导航:首页 > 电器电路 > 信号链电路

信号链电路

发布时间:2021-01-28 22:47:05

1. 什么叫信号链

一、SIGNAL CHAIN: 信号链。一个系统中信号从输入到输出的路径。 从信号的采集,放大,传输,处理一直到对相应功率器件产生执行的一整套信号流程叫信号链。
二、整条信号链中,包含众多的器件,比如:比较器、数据转换器、模拟前端、收发器、MCU、DSP、传感器、滤波器、存储器等。
1、比较器:
对两个或多个数据项进行比较,以确定它们是否相等,或确定它们之间的大小关系及排列顺序称为比较。 能够实现这种比较功能的电路或装置称为比较器。
2、数据转换器:

数据转换器包括模数转换器和数模转换器,以及它的延伸产品如压频变换器,音频转换器和触摸屏控制器等.按分辨率及速度分类,可分为低分辨率/低速型,低分辨率/高速型及高分辨率/低速型。

3、模拟前端:
(analog front-end AFE),其目的是处理信号源给出的模拟信号,对其进行数字化及分析处理。根据需要,AFE的功能包括如下几个:信号放大、调制解调、邻频处理、混合。

4、收发器; 收发器是信号转换的一种装置,包括光纤收发器,射频收发器和CAN收发器以及宽带通信收发器等。

5、微控制器(MCU):
MCU一般分为8位,16位和32位的处理器,广泛运用在工业控制,医疗设备,远程控制,办公设备和家用电器,玩具和嵌入式系统中。它通过独立的处理器,内存和I/O器件,可以减小系统的尺寸,降低设备的成本。

6、DSP:
是一种独特的微处理器,是以数字信号来处理大量信息的器件。其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。

7、传感器:
最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。

8、滤波器:
滤波器是一种对信号有处理作用的器件或电路。分为有源滤波器和无源滤波器。主要作用是让有用信号尽可能无衰减的通过,对无用信号尽可能大的反射。

9、存储器:
存储器(Memory)是计算机系统中的记忆设备,用来存放程序和数据。计算机中的全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。

2. 用OP07设计一个放大电路,放大倍数为40倍。谢谢!

如图所示:


能增加信号的输出功率。它透过电源取得能版量来源,以控制输出信号的波形与输入信号一致,权但具有较大的振幅。依此来讲,放大器电路亦可视为可调节的输出电源,用来获得比输入信号更强的输出信号。

放大器的四种基本类型是电压放大器、电流放大器、互导放大器和互阻放大器。进一步的区别在于输出是否是输入的线性或非线性表示。放大器也可以通过在信号链中的物理位置来分类。

(2)信号链电路扩展阅读:

四个基本类型的放大器,如下所示:

电压放大器 - 这是放大器的最常见的类型。输入电压被放大到较大的输出电压。放大器的输入阻抗高,输出阻抗低。

电流放大器 - 该放大器能将输入电流变为一个较大的输出电流。放大器的输入阻抗低,输出阻抗高。

互导放大器 - 该放大器在变化的输入电压下的响应为提供一个相关的变化的输出电流。

互阻放大器 - 该放大器在变化的输入电流下的响应为提供一个相关的变化的输出电压。该设备的其他名称是跨阻放大器和电流电压转换器。

3. 正电源和负电源在输入级和输出级中的用途

频道: 资讯(869) 报告(0) 文库(6) 找工作(0)
分类: 全部 技术应用(511) 应用方案(111) 市场研究(77) 产业新闻(75) 产品信息(47)
默认排序| 按时间排序
负电压电源设计的种类 2018-09-18 10:50

各位工程师在设计电路时,可能会遇到需要负电压供电的系统,例如使用负电压为IGBT提供关断负电压、运放系统中用正负对称的偏置电压供电。那么该如何产生一个稳定可靠的负电压呢?...

金升阳推出有源高精度单电源输入、正负电源输出型信号调理模块 2016-08-15 14:13

近期金升阳推出以一款有源高精度单电源输入,正负电源输出的信号调理模块TF-GN系列,此产品是一种前级单极信号输入,后级双极信号输出的有源隔离模块。

单电源供电回路中获得正负电源的电路 2015-12-25 17:14

本篇文章主要介绍单电源供电回路中获得正负电源的电路,感兴趣的朋友可以看看。

负电源轨不会消失 2013-10-16 16:07

对称的电源 (轨) 可处理 AC 信号,并且不会产生 DC 偏移。显然,假如仅存在一个正电源轨,那么输出信号通常只能采取正值 (取决于电路拓扑);然而,如果有了正电源轨和...

为精密模拟电路设计超低噪声正负电源的技巧 2011-10-25 10:54

当今的一些高精密模拟系统需要低噪声正负电压轨来为精密模拟电路供电,这些电路包括模数转换器 (ADC)、数模转换器 (DAC)、双极放大器等等。如何产生清洁、稳定的正负电压...

为精密模拟电路设计超低噪声正负电源的技巧 2011-10-25 10:54

当今的一些高精密模拟系统需要低噪声正负电压轨来为精密模拟电路供电,这些电路包括模数转换器 (ADC)、数模转换器 (DAC)、双极放大器等等。如何产生清洁、稳定的正负电压...

非隔离负电压DC/DC开关电源的设计 2011-10-18 16:12

针对现有非隔离负电压DC/DC开关电源在带负载能力以及输出纹波上的不足,提出了一种基于峰值电流控制的新型非隔离负电压DC/DC开关电源设计方案,实现在连续电流模式(CCM...

非隔离负电压DC/DC开关电源的设计 2011-10-18 16:12

针对现有非隔离负电压DC/DC开关电源在带负载能力以及输出纹波上的不足,提出了一种基于峰值电流控制的新型非隔离负电压DC/DC开关电源设计方案,实现在连续电流模式(CCM...

单电源供电回路中获得正负电源的特殊方法 2011-09-23 11:06

单电源供电回路中获得正负电源的特殊方图1所示极性变换电路的核心器件为普通的非门。由于输入端与输出端被短接在一起,故非门的输出电压与输入电压相等(Vi=VO);这样,非门被...

单电源供电回路中获得正负电源的特殊方法 2011-09-23 11:06

单电源供电回路中获得正负电源的特殊方图1所示极性变换电路的核心器件为普通的非门。由于输入端与输出端被短接在一起,故非门的输出电压与输入电压相等(Vi=VO);这样,非门被...

应用于负电源的电平位移电路及器件设计 2011-09-02 11:34

本文设计了一种应用于负电源的电平位移电路。实现从0~8V低压逻辑输入到8~-100V高压驱动输出的转换。分析了该电路的结构和工作原理。基于此电路结构设计了满足应用要求的高...

应用于负电源的电平位移电路及器件设计 2011-09-02 11:34

本文设计了一种应用于负电源的电平位移电路。实现从0~8V低压逻辑输入到8~-100V高压驱动输出的转换。分析了该电路的结构和工作原理。基于此电路结构设计了满足应用要求的高...

开关电源电路:FLY-时域波形分析到EMI设计 2020-08-05 08:32
电子产品&设备开关电源使用越来越广泛!基本的FLY变换器原理图如下所示,在需要对输入输出进行电气隔离的低功率<75W~的开关电源应用场合,反激变换器(FLY Conver...

双极性电源解决方案-用于精密测试和测量系统 2020-01-02 14:04

为了确保高精度,精密测试和测量系统需要具有低纹波和辐射噪声的电源解决方案,从而不会降低高分辨率转换器信号链的性能。在这些测试和测量应用中,生成双极和/或隔离系统电源给系统...

基于常见降压转换器的双极性、单路输出、可调节电源 2019-08-20 08:47
简介台式电源(PS)往往有偶数个端口(忽略机箱端口):一个正端口和一个负端口。使用台式电源产生正极性输出很容易:将负输出设置为GND,将正输出电压设置为正输出。产生负电源...

FLY-30MHZ-50MHZ EMI辐射问题的时域波形理论分析 2019-05-27 09:08
电子产品/设备EMI-辐射的问题;大多数的设计者们都没法入门槛!比如我们的电子产品/设备经常会出现30MHZ-50MHZ 特别是30MHZ左右的EMI-辐射问题。

电子产品&设备:开关电源FLY-关键波形分析 2019-01-28 11:01
简单、可靠、低成本、易于实现是反激变换器突出的优点;接下来我将电源的关键部分的波形进行分析!

电子产品&设备:开关电源FLY-关键波形分析! 2019-01-28 09:00
电子产品&设备开关电源使用越来越广泛!基本的FLY变换器原理图如下所示,在需要对输入输出进行电气隔离的低功率<75W~的开关电源应用场合,反激变换器(FLY Conver...

FLY-30MHZ-50MHZ EMI辐射问题的时域波形理论分析! 2018-12-21 09:17
EMC在电子产品/设备已经成为可靠性的重要组成部分;将越来越被重视!特别对于我们的工业&消费类产品要求满足其相应的认证和出口要求,对应的国家政策也在不断完善。

4. 如何输入自己的可编程模拟电路

尽管在第一次设置评估板时需要考虑大量的跨接线和连接器,但这种变通办法所花的时间或所做的琐事还是少得多。装载软件,通读评估板手册,定位并设置实验台装置跨接线,连接控制引线、电源引线和信号引线,装载基本配置以及确认信号路径,所有这些工作所花的时间总共还不到1小时。虽然从概念上说,这些工作都无需花费多少脑力,但当一个复杂的产品首次顺利工作时,总是非常令人满足的。
开发环境提供你电路的方框图。只

要将光标移到任一个功能块上,你就可以确认其身份及参数设置(图2)。双击功能块就可以打开一个对话框,并可在对话框中交互地修改功能块的参数状态。除了为FPAA提供了一个图形化编程环境之外,开发软件允许你连接虚拟信号源和探头来驱动内置的仿真工具(图3)。绘图工具和仿真工具操作起来都很简单,并且对于用过原理图捕获和Spice软件的人来说安排得很直观。但要切记:以一二百美元的最低价格买到的只是一个基本工具,而不可能是附带有的许多响铃、鸣哨和功能等一整套EDA套件。所以,举例来说,Anadigm公司的仿真程序能使你在时域内洞察部件的行为,但是对于几乎所有其它方面来说,需要通过检查在评估板上运行的实际信号来了解部件行为。目前还没有现成的试验线路将仿真或行为模型输出到自己的Spice环境,也不存在本机工具采用外部元件的工具。这种局限性类似于你使用功率IC和ASSP时发现的局限性,因为功率IC和ASSP的制造商只提供有限的支持软件,但不提供与EDA环境其余部分连接的工具。

图2 AnadigmDesigner2的图形化开发环境可为评估板FPAA的配置提供基本的绘图工具,此外还可利用仿真程序以及关于各一个模拟阵列的可编程功能块的支持信息。

图3 正如图2中基本D类调制器的这种仿真所表明的那样,该开发环境的仿真程序可提供虚拟信号源和探头,并可显示FPAA的时域状态。积木式部件
FPAA需要模拟电路设计师花一些时间来习惯。FPAA环境不是将二极管、晶体管和无源元件与诸如运算放大器和比较器等功能块组合在一起,而是完全被Anadigm公司称之为CAM(可配置模拟模块)的更加高度抽象的功能块组成。现在考虑一个比较器:你熟知的这种现成部件是一个其拓扑结构和参数状态适合于非线性比较响应而不是线性放大的放大器。但是,你的应用电路必须提供附加元件来设置参考电位和环路行为,其中包括迟滞。
FPAA的比较器CAM包含这些元件。CAM为倒相输入提供三个可编程选项:你可以使比较器的倒相输入由FPAA内的任何模拟信号来表示,或者,你可以给CAM编程,使倒相输入由地电位来表示,或由一个其幅度被指定为CAM参数的直流电位来表示。对于你要将阈值电压加到比较器非倒相输入端的几种情况来说,你可以将输出倒相来代替输入的反接。可编程迟滞级别有0mV、10 mV、20 mV和40mV四级。迟滞功能在你驱动倒相输入或者将其接地时才可使用,而你给阈值电压时不可使用。
与多数FPAA CAM一样,比较器是一个同步的离散时间块。你可以给比较器编程,以便在第一个或第二个时钟阶段对其输入进行采样--这一原理不适用于连续时间比较器。比较器可对以后的时钟相位做出抉择,不过这种抉择不会立即引起比较器输出状态的改变。你可以经输出编程,以便一有输出就按抉择行事,或者强制其输出使其状态转变与第一个时钟相位或第二个时钟相位同步。
与分立IC领域极其类似,比较器和放大器是最简单的CAM。CAM列表中还有一些常用的功能,它们具有更高抽象级别,使你更加远离实现细节。例如,双二阶滤波器可在500 Hz~400 kHz范围内调节,这一频率范围又分为三段,对应于你选用的3个时钟频率。正如你对双二阶滤波器期望的那样,你可以选择低通、高通、带通和带阻传递函数滤波器。不过与你自己用几个运算放大器和许多电阻器制成的双二阶滤波器不同的是,双二阶CAM每次只能提供上述四个传递函数之一。调谐和Q值控制都是非交互的,但是,你选用0.15~70 (!)的Q值确实会限制增益范围(图4),这并不令人感到意外。

图4 双二阶滤波器
CAM允许你对转角频率、增益和Q值进行编程。带通滤波器曲线对应于8kHz转角频率,而对应的Q值分别为0.2(绿色)、1(青色)、5(蓝色)和20(深红色)。
用图形来加深理解
一些不太常用的功能可能体现了FPAA的真正能力,例如乘法器或任意周期波形发生器CAM。但是,为了了解作为信号链元件的这种器件性能优劣,我们调查了一些不太特别的CAM,例如倒相放大器、双二阶滤波器功能块和基本I/O单元。这类调查大多采用一台Audio Precision System Two Cascade双域分析仪来绘制频率响应曲线、噪声曲线和THD曲线。
该评估板显然可使你最大限度地利用其提供的各种功能。但它并没有对最小化时钟噪声进行优化。虽然用户在开发那些充分利用FPAA可扩展到约8 MHz带宽的设备时需要谨慎一些,但该评估板对于带宽较小的电路而言,应该是一个良好的开发环境,因为来自时钟噪声的实际干扰很小。
FPAA数据表中有关差分输入信号摆动的极限值是3.8V。但是,如果你将使你的信号达到或接近摆动阈值,就得小心谨慎。例如,输入单元提供一个可编程转角频率为34~470 kHz的抗混迭滤波器。THD
+N测量显示当抗混迭滤波器不用时的1kHz曲线和20kHz曲线是叠合的(图5中的蓝色曲线和绿色曲线)。在1kHz频率下,THD+N恶化对于34kHz输入滤波器很小(深红色),但是,随着信号分量接近转角频率,失真分量随着小至-20dBV的信号幅度的增大而增大(红色)。固定幅度频谱扫描填入图5的信息(图6)。与不用抗混迭技术的0dBV基准测量值(蓝色)相比,THD+N恶化在输入端增加一个400kHz滤波器时大约为10 dB(红色)。把输入降到-6 dB可将采用400kHz滤波器的THD+N降低到0dBV无滤波情况给出的同样的相对电平(深红色)。注意垂直刻度是相对于输入电平的dB值。在输入保持在-6 dBV和滤波器转角频率调低到34 kHz的情况下,THD+N电平又增加大约5 dB,并显示出随信号接近转角频率而上升的特性。考虑到这些特点,你应该以尽可能达到的最快时钟速率操作CAM单元,以突出奈奎斯特频率并减少对临近滤波器转角频率的需求。同样,你只能在对期望的信号电平和带宽给予了应有的考虑之后才能使用输入滤波器,而且,如果你需要适应低转角频率和大的幅度,则可以考虑使用一个简单的外部滤波器配置。

图5 THD+N曲线表明,就某一给定的THD+N准则而言,输入单元的抗混迭滤波器会限制有用的动态范围,特别是当信号带宽接近滤波器转角频率时。图中,不使用抗混迭滤波器的1kHz (绿色)曲线和20kHz (蓝色)曲线是叠合的。滤波器转角频率设置为34 kHz的1kHz (深红色)曲线和20kHz (红色)曲线显示出性能的下降,特别是当信号接近转角频率时。

图6 固定振幅频谱扫描有助补充图5的信息:图中,蓝色曲线表示不使用抗混迭滤波器的0dBV扫描曲线。红色曲线表示抗混迭滤波器设置为400 kHz的相同输入扫描曲线。只要将输入振幅降低到-6 dBV并且注意曲线的幅度是相对于输入振幅的,深红色曲线就表明,在输入信号超过几百毫伏的情况下,滤波器的THD+N在频谱内有所恶化。将滤波器转角调低到34 kHz时,6dBV扫描曲线表明在通带的最后一个倍程内THD+N有激增的趋势。
输出单元也带有与其电压输出模式相关的低通滤波器。输出单元级联两个同样调谐的单极部分,并且用做重建滤波器来消除开关噪声。调到一个相对开放的400 kHz频率的两个双极部分,其在一个简单倒相放大器之后的性能比原始输出单元更好。一个处理-18dBV扫描正弦波的增益为-4的倒相放大器,其在20Hz~40kHz频段内的THD+N曲线是基本平直的。将输出单元用作具有400kHz低通转角频率的电压输出端,会产生-62dBr的THD+N。当输出单元处于其原始配置时,其性能下降到-52 dBr。如果你决定用FPAA来设计,以有助于识别你设备的最佳工作条件,则对输出结构进行进一步的调查就理所应当地被证明是正确的。
FPAA的配置内存包括一个影子RAM,它有助于最大限度地缩短配置时间,从而使包含FPAA在内的信号链的干扰最小。配置的更改可能会完全改变模拟阵列的内部资源分配,或者可能只是改变一个参数。利用膝上型电脑的串行端口对该评估板进行操作时,一种无效的配置更变--只是将现有电路和参数设置重新装载到部件中--大约会引起110毫秒的中断(图7)。装入来自嵌入式处理器或共驻PROM的配置数据的设备可以优化配置过程,从而进一步缩短装入时间。

5. 由于放大的对象是变化量,所以当输入直流信号时,任何放大电路的输出都毫无变化。这个是错误的。为什么

因为第一句是这个判断的基础。是真。但实际上不能做到只输入直流,至少在接版入权或断开时不是直流。

放大对象是变化量,这个说法就不严密,只是在某些场合是这种情况。对稳定信号进行放大的情况也是存在的,比如测量仪器放大器,大多数情况放大的的是稳定信号;输入直流信号,——直流信号一般只是限定方向,其大小是可以变化的。

(5)信号链电路扩展阅读;

放大器电路能增加信号的输出功率。它透过电源取得能量来源,以控制输出信号的波形与输入信号一致,但具有较大的振幅。依此来讲,放大器电路亦可视为可调节的输出电源,用来获得比输入信号更强的输出信号。

放大器的四种基本类型是电压放大器、电流放大器、互导放大器和互阻放大器。进一步的区别在于输出是否是输入的线性或非线性表示。放大器也可以通过在信号链中的物理位置来分类。

6. 电路中滤波与退耦滤波有什么不同。

基本是 没有 区别的 滤波是 用于电源部分,退耦是 用来连接交流信号用 的

7. 电路中环流是什么意思

环流就是在流动系统中,设法让全部或部分流体沿一定方向、一定路径循环流动,称为环流。
对设计工程师来说,环流会造成毁灭性灾难,无论你的设备是计算机还是通信系统。有些工程师缺乏对环流的正确认识,因为在原理图上一般用一个接地符号或公共符号表示所有电路的返回路径。初级工程师经常错误理解这个符号,认为它代表零阻抗。情况并非如此,接地符号只表示你原理图上的一种线路。如果接地连接中的电流足够大,或者变化得足够快,就会产生一个相当大的电压,该电压可能影响到电源的精度。另外,在仪表应用中,该电压还会造成测量误差,数字系统工程师必须努力应对接地弹跳问题。音频缓冲器会出现可怕的接地环路中的环流效应,它会引起蜂鸣和哼声。rf 工程师总要努力控制高频系统设备中地电流的流动。
环流可以祸害电源电路、音频电路以及 rf 电路。即使 ic 设计者也必须努力应对环流的影响。
在考虑环流造成的麻烦时,电路的交流阻抗要比电阻更重要。
原理图中的公共符号或接地符号只不过是另一种线路,并不代表零阻抗。
电源输出电流大,内部环流也大。应使基准接地远离这些节点。应使电源电路和你的系统在一点连接。
切割接地层通常会造成更大麻烦。但是,当全是模拟电路时,这个规则就有些例外。
通常良好的设计习惯和采用差分信号链就可避免音频与 rf 电路中的接地回路。

阅读全文

与信号链电路相关的资料

热点内容
家电电脑维修部电话 浏览:375
广西潮湿地方用什么木料的家具 浏览:692
挫树做家具 浏览:190
74电路死区 浏览:750
app售后维修 浏览:919
江苏恒康家居科技 浏览:947
笔记本保修怎么寄过去 浏览:314
家用防雷电路 浏览:16
国家电投集团品牌有哪些 浏览:95
住房顶前铺的那层防水布叫什么 浏览:100
车窗升降坏去4S店维修需要多久 浏览:529
美的冰箱维修上门服务费是多少 浏览:958
西安未央区二手家电市场在哪里 浏览:590
有什么回收二手家具的平台 浏览:280
烟台苹果维修点 浏览:384
eps故障维修多少钱 浏览:928
拆迁安置房如何教维修基金 浏览:784
郭液压维修中心怎么样 浏览:693
百度消防水带有多少米 浏览:719
家电保修民法典怎么规定 浏览:212