『壹』 电路中经常提到的谐振是什么意思那位大虾能给解释的详细点
谐振即物理的简谐振动,物体在跟偏离平衡位置的位移成正比,且总是指向平衡位置的回复力的作用下的振动。其动力学方程式是F=-kx。
谐振的现象是电流增大和电压减小,越接近谐振中心,电流表电压表功率表转动变化快,但是和短路得区别是不会出现零序量。
在物理学里,有一个概念叫共振:当策动力的频率和系统的固有频率相等时,系统受迫振动的振幅最大,这种现象叫共振。电路里的谐振其实也是这个意思:当电路的激励的频率等于电路的固有频率时,电路的电磁振荡的振幅也将达到峰值。实际上,共振和谐振表达的是同样一种现象。这种具有相同实质的现象在不同的领域里有不同的叫法而已。
收音机利用的就是谐振现象。转动收音机的旋钮时,就是在变动里边的电路的固有频率。忽然,在某一点,电路的频率和空气中原来不可见的电磁波的频率相等起来,于是,它们发生了谐振。远方的声音从收音机中传出来。这声音是谐振的产物。
谐振电路
由电感L和电容C组成的,可以在一个或若干个频率上发生谐振现象的电路,统称为谐振电路。在电子和无线电工程中,经常要从许多电信号中选取出我们所需要的电信号,而同时把我们不需要的电信号加以抑制或滤出,为此就需要有一个选择电路,即谐振电路。另一方面,在电力工程中,有可能由于电路中出现谐振而产生某些危害,例如过电压或过电流。所以,对谐振电路的研究,无论是从利用方面,或是从限制其危害方面来看,都有重要意义。
§9.1 串联谐振的电路
一. 谐振与谐振条件
二. 电路的固有谐振频率
三. 谐振阻抗,特征阻抗与品质因数
一.谐振与谐振条件
由电感L和电容C串联而组成的谐振电路称为串联谐振电路,如图9-1-1所示。其中R为电路的总电阻,即R=RL+RC,RL和RC分别为电感元件与电容元件的电阻; 为电压源电压,ω为电源角频率。该电路的输入阻抗为
其中X=ωL-1/ωC。故得Z的模和幅角分别为
由式(9-1-2)可见,当X=ωL-1/ωC=0时,即有φ=0,即 与 相同。此时我们就说电路发生了谐振。而电路达到谐振的条件即为
X=ωL-1/ωC=0 (9-1-3)
图9-1-1 串联谐振电路
二.电路的固有谐振频率
由式(9-1-3)可得
ω0称为电路的固有谐振角频率,简称谐振角频率,因为它只由电路本身的参数L,C所决定。电路的谐振频率则为
三.谐振阻抗,特征阻抗与品质因数
电路在谐振时的输入阻抗称为谐振阻抗,用Z0表示。由于谐振时的电抗X=0,故由式(9-1-1)得谐振阻抗为
Z0=R
可见Z0为纯电阻,其值为最小。
谐振时的感抗XL0和容抗XC0称为电路的特征阻抗,用ρ表示。即
可见ρ只与电路参数L,C有关,而与ω无关,且有XL0=XC0。
品质因数用Q表示,定义为特征阻抗ρ与电路的总电阻R之比,即
Q=ρ/R=XL0/R=XC0/R
在电子工程中,Q值一般在10-500之间。由上式可得
ρ=XL0=XC0=QR
故可得谐振阻抗的又一表示式为
Z0=R=ρ/Q
在电路分析中一般多采用电路元件的品质因数。电感元件与电容元件的品质因数分别定义为
即电路的品质因数Q,实际上可认为就是电感元件的品质因数QL。以后若提到品质因数Q,今指QL。
四. 谐振时电路的特性
五. 电路的频率特性
四. 谐振时电路的特性
谐振电路在谐振时的特性有
1. 谐振阻抗Z0为纯电阻,其值为最小,即Z0=R。
2. 电流与电源电压同相位,即φ=ψu-ψi=0。
3. 电流的模达到最大值,即I=I0=US/R0 ,I0称为谐振电流。
4. L和C两端均可能出现高电压,即
UL0=I0XL0=US/R XL0=QUS
UC0=I0XC0=US/R XC0=QUS
可见当Q?1时,即有UL0=UCO?US,故串联谐振又称为电压谐振。这种出现高电压的现象,在无线电和电子工程中极为有用,但在电力工程中却表现为有害,应予以防止。
由上两式,我们又可得到Q的另一表示式和物理意义,即
Q=UL0/US=UC0/US
5. 谐振时电路的向量图如图9-1-2所示。由图可见,L和C两端的电压大小相等,相位相反,互相抵消了。故有 。
五. 电路的频率特性
电路的各物理量随电源频率ω而变化的函数关系称为电路的频率特性。研究电路频率特性的目的在于进一步研究谐振电路的选择性与通频带问题。
1.阻抗的模频特性与相频特性 电路的感抗XL,容抗XC,电抗X,阻抗的模 分别为
它们的频率特性如图9-1-3(a)所示,统称为阻抗的模频特性。由图可见,当ω=0时, ,当0<ω<ω0时,X<0,电路呈电容性;当ω=ω0时,X=0,电路呈纯电阻性, ;当ω0<ω<∞时,X>0,电路呈感性;当ω→∞时, 。
阻抗的相频特性就是阻抗角φ随ω变化关系,即
当ω=0时,φ=-π/2;当ω=ω0时,φ=0;当ω=∞时,φ=π/2。其曲线如图9-1-3(b)所示,称为相位频率特性。
2.电流频率特性
当ω=0时,I=0;当ω=ω0时,I=I0=US/R;当ω=∞时,I=0。其曲线如图9-1-3(c)所示,称为电流频率特性
3 .电压频率特性 电容和电感电压的有效值分别为
UC=I/ωC
UL=IωL
由于在电子工程中总是Q?1,ω0很高,且ω又是在ω0附近变化,故有1/ωC≈1/ω0C,ωL≈ω0L。故上两式可写为
UC=UL≈I/ω0C=Iω0L
即UC和UL均近似与电流I成正比。UC,UL的频率特性与电流I的频率特性相似,如图9-1-3(d)所示。图中UL0=UCO=I0X=I0XC0。
六.选择性与通频带
4.相对频率特性
由式(9-1-5)看出,电流I不仅与R,L,C有关,且与US有关,这就使我们难以确切的比较电路参数对电路频率特性曲线的影响。为此我们来研究对相对电流频率特性。
上式描述的相对电流值I/I0与ω/ω0(或f/f0)的函数关系,即为相对电流频率特性。可见上式右端与US无关,其频率特性如图9-1-4所示。
图9-1-4 相对频率特性
5.Q值与频率特性的关系
根据式(9-1-6)可画出不同Q值时的相对电流频率特性曲线,如图9-1-5所示。从图中看出,Q值高,曲线就尖锐;Q值低,曲线就平坦。即曲线的锐度;与Q值成正比。
图9-1-5 Q值与频率特性的关系
六.选择性与通频带
1.选择性
谐振电路的选择性就是选择有用的电信号的能力。如图9-1-6所示,当R,L,C串联电路中接入许多不同频率的电压信号时,今如调节电路的固有谐振频率 ω0(在此是调节电容C),就能使我们所需要的频率信号(例如ω2)与电路达到谐振,即使ω0=ω2,从而电路中的 电流达到最大值(谐振电流),当电路的Q值很高时,从C两端(或L两端)输出的电压UC(或UL)也就最大;而我们不需要的电信号(例如ω1和ω3的电压)在电路中产生的电流很小,其输出电压当然也小。这就达到了选择有用电信号ω2的目的。显然,电路的Q值越高,频率特性就月尖锐,因而选择性也就越好。
图9-1-6 串联谐振电路的选择性
2.通频带
(1).定义:当电源的ω(或f)变化时,使电流 (或使 )的频率范围称为电路的通频带,如图9-1-7所示。通频带用Δω或Δf表示,即
ω=ω2-ω1
或 f=f2-f1
(2) .计算公式
可见,Δω(或Δf)与Q值成反比,亦即与选择性相矛盾。
定义相对通频带为
Δω/ω0=Δf/f0=1/Q
图9-1-7 电路通频带的定义
(3).半功率点频率
我们称f1(或ω1)为下边界频率,f2(或ω2)为上边界频率。由于谐振时电路中消耗的功率为P0=I02R,而在f1和f2时,电路中消耗的功率 。可见在上,下边界频率f1和f2处,电路中消耗的功率是等于P0的一半,故又称上,下边界频率为半功率点频率。
在正弦激励下对于同时含有L和C的一段无源电路,如果它的端电压和入端电流同相位,则称这样一种特定的电路工作状态为谐振。 通常把电压超前电流的正弦交流电路称为感性电路,这时电路吸收的无功功率反映了外电源和电路之间磁场能量交换的速率。反之,如果电压滞后电流则无功功率反映的是外电源和电路之间电场能量交换的速率,电路呈容性。在谐振状态下,电压与电流同相位,无功功率为零,表明电路和外电源之间没有电场能或磁场能的交换。当然,这并不是说电路中不含电场能或磁场能,只是表明,在揩振时,电路L中的磁场能和C中的电场能恰好自成系统,在电路内部进行交换。
『贰』 RLC串联谐振电路的研究的实验中:谐振时,比较输出电压与输入电压是否相等,试分析原因
谐振时,理论上是相等的,但由于元件参数并非理想参数,尤其是电感元件有一定的等效电阻,而非理想的纯电感。所以实验时,数据与理论值有一定差距。
输出电压UL=XL*I =XL*U/R
所以输出电压随着电路中电阻的减小而变大
Q=UL/U=XL/R 因此Q与R有直接关系
(2)谐振电路分析扩展阅读:
对于包含电容和电感及电阻元件的无源一端口网络,其端口可能呈现容性、感性及电阻性,当电路端口的电压U和电流I,出现同相位,电路呈电阻性时。称之为谐振现象,这样的电路,称之为谐振电路。
谐振的实质是电容中的电场能与电感中的磁场能相互转换,此增彼减,完全补偿。电场能和磁场能的总和时刻保持不变,电源不必与电容或电感往返转换能量,只需供给电路中电阻所消耗的电能。
『叁』 串联谐振是怎么谐振的,原理是什么
串联谐振电路在电阻R、电感L和电容C元件的交流电路中,电路两端的电压一般与电流相位不同。如果我们调整电路元件(L或C)或电源频率的参数,它们可以由相同的相位,则整个电路呈现纯电阻。电路可以达到这种精神状态称之为谐振。在谐振状态时,电路的极值或接近极值的总阻抗。研究谐振的目的主要就是要认识到了这种社会客观现象,并在中国科学和应用技术上充分开发利用谐振的特征,同时我们又要预防它所产生的危害。 根据电路连接,有串联谐振和并联谐振两种
当串联谐振无功功率,电容器电压和电感器电压大小相等方向相反,即,LC吸收相等,方向相反,使得无功功率吸收由电路是0;电能和磁能的不断变化,但这种增加它降低,补偿,其中电场和磁场,整个电路常数的电磁能量的总和之间振荡的能量的对方,一部分;激发能量提供电路成为一个完整的电阻加热。为了能够维持振荡,激励我们必须通过不断提高供给能量进行补偿电阻的发热消耗,与电路中总的电磁场能量管理相比每振荡一次电路需要消耗的能量越少,电路的品质越好。
串联谐振、串联谐振电路的原理
随着不断的测试程序的高容量测试的增长建立在电力系统中的电缆和动力系统,串联谐振电源的各个部分的交换应用越来越广泛,它需要我们认识到,深入的串联谐振,我们将在串联谐振和串联谐振电源的原则,在现场一起讨论应用程序和每个人。
串联谐振的原理
先说谐振的产生,谐振是有R、L、C元件重要组成的电路在一定经济条件下的一种具有特殊教育现象,我们先带领中国大家一起来进行分析R、L、C串联系统电路结构发生谐振的条件和谐振时电路的特征。
回复者:华天电力
『肆』 LC并联谐振电路和串联谐振电路得原理
你首先要搞明白电容和电感的特性!才能理解lc振荡的原理!
电容的电气特性是能充电蓄能和放电释能!因它的初充电流最大值时其两端电压却是最小值!也就是说电容的在线电流比电压超前一个差距!这个差距的角度是90度!
我们再来说电感!电感的在线特性和电容正好相反!因为电感元件在通电流的瞬间会产生自感电势!这个自感电势会阻碍在线原电流的增加!因此电感的在线最大电压值时的电流却是最小值!这两者的时间差角也是90度!
结论是这样的!电容的在线电流比电压超前90度!电感的在线电压比电流超前90度!
这两个元件并联后接入电路!在电路通电流的瞬间电容会产生一个充电脉冲!电感会产生一个自感电势!因两者的电流和电压最大值在时间相位上互差90度!这就造成了两者的电流或电压总是在你强我弱或你弱我强的状态下变化!这就是振荡!但这种振荡是会随着电路电流和电压的稳定会慢慢停歇的!因此这种振荡也称衰竭式振荡!为了使这种振荡不断的维持下去!就必需给lc回路补充同频的振荡能量!因此就有了三极管放大电路的回授(反馈)电路产生!有了源源不断的同频脉冲的回授补充!这振荡就能维持不断了!
lc振荡槽路的频率取决于其lc的参数数值!f=1/2x3.14.xlxc
『伍』 试分析电路发生谐振时,电路中能量的消耗与交换情况
谐振时电路内能量过程的主要特点是在电感与电容之间出现了周期性的等量能量交换,即在一段时间内磁场能量转换成电场能量。接着,在另一段时间内电场能量转换成磁场能量。一直这样不断地进行下去。正因为有了这种能量的振荡过程,才有了电路的谐振状态。
『陆』 LC串联谐振具体原理
变频串联谐振试验装置是运用串联谐振原理,利用励磁变压器激发串联谐振回路,调节变频控制器的输出频率,使回路电感L和试品C串联谐振,谐振电压即为加到试品上电压。变频谐振试验装置广泛用于电力、冶金、石油、化工等行业,适用于大容量,高电压的电容性试品的交接和预防性试验。
BPXZ串联谐振耐压装置主要由变频控制器,励磁变压器,高压电抗器,高压分压器等组成。变频控制器又分两大类,20KW及以上为控制台式,20KW以下为便携箱式;它由控制器和滤波器组成。变频控制器主要作用是把幅值和频率都固定的380V或200V工频正弦交流电转变为幅值和频率可调的正弦波。并为整套设备提供电源。励磁变压器的作用是将变频电源输出的电压升到合适的试验电压。高压电抗器L是谐振回路重要部件,当电源频率等于1/(2π√LCX)时,它与被试品CX发生串联谐振。
该装置适用于10KV、35KV、110KV、220KV、500KV聚己烯电力电缆交流耐压试验。适用于60KV、220KV,500KVGIS交流耐压试验。适用于大型变压器,发电机组工频耐压试验;电力变压器感应耐压试验;接地电阻测量。
◆ 谐振试验装置选配参考方案:
A. 电缆谐振试验装置选配参考方案
B. 发电机谐振试验装置选配参考方案
C. 变电站电器设备谐振装置选配参考方案
D. CVT校验用谐振升压装置选配参考方案 产品别称 串联谐振、串联谐振变压器、变频谐振、变频串联谐振、串联谐振试验设备、串联谐振原理、串联谐振应用 串联谐振系统1、稳定性、可靠性高。系统采用进口功率元件作为功率变换的核心,电压输出和频率输出稳定,电磁兼容设计
合理,保护功能完善,经过多次高压直接对地短路的测试,系统仍然保持完好,同时系统也有很强的过载能
力
2、自动调谐功能强大。系统自动调谐时,从30Hz到300Hz自动扫频,显示扫频曲线,用户能直观地看到系统调谐
过程;扫频完成后,系统根据扫频初步找到的谐振频点,在其±5Hz范围内以0.01Hz为分辨率进行频率细扫,
最后精确锁定谐振频率
3、支持多种试验模式。系统支持“自动调谐+手动调压”,“自动调谐+自动调压”,“手动调谐+手动调
压”等试验模式,推荐使用“自动调谐+手动调压”模式,既能快速找到谐振点,又能通过手动调压控制试
验过程,安全性更高
4、系统人机交互界面友好。试验参数设置、试验控制、试验结果等同屏显示,直观清晰,并具有自动计时及操
作提示功能。全触摸屏操作及显示,具备试验数据保存和查询功能
5、保护功能完善。具备零位保护(电压输出控制旋钮不在零位时,禁止系统启动),过压保护,过流保护,闪
络保护等功能,保证了系统的可靠性1、谐振电压波型:正弦波,波形畸变率<1.0%
2、输出频率:30~300Hz
3、工作制:满功率输出下,连续工作时间60min
4、品质因素:30~80
5、输入工作电源:单相380/220V±10%,50Hz
6、环境温度:-10℃~+50℃
7、相对湿度:<95%,无凝露状况
8、适用范围:
a、电缆变频谐振装置
b、发电机交流耐压装置
c、变电站电气设备交流耐压谐振装置
d、CVT检验用谐振升压装置
检验用谐振升压装置
变电站交流耐压谐振装置
便携式电缆耐压试验装置
GPXZ发电机交流耐压装置
BPXZ发电机交流耐压装置1、串联谐振的相关知识
2、串联谐振电源在电力系统应用中的优点
3、串联谐振电源产品使用中的注意事项
4、串联谐振电源在电力系统应用中有哪些优点
5、变频串联谐振试验装置的特性及参数
具体信息 参考武汉华天电力
『柒』 什么叫串联谐振、并联谐振,各有何特点
一、串联谐振和并联谐振的电路特点
串联谐振的电路特点
1.总阻抗值最小:Z=R+j(wl-1/wc)=R;
2.电源电压一定时,电流最大;I=I0=U/|Z|=U /R;
3.电路成电阻性,电容或电感的电压可能高于电源电压。
并联谐振的电路特点
1.电压一定时,谐振时电流最小;
2.总阻抗最大;
3.电路成电阻性,支路电流可能会大于总电流。
通过对电路谐振的分析,掌握谐振电路的特点,再生产实践中,应该用其所长,避其所短。
二、串联谐振和并联谐振的产品特点
串联谐振产品的主要特点
1.所需电源容量大大减小
串联谐振试验装置是利用谐振电抗器和被试品电容产生谐振,从而得到所需高电压和大电流的,在整个系统中,电源只需要提供系统中有功消耗的部分,因此,试验所需的电源功率只有试验容量的1/Q倍(Q为品质因素)。
2. 设备的重量和体积大大减小
串联谐振电源中,不但省去了笨重的大功率调压装置和普通的大功率工频试验变压器,而且,谐振激磁电源只需试验容量的1/Q,使得系统重量和体积大大减小,一般为普通试验装置的1/5~1/10。
3. 改善输出电压波形
谐振电源是谐振式滤波电路,能改善输出电压的波形畸变,获得很好的正弦波,有效地防止了谐波峰值引起的对被试品的误击穿。
4. 防止大的短路电流烧伤故障点
在谐振状态,当被试品的绝缘弱点被击穿时,电路立即脱谐(电容量变化,不满足谐振条件),回路电流迅速下降为正常试验电流的1/Q。而采用并联谐振或者传统试验变压器的方式进行交流耐压试验时,击穿电流立即上升几十倍,两者相比,短路电流与击穿电流相差数百倍。所以,串联谐振能有效地找到绝缘弱点,又不存在大的短路电流烧伤故障点的忧患。
5. 不会出现任何恢复过电压
被试品发生击穿闪络时,因失去谐振条件,高电压也立即消失,电弧立刻熄灭,装置的保护回路动作,切断输出。
并联谐振产品的主要特点
用并联谐振调谐与升压十分稳定,在低电压下进行调谐,调谐过程依据升压变压器高压侧电流的大小,调谐至电流最小时即为谐振点,然后升压至需要的电压,对于自动调谐来说,也容易控制,可以避免串联线路调谐过程中的电压震荡。