,V2截止,可有效消除开机瞬间的冲击电流,同时对VD17的控制功能也是一种补偿。VD17以电压取样来控制V2的振荡时间,而V1是以电流取样来控制V2振荡时间的。
如果是为镍镉、镍氢电池充电,由于这类电池存在一定的记忆效应,需不定时对其进行放电。SW1是镍镉、镍氢、锂离子电池充电转换开关。SW1与精密基准电源SL431为运放LM324⑨提供两个不同的精密基准源,由SW1切换。在给镍镉、镍氢电池充电时,LM324⑨脚的基准电压约0.09V(空载);在给锂离子电池充电时,LM324⑨脚的基准电压约为0.08V(空载),这种设计是由这两种类型电池特有的化学特性决定的。按下SW2,V5基极瞬间得一低电平而导通,可充电池上的残余电压通过V5的ec极在R17上放电,同时放电指示灯VD14点亮。在按下SW2后会随即释放,这时可充电池上的残余电压通过R16、R13分压,C9滤波后为V4的基极提供一个高电平,V4导通,这相当于短接SW2。随着放电时间的延长,可充电池上的残余电压也越来越低,当V4基极上的电压不能维持其继续导通时,V4截止,放电终止,充电器随即转入充电状态。
由于锂电不存在记忆效应,当电池低于3V时便不能开机,其残余电压经电阻R40、R41分压后得到2.53V送入运算放大器的同相端③、⑤、⑩脚,由于LM324⑨脚电压在负载下始终为2.66V,因此⑧脚输出低电平,V3导通,+9V电压通过V3ec极、VD8向可充电池充电。IC1d在电容C6的作用下,{14}脚输出的是脉冲信号,由于IC1⑧脚为低电平,因此VD12处于闪烁状态,以指示电池正在充电,对应容量为20%。随着充电时间的延长,可充电池上的电压逐渐上升。当R40、R41的分压值约等于2.58V时,即IC1③脚等于2.58V时,IC1②脚经电阻分压后得2.57V,其①脚输出高电平(由于在充电时,IC1⑨脚电压始终是2.66V,V6导通;反之在空载时,IC1⑨脚为0.08V,V6截止),VD10、VD11点亮,对应指示容量为40%、60%。当R40、R41的分压值上升到2.63V时,即IC1⑤脚等于2.63V,其⑥脚经电阻分压后得2.63V,⑦脚输出高电平,VD9点亮,对应充电容量为80%。只有IC1⑩脚电压≥2.66V时,⑧脚才输出高电平,VD13点亮,对应充电容量为100%。即使VD13点亮时,VD12仍处于闪烁状态,这表示电池仍未达到完全饱和。只有IC1⑧脚电压>6.5V时,VD12才逐渐熄灭,表示电池完全充至饱和。
VD16在电路中起过充、过流保护作用,VD8起反向保护作用,避免充电器断电后,电池反向放电。
⑺ 我有一个太阳能电池板输出电压在5V左右,我想为手机充电但输出电流太小请问该怎么设计电流放大电路呢
如果打算提高充电电流,必须两块或者3块5伏的电池板并联使用。一块电池板输出电流太小,加电流放大器也不行,无源之水啊。
⑻ 请问各种充电器,室内天线信号放大器的原理是什么
我看不简单啊,有时看起来容易的,真的想搞明白并不容易的。所谓看花容易回绣花难。
像充电器,有开关电源电答路(脉冲宽度调制电路 ),变压器降压(同时也隔离市电)、稳压电路(反馈电路)、指示灯控制电路、充电极性转换电路....你看到元件不多,那是因为它使用了集成电路(IC)、贴片的电阻、电容等。.......基本的电路元件就是电阻、电容、三极管、二极管、变压器.....
信号放大器,电路原理又不同了。充电器是“电压转换”,放大器是“放大信号”。它里面也有集成电路的。
集成电路是很复杂的,你看过计算器、电子表内部的电路吗,你拆过键盘、鼠标吗,你见过装在电脑主板上的CPU、内存条(RAM)吗,它们内部都有集成电路(IC).它内部的元件少的几百、几千万、多的有几亿、几十亿呢......
⑼ 共射放大电路的电容C1C2是怎么进行充放电的呢,懂的就可以进,要说大白话哦!
C1接到正向信号时,C1反向充电,V1导通经过电流变大,R2电压降变大C2正极电位降低,C2放电;
C1接到反向信号时,C1反向放电,V1导通经过电流变小,R2电压降变小C2正极电位升高,C2充电。
⑽ 怎样把充电器输出5V 500mA的电流,放大至5V 2A。求电路
通过电路改是不可能的,输出功率怎么能变大? 最快的办法是扔掉再买一个