① 天线接收信号的原理
接收信号的原理:
电磁波从发射天线辐射出来以后,向四面传播出去,若电磁波传播瞎拆的方向上放一对称振子,则在电磁波的作用下,天线振子上就会产生感应电动势。如此时天线与接收设备相连,则在接收设备输入端就会产生高频电流。
这样天线就起着接收作用并将电磁波转化为高频电流,也就是说此时天线起着接收天线的作用,接收效果的好坏除了电波的强弱外还取决于天线的方向性和半边对称振子与接收设备的匹配。
电磁波的接收率又和这个振荡电路本身的频率有关。
如果两个频率相同,达到“共振”,就会很强。 想吸收可见光,那要纳米级的天线,还要光频的震荡电路,这都是不可能的。所以我们不能用天线接收无线电波的方法接收光波。
天线的吸收率很明显比较低,一般来讲,比太阳能电池板低很多。
(1)天线电路模型扩展阅读:
移动通信常用的基站天线、直放站天线与室内天线。
1、板状天线
无论是GSM 还是CDMA, 板状天线是用得最为普遍的一类极为重要的基站天线。这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能 可靠以及使用寿命长。
板状天线也常常被用作为直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。
2、天线指标
频率范围: 824-960 MHz
频带宽度: 70MHz
增益: 14 ~ 17 dBi
极化: 垂直
标称阻抗: 50 Ohm
电磨塌枣压驻波比≤ 1.4
前后比 >25dB
3、板状天线
(1)采用多个半波振子排成一个垂直放置的直线阵
(2)在直线阵的一侧加一块反射板 (以带反射板的二半波振子垂直阵为例)
增益为 G = 11 ~ 14 dBi
(3)为提高板状天线的增益,还可以进一步采用八个半波振子排阵
前面已指出,四个半波振子排成一个垂直放置的直线阵的增益约为 8 dBi;一侧加有一个反射板的四元式直线阵,即常规板状天线,其增益约为 14 ~ 17 dBi。
一侧加有一个反射板的八元式直线阵,即加长型板状天线,其增益约为 16 ~ 19 dBi。 不言而喻,加长型板状天线的长度,为常规板状天线的一倍,达 2.4 m 左右。
4、 高增益栅状
从性能价格比出发,人们常常选用栅状抛物面天线作为直放站施主天线。由于抛物面具有良好的聚焦作用,所以抛物面天线集射能力强,直径为 1.5 m 的栅状抛物面天线,在900兆频段,其增益即可达 G = 20dBi。它特别适用于点对点的通信,例如它常常被选用为直放站的施主天线。
抛物面采用栅状结构,一是为了减轻天线的重量,二是为了减少风的阻力。
抛物面天线一般都能给出 不低于 30 dB 的前后比 ,这也正是直放站系统防自激而对接收天线所提出的必须满足的技术指标。
5、 八木定向天线
八木定向天线,具有增益较高、结构轻巧、架设方便、价格便宜等优点。因此,它特别适用于点对点的通信,例如它是室内分布系统的室外接收天线的首选天线类型。
八木定向天线的单元数越多,其增益越高,通常采用 6 - 12 单元的八木定向天线,其增益可达 10-15dBi。
6、 室内吸顶天线
室内吸顶天线必须具有结构轻巧、外型美观、安装方便等优点。
现今市场上见到的室内吸衫返顶天线,外形花色很多,但其内芯的构造几乎都是一样的。这种吸顶天线的内部结构,虽然尺寸很小,但由于是在天线宽带理论的基础上,借助计算机的辅助设计,以及使用网络分析仪进行调试。
所以能很好地满足在非常宽的工作频带内的驻波比要求,按照国家标准,在很宽的频带内工作的天线其驻波比指标为VSWR ≤ 2 。当然,能达到VSWR ≤ 1.5 更好。顺便指出,室内吸顶天线属于低增益天线, 一般为G = 2 dBi。
7、 环形天线
环形天线和人体非常相似, 有普通的单极或多级 [1] 天线功能。再加上小型环形天线的体积小、高可靠性和低成本,使其成为微小型通信产品的理想天线。典型的环形天线由电路板上的铜走线组成的电回路构成,也可能是一段制作成环形的导线。其等效电路相当于两个串连电阻与一个电感的串连( 如图1 所示) 。Rrad 是环形天线实际发射能量的电阻模型,它消耗的功率就是电路的发射功率。
假设流过天线回路的电流为I,那么Rrad 的消耗功率,即RF 功率为Pradiate=I2·Rrad。电阻Rloss 是环形天线因发热而消耗能量的电阻模型,它消耗的功率是一种不可避免的能量损耗,其大小为Ploss=I2·Rloss。
如果Rloss>Rrad,那么损耗的功率比实际发射的功率大,因此这个天线是低效的。天线消耗的功率就是发射功率和损耗功率之和。实际上,环形天线的设计几乎无法控制Ploss 和Prad,因为Ploss 是由制作天线的导体的导电能力和导线的大小决定的,而Prad 是由天线所围成的面积大小决定的。
8、 室内壁挂天线
室内壁挂天线同样必须具有结构轻巧、外型美观、安装方便等优点。
现今市场上见到的室内壁挂天线,外形花色很多,但其内芯的购造几乎也都是一样的。这种壁挂天线的内部结构,属于空气介质型微带天线。由于采用了展宽天线频宽的辅助结构,借助计算机的辅助设计,以及使用网络分析仪进行调试,所以能较好地满足了工作宽频带的要求。顺便指出,室内壁挂天线具有一定的增益,约为G = 7 dBi。
参考资料:网络-天线
② 天线在PCB电路图上表示图或者名字是什么
天线是Antenna,在PCB板上一般以ANT.表示为接天线的端口或焊盤。
③ 智能天线如何制作(具体的电路图)
波束转换天线具有有限数目的、固定的、预定义的方向图,通过阵列天线技术回在同一信道中利答用多个波束同时给多个用户发送不同的信号,它从几个预定义的、固定波束中选择其一,检测信号强度,当移动台越过扇区时,从一个波束切换到另一个波束。在特定的方向上提高灵敏度,从而提高通信容量和质量。
为保证波束转换天线共享同一信道的各移动用户只接收到发给自己的信号而不发生串话,要求基站天线阵产生多个波束来分别照射不同用户,特别地,在每个波束中发送的信息不同而且要互不干扰。
每个波束的方向是固定的,并且其宽度随着天线阵元数而变化。对于移动用户,基站选择不同的对应波束,使接收的信号强度最大。但用户信号未必在固定波束中心,当使用者是在波束边缘,干扰信号在波束的中央,接收效果最差。因此,与自适应天线阵比较,波束转换天线不能实现最佳的信号接收。由于扇形失真,波束转换天线增益在方位角上不均匀分布。但波束转换天线有结构简单和不需要判断用户信号方向( DOA) 的优势。主要用于模拟通信系统。
④ 请问下天线的接地到底有什麼作用为什么要接地 为什麼接地越大天线越好 另天线回路是怎麼形成作用
天线的接地原理是从谐振电路来的,然而谐振电路的构成为LC回路。天线等效为L,那么C呢,就是大地与空间所构成了。空间绝缘部分等效于电容器的绝缘部分。ok?
接地并不是越大越好,在满足天线的调谐就可以了。在典型的天线模型中,就看你设计的理念是1/2波长还是1/4或1/前仿16均可。那么地线也要相应地匹配与1/2;1/4;1/16等。
波长可见匹配的波段就很重要了,假如以中波电台来说,SOS的救助频率为500Khz。那么
波长=3*100000000/500000= 600m
1/2波长=300M
可见,你说的越长越好的道理就在这里了。不过,对于手机指皮的G频段来说唯悔差,地线长了却坏了系统。
不过,现在的天线调谐器已经进入自动天调,可根据地线的长度所等效的电容进行匹配,虽然效率没有那么高,但也可以使用了。
⑤ 天线的原理是怎样的天线的电路是怎样的原理是怎样的
天线就是一个存在电流流动的辐射体,这个辐射体可以是导线,像收音机的天线,以前电视天线有V字型的天线,我小的时候用八木天线的,理解天线是从平行板演变来的,平行板上面接正点,下面接负电,这样电场线就在垂直板内由正级指向负级,当把板子的一端开口张大时,电场线就会辐射出去,如果是交变电场,就会形成电磁波发射出去,这是最简单的偶极子天线的演变。输入信号幅度是指接收机的输入信号吗?一般来说有两种方法:一做成有源的天线就是调谐后加入放大器,再者就是加大天线尺寸,一般驻波天线的工作在谐振处效果才好,但是半导体用的都是电小天线,一般不能谐振,所以尺寸越大越接近谐振,电尺寸越大。
⑥ 什么是PCB天线如何制作请您尽量讲详细一些,谢谢
天线是各种智能设备都需要的重要部件,所有需要用到无线的设备都需要用到它。现在是无线时代,网络路由器都是无线WIFI,电脑,手机连网络再也不用网线连接了,还有蓝牙耳孙者机,蓝牙鼠标,蓝牙键盘等等不再有电线了,这个天线的性能就至关重要了。
一般天线的选择有一些因素,除了考虑性能还要考虑成本,所以在选择天线的时候,需要综合考虑。今天就给大家讲讲各种天线的设计及设计要点。
天线一般有以下几种,
第一种 PCB板载天线
这种天线成本低,但性能会稍微差一点。PCB板载天线也有几种形式。
a,平面倒F型天线,英文缩写即PIFA,
此倒F天线PCB设计都有哪些需要注意的问题?我们首先要知道这个射频知识,Shonway以前出过一篇文章,对于射频,任何铜箔,导线都不能看成是简单的导线,他是由很多阻容电路组成的一种等效电路,你看到短路的,对于射频就不是短路。以这个思路我们看看这个倒F天线的PCB设计。
这里有六点要注意
1,这个倒F天线,不是随便画的,网上有专门的这种天线的库,拿过来,按要求放上去就好。如果空间不够,那就是自己通过仿真自己制作了自己专用的天线了。
2,RF馈点这里引出来的线阻抗必须做到50ohm
3, 接地馈点必须接地牢靠
4,地平面必须要多打地过孔,如上图所示,这个过孔间距多少合适的话,我们以前一篇卧龙会布布熊老师写过一篇文章,大家找一下可以看看
5, 天线这里所有层铜箔必须净空。
6,天线必须放在PCB板的角落里,最好三面都是空的,如图2所示,上面三面都是空的
手机上的天线叫平面倒F天线,原理上是用一个平面接上一个接地平面馈点,与RF馈点组成,
上面图4从左下方RF馈点这个箭头看过去,就是一个倒F。同样是倒F结构,但手机中的天线采用的是平面结构,这个倒F天线就比PCB板载天线性能就会好很多,这样空间又比较少,成本又低,对于手机天线是最好的选择。
实际上这个平面对于不同手机有很多种形状,原理就是平面倒F结构,在这个平面上一个是接RF,一个是接地馈点就组成了平面倒F天线。
上图就是不同手机天线。他们的原理都是平面倒F天线,是不是长知识了,记得点赞。
b,倒L形PCB板载天线
如下图7所示,图8就是倒L形天线的变种,也是因空间不够,扭曲一下,以匹配频率
此倒L形的需要注意的问题跟前面的差不多不再说明,倒L型天线没有倒F型天线效果好一点,因为倒F天线有一个接地馈点,能有效调节频点。
市面上有不少PCB板载天线,主要是上面两种,还有一些
有些是厂家自己通过仿真制作出来的。
第二种 贴片陶瓷天线
这种天线做成了贴片元件
这种天线一端是接RF,一端是接地。陶瓷天线原理,就是通过一根叫做“天线”的电极将天线与地之间形成的高频电场变成电磁波,从而能发射出去并传波到远方。
PCB最好的布局布线方式就是以下方式
把陶瓷贴片天线放板边,一边接地,一边连RF信号,下面所有层铜箔都掏空(白色框所示区域)这样四个方向,至少2个方向都是空的,对天线的效果很好,不要忘记接地铜箔都要打上接地过孔,打多一点。
第三种 棒状天线
此种天线如下图14所示,这种天线效果最好,拿凯做它是置身于空间,辐射效果最好,但成本也是贵一点,占用的空间也大,这只能是露在机壳外面。
这种天线在PCB设计时要注意的问题
1,如果RF引线短,RF信号线下面所有层都要净空,如图15所示,如果引出线比较长,那还要控制一下这根引出线的阻抗,多层板的话,需要把他下面的第二层净空,其它层铺完整铜,然后隔层参考地做阻抗,(为什么要隔层参考,大家评论区发表一下意见)阻抗控制消衡在50ohm.如图16所示。原创今日头条:卧龙会IT技术
2,附近的接地铜箔必须接地牢靠,也就是要多打地孔。
蓝牙天线设计之倒F型天线:
倒F型天线的天线体可以为线状或者片状,当使用介电常数较高的绝缘材料时还可以缩小蓝牙天线尺寸。作为板载天线的一种,倒F型天线设计成本低但增加了一定体积,在实际应用中是最常见的一种。天线一般放置在PCB顶层,铺地一般放在顶层并位于天线附近,但天线周围务必不能放置地,周围应是净空区。
蓝牙天线设计之曲流型天线设计:
曲流型天线的长度比较难确定。长度一般比四分之一波长稍长,其长度由其几何拓扑空间及敷地区决定。曲流型天线一般是PCB封装,即板载天线。和倒F型一样,天线一般放置在PCB顶层,铺地一般放在顶层并位于天线附近,但天线周围务必不能放置地,周围应是净空区。
注:天线长度计算公式:
天线的长度(米)=(300/f)*0.25*0.96
其中f表示频率(MHz),0.96为波长缩短率
蓝牙天线长度约为 300/2.4G*0.25*0.96 大约为31mm
蓝牙天线设计之陶瓷天线设计:
陶瓷天线是另外一种适合于蓝牙装置使用的小型化天线。陶瓷天线的种类分为块状陶瓷天线和多层陶瓷天线。由于陶瓷本身介电常数较PCB电路板高,所以使用陶瓷天线能有效缩小天线尺寸,在介电损耗方面,陶瓷介质也比PCB电路板的介电损失小,所以非常适合低耗电率的的蓝牙模块中使用。在
PCB设计时,天线周围要净空就可以了,特别注意不能敷铜。
蓝牙天线设计之2.4G棒状天线设计:
2.4G棒状蓝牙天线体积大,但传输距离要强于其他天线。在PCB设计时,天线周围也和上述的三种天线设计一样要净空。
关于蓝牙天线设计的其它相关注意点:
1)天线的信号(频率大于400MHz以上)容易受到衰减,因此天线与附近的地的距离至少要大于三倍的线宽。
2)对于微带线与带状线来说,特征阻抗与板层的厚度、线宽、过孔以及板材的介电常数相关。
3)过孔会产生寄生电感,高频信号对此会产生非常大的衰减,所以走射频线的时候尽量不要有过孔。
当你每天在用智能手机打电话、发短信、玩儿网络游戏、转微博等等一系列的沟通行为的时候,有没有想到过,这一切的一切都是通过手机上的天线模块来实现的。如果没有天线,智能手机将变成一台单机游戏机。
现在你和人们聊起手机的天线,有的人甚至会问你:“天线?我的手机没有天线,什么时代了有机还有天线。”
额。。。。。。其是天线还是有的,眼镜贴到眼睛上就叫隐形眼镜,天线放到手机内部就叫内置天线。
简单说一下内置天线大体有这么两种:PIFA天线和MONOPOLE天线。
PIFA天线如按要求设计环境结构,电性能相当优越,包括SAR(Specific Absorption Rate特殊吸收比率
,主要测量人体吸收手机辐射量的多少)指标,是内置天线首选方案。
适用于有一定厚度手机产品,折叠、滑盖、旋盖、直板机。
MONOPOLE天线如按要求设计环境结构,电性能可达到较高的水平。缺点是SAR稍高。不适用折叠、滑盖机,在直板机和超薄直板机上有优势。
下面来看一下几款手机的内置天线。
三星Galaxy Note 2:
底部白色的部分就是天线模块。
三星Galaxy S5:
红色:SWEP GRG28天线切换模块
橙色(大):高通WTR1625L射频收发器
橙色(小):高通WFR1620接收器
iPhone 4S也将天线放到了手机底部,但与Note2不同的是它还有外接金属天线。
iPhone 6的天线则被移到了手机上方,同样的,其金属后壳被残忍的分割开来。
最早的大哥大手机是外置天线,是低频段的模拟信号天线,这种设计直到现在都还在被对讲机采用;
2G时代,从NOKIA开始采用内置式天线,采用薄不锈钢片冲压而成,随后为降低成本,后来改用FPC(印刷电路板)代替,FPC的特点是材质软,可以贴在曲面上,还可以转折,在空间利用率上比金属天线有优势,FPC天线直到目前仍然是主流的天线技术;
后来随技术的发展,又发展出来LDS天线技术,就是直接在经过特殊处理的塑模材料上用激光雕刻出天线,这个技术在目前的中高端手机中普遍采用,通常用在主天线上,和喇叭box做在一起,以节省空间。
现在的手机由于通讯能力相当复杂,需要设计不同功能的天线,会采用不同的技术搭配使用。如下示意图:
MIMO
多输入多输出(Multi-input Multi-output ;
MIMO)是一种用来描述多天线无线通信系统的抽象数学模型,能利用发射端的多个天线各自独立发送信号,同时在接收端用多个天线接收并恢复原信息,是一种空分复用的概念。
MIMO可以在不需要增加带宽或总发送功率耗损的情况下大幅地增加系统的数据吞吐量及发送距离。MIMO的核心概念为利用多根发射天线与多根接收天线提供的空间自由度来有效提升无线通信系统之频谱效率,进而提升传输速率并改善通信质量。
MIMO技术可以应用在无线通信网络中与基站通信,也可以应用在WiFi网络中与无线路由器通信。我们通常用A*B MIMO来表示天线数量,比如2*2
MIMO表示2路发射2路接收,理论传输容量为SISO的两倍。
在未来5G网络中,可以预见终端会普遍采用更大数量的MIMO技术。
5G时代的天线:尺寸不变,数量增加
天线是无线通信设备上的重要部件,用来发射和接收电磁波信号。天线是一根具有指定长度的导线,可以制造在PCB(印制电路板)和FPC(柔性电路板)上。
天线的长度与无线信号的波长相关性很强,一般要求是电磁波长的1/4或1/2,比如2G时代的900Mhz频段,电磁波长为20~30cm,天线尺寸则为7.5cm左右。
目前4G通信的波段是0.8-2.6GHz,而5G使用的主要通信频段也在6GHz以下。因此,使用5G
Sub-6G频段的手机天线尺寸上不会有大变化,仍然会是厘米级。
不过,为了达到更高的速度要求,5G会使用更多根天线,即MIMO技术,例如4×4 MIMO就是有4个发射端天线,4根收集端天线。
而天线数量的增加,则将会要求多个天线之间的形状重新排布,对手机后盖和走线提出新的要求,以达到更好的效率。华为mate30 pro
5G一共集成了21根天线,其中包括14根5G天线。
⑦ 求;无线电的简单发射和接收的电路图
无线电遥控发射、接收头的制作
无线电遥控以其传输距离远、抗干扰能力强、无方向性等优点,应用于许多领域。但因电器复杂,发送设备庞大,调试困难等原因,所以在民用领域一直受到限制,随着电子技术的发展,这些问题都得到了解决,使之具有强大的生命力。
在这里向大家介绍一种无线电遥控发射、接收头的制作方法。
电路介绍
无线电遥控发射头是一种微型发射机,其发射频率为315MHz,12V电源供电时,遥控距离为100M,工作电流仅为4mA。无线电接收头是一个象电视机高频头一样的接收、解调器,其典型工作电压为6V,守候工作电流为2mA,接收频率为315MHz。利用它们可以很方便地制作出各种无线电遥控装置,具有微型化,传输距离远、耗电省、抗干扰能力强等优点。能够方便地取代红外线、超声波发射及接收头。
无线电射头电路原理如图所示。电路四发射管V1及外围元件C1、C2、L1、L2等构成频率为315MHz超高频发射电路,通过环形天线L2向空中发射。天线L2采用镀银线或直径为1.5mm的漆包线,天线尺寸为24mm(长)X9mm(高)。三极管V1选用高频发射管BE414或2SC3355。
无线电遥控接收头T631电路原理如图所示。接收电路主要由V1、IC等组成,V1与C7、C9、L2等元件组成超高频接收电路,微调C9改变其接收频率,使之严格对准265MHz发射频率。当天线L2收到调制波时,经V1调谐放大出低频成分,再经V2前置放大后送入ICLM358,进一步放大整形后由LM358第7脚输出,该印刷电路板实际尺寸为31mmX23CC,天线尺寸为27mm(长)X9mm(高)。OUT为信号输出端,三极管V1选用BE415或2SC3355。电容C9可选用小型可调电容。IC选用LM358。
在发射及接收电路中为减小体积,所有电阻均选用1/8W或1/16W的金属膜电阻;电解电容亦用超小型电容,其它电容全部采用高频陶瓷电容。在焊接时元件引脚尽量剪短,使其紧贴电路板,电路板材料应选用高频电路板。
以下是两载采用声表面的收发装置,相对于前面的介绍的电路,具有更远的传输距离、更强的抗干扰能力和更易制作、调试。
⑧ 天线的常用天线
移动通信常用的基站天线、直放站天线与室内天线。 无论是GSM 还是CDMA, 板状天线是用得最为普遍的一类极为重要的基站天线。这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能 可靠以及使用寿命长。
板状天线也常常被用作为直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。 频率范围: 824-960 MHz
频带宽度: 70MHz
增益: 14 ~ 17 dBi
极化: 垂直
标称阻抗: 50 Ohm
电压驻波比≤ 1.4
前后比 >25dB 采用多个半波振子排成一个垂直放置的直线阵 在直线阵的一侧加一块反射板 (以带反射板的二半波振子垂直阵为例) 增益为 G = 11 ~ 14 dBi 为提高板状天线的增益,还可以进一步采用八个半波振子排阵 前面已指出,四个半波振子排成一个垂直放置的直线阵的增益约为 8 dBi;一侧加有一个反射板的四元式直线阵,即常规板状天线,其增益约为 14 ~ 17 dBi。
一侧加有一个反射板的八元式直线阵,即加长型板状天线,其增益约为 16 ~ 19 dBi。 不言而喻,加长型板状天线的长度,为常规板状天线的一倍,达 2.4 m 左右。 从性能价格比出发,人们常常选用栅状抛物面天线作为直放站施主天线。由于判局抛物面具有良好的聚焦作用,所以抛物面天线集射能力强,直径为 1.5 m 的栅状抛物面天线,在900兆频段,其增益即可达 G = 20dBi。它特别适用于点对点的通信,例如它常常被选用为直放站的施主天线。
抛物面采用栅状结构,一是为了减轻天线的重量,二是为了减少风的阻力。
抛物面天线一般都能给出 不低于 30 dB 的前后比 ,这也正是直放站系统防自激而对接收前旁天线所提出的必须满足的技术指标。 八木定向天线,具有增益较高、结构轻巧、架设方便、价格便宜等优点。因此,它特别适用于点对点的通信,例如它是室内分布系统的室外接收天线的首选天线类型。
八木定向天线的单元数越多,其增益越高,通常采用 6 - 12 单元的八木定向天线,其增益可达 10-15dBi。 环形天线和人体非常相似, 有普通的单极或多级 天线功能。再加上小型环形天线的体积小、高可靠性
和低成本,使其成为微小型通信产品的理想天线。典型的环形天线由电路板上的铜走线组成的电回路构成,掘悔让也可能是一段制作成环形的导线。其等效电路相当于两个串连电阻与一个电感的串连( 如图1 所示) 。Rrad 是环形天线实际发射能量的电阻模型,它消耗的功率就是电路的发射功率。
假设流过天线回路的电流为I,那么Rrad 的消耗功率,即RF 功率为Pradiate=I2·Rrad。电阻Rloss 是环形天线因发热而消耗能量的电阻模型,它消耗的功率是一种不可避免的能量损耗,其大小为Ploss=I2·Rloss。如果Rloss>Rrad,那么损耗的功率比实际发射的功率大,因此这个天线是低效的。天线消耗的功率就是发射功率和损耗功率之和。实际上,环形天线的设计几乎无法控制Ploss 和Prad,因为Ploss 是由制作天线的导体的导电能力和导线的大小决定的,而Prad 是由天线所围成的面积大小决定的。 室内壁挂天线同样必须具有结构轻巧、外型美观、安装方便等优点。
现今市场上见到的室内壁挂天线,外形花色很多,但其内芯的购造几乎也都是一样的。这种壁挂天线的内部结构,属于空气介质型微带天线。由于采用了展宽天线频宽的辅助结构,借助计算机的辅助设计,以及使用网络分析仪进行调试,所以能较好地满足了工作宽频带的要求。顺便指出,室内壁挂天线具有一定的增益,约为G = 7 dBi。
⑨ 索尼组合音响环型天线的构造原理
环型天线的构造原理:
将导线弯成环形所构成的天线,环形天线的终端负载阻抗可以为零,也可以等于环的特性阻抗,其上的电流分布和平行传输线类似。终端短接的环的周长不大于0.2倍工作波长时,称为小环天线,环上的电流近似按等幅同相分布。短接环的半径较大时,环上电流为驻波分布。当端接负载的阻抗等于环的特性阻抗时,环上的电流为行波分布。依据电磁辐射的二笑顷重性原理,小环天线和垂直于环面放置的小电偶极天线的辐射场除将电和磁的量互换外碰岁陆都是类似雀槐的,即在环面的平面上方向图是圆,环轴所在平面上方向图是8字形,沿环轴方向的辐射为零。环可以是空心的或磁芯的;单匝的或多匝的。理论和实验证明,辐射场与环的面积、匝数和环上的电流成正比,与工作波长的平方和距离成反比;与环的形状关系不大。小环天线的辐射效率很低,通常用作接收天线,广泛应用于测向、无线电罗盘和中、短波广播接收机。
⑩ 电视天线上的信号放大器的电路结构请高手给分析一下
图纸不好做,只将其原理简单介绍如下:
天线的电源盒与放大器连接的两跟线,即传输信号又做放大器的电源线。(一般是10V左右交流)。
在放大器里,有一个整流管把交流整流后供放大器用,放大器里一般只有一个高放管,(高级的有用三个以上的)。天线感应的信号有高放管放大后,经连线传输到电视。
如果是简单的损坏,一般没有维修的价值。