1. 那位大侠有鉴相器的电路图
如图是电视机使用的双脉冲平衡型鉴相器的原理电路。同步脉冲分相管基极加有负极性行同步脉冲。在不加行同步脉冲时,由于分相管基极上没有加正向偏置电压,因此分相管不导通,在行同步脉冲到来时,使分相管导通。因此在发射极上可得到负极性行同步脉冲,而在集电极上得到正极性行同步脉冲。适当选取R5,R8之值。可使正负同步脉冲的幅度相等。D1,D2是特性相同的两只二极管,电阻r1=R2,电容C1=C2。
2. 求D触发器鉴相电路这个不能用高手来看看
1)不知道你的D触发器是什么型号,清零端、置一端是什么电平使能;
2)可画出输入输出波形图,以理解你要的相位差是什么样的信号;
3. 有关下面这个鉴相电路的问题
这个电路不工作,可能有两个地方不足,你可以试一下。第一是U2、U3的输出,没有明确的电位支撑点,所以,建议在其输出端对地间增加20k的电阻;第二是U1的反相输入端,没有电位支撑,建议在D2的阴极接点对电源之间增加一个100k的电阻。以上两
4. 鉴频器的原理
实现调频信号解调的鉴频电路可分为三类,第一类是调频 -- 调幅调频变换型。这种类型是先通过线性网络把等幅调频波变换成振幅与调频波瞬时频率成正比的调幅调频波,然后用振幅检波器进行振幅检波。第二类是相移乘法鉴频型。这种类型是将调频波经过移相电路变成调相调频波,其相位的变化正好与调频波瞬时频率的变化成线性关系,然后将调相调频波与原调频波进行相位比较,通过低通滤波器取出解调信号。因为相位比较器通常用乘法器组成,所以称为相移乘法鉴频。第三类是脉冲均值型。这种类型是把调频信号通过过零比较器变换成重复频率与调频信号瞬时频率相同的单极性等幅脉冲序列,然后通过低通滤波器取出脉冲序列的平均值,这就恢复出与瞬时频率变化成正比的信号。鉴频器是一种具有移相鉴频特性的的陶瓷滤波元件,主要用在电视机或录像机的伴音中频放大或解调电路中以及FM调频收音机的鉴频器电路中。它分为平衡型和微分型两种类型,前者用于同步鉴相器作平衡式鉴频解调,后者用于差分峰值鉴频器作差动微分式鉴频解调。德键调频音频窄带型JTCV10.7M系列贴片鉴频器,搭配多种IC应用于FM程序检验,转换频率为有用的音频信号。
调频波的特点是振幅保持不变,而瞬时频率随调制信号的大小线形变化,调制信号代表所要传送的信息,在分析或实验时,常以低频正弦波为代表。鉴频的目的就是从调频波中检出低频调制信号,即完成频率—电压的变换作用。能完成这种作用的电路被称为鉴频器。
调相波的解调电路,是从调相波中取出原调制信号,即输出电压与输入信号的瞬时相位偏移成正比,又称为鉴相器。对于调频波的解调电路来说,是从调频波中取出原调制信号,即输出电压与输入信号的瞬时频率偏移成正比,又称为鉴频器。
鉴相电路通常分为模拟电路型和数字电路型两大类。而在集成电路系统中,常用的电路有乘积型鉴相和门电路鉴相。鉴相器除了用于解调调相波外,还可构成移相鉴频电路。特别是在锁相环路中作为主要组成部分得到了广泛的应用。
5. 二极管鉴相器可以用来鉴别什么信号之间的相位差
输出电压与两个输入信号之间的相位差有确定关系的电路。表示其间关系的函数称为鉴相特性。鉴相器是锁相环的基本部件之一,也用于调频和调相信号的解调。常见的鉴相特性有余弦型、锯齿型与三角型等。鉴相器可以分为模拟鉴相器和数字鉴相器两种。二极管平衡鉴相器是一种模拟鉴相器。两个输入的正弦信号的和与差分别加于检波二极管 ,检波后的电位差即为鉴相器的输出电压。其鉴相特性通常为余弦型的。鉴频鉴相器是一种数字鉴相器。两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出 。这种鉴相器的鉴相特性为锯齿形。因它兼具鉴频作用,故称鉴频鉴相器
鉴相器的工作原理,与同步检波器(5.4.3节)和AFPC电路中鉴相器(5.6.2节)的工作原理相同,可以用相同的分析方法进行说明。鉴相器的电原理图及其等效电路如图5.4-19(a)(b)所示。
色同步分离电路的输出变压器次级起到分相作用,给鉴相器提供两个大小相等、相位相同的色度同步信号u1和u2,本机副载波经90°移相后加入M点。当u1和u2为负峰值时,D1和D2导通,对C1和C2快速充电。由于充电时间常数很小,于是C1和C2很快充到u1和u2的负峰值。当u1和u2离开负峰时,C1和C2两端的电压uc1和uc2迫使D1和D2截止,C1和C2通过R1和R2以及A点向变容二极管方向的等效负载电阻 R放电,其放电方向如图(b)所示。于是在等效负载电阻R上得到误差电压VA。若设u1和u2负峰点到来时刻,本机副载波在M点产生的电压为uM,则C1和C2分别充电至uc1和uc2
6. 什么叫“鉴相器”电路
哈!这些看起都太复杂了!简单说就是把调制过的调频信号中的信号检波出来,作用类同检波器,只这检波器只是对调幅信号的,嘿!这反过来说这鉴相器就是调频信号的检波器.因调频信号的调制就是频率不同起作用的嘛,这不同的频率相位当然也不同的嘛,那就根据这不同相位的频率还原出原调制进去的信号的电路就叫鉴相器.
7. 鉴相,倍频电路的工作原理
http://www.52data.cn/sheji/gzfx/200605/5233.html阐述了高频保护收发讯机晶振合成电路的工作原理和主要集成电路的使用说明,结合实际运行中出现的故障作分析,并提出处理的方法和技巧。关键词 晶振合成 工作原理 锁相环 故障实例 增城市电力局现拥有两应220KV变电站,五条220KV线路,其线路保护装置配置情况及运行时间见表1。由表l可知,五套保护装置均采用YBX收发讯机作为高频保护信号传输装置;荔城站增荔甲、乙线两套保护装置运行时间长达7年之久,元器件出现不同程度的老化现象,故障日益增多。据笔者从事继保工作四年来对这几套保护装置故障情况的分析统计(见表2)得知,收发讯机的故障占了绝大多数,而晶振合成电路的故障率更高达57.1%之多。可见,收发讯机晶振合成电路的维护将是今后继保工作的重点之一。本文就YBX收发讯机晶振合成电路的工作原理及运行故障的处理作详细的论述,给同行作参考,希望可达到抛砖引玉的目的。 1 晶振合成电路的工作原理 电路中信号合成由两个锁相环频率合成器执行,分别产生发信频率f o信号和用于收信解调的本振频率fL=fo+12KHz信号,两个锁相环使用同一个晶体振荡器产生的基准频率信号。频率合成器(见图1)利用一个f c=1024KHz的石英晶体振荡器作为基准频率振荡器,经M=212次分频得fR=1024/212=0.25KHz的基准频率;再经锁相环倍频。其倍频数N由十二位二进制可预置计数器实现。 根据确定的载波频率,用跳线任意整定,其整定范围N=l~4095,锁相环的工作原理如下: 合成器输出频率覆盖范围为fo=0.25~1023.75KHz。fo的频率稳定度为原f C频率稳定度的 倍。在40~400KHz的频率范围内,最大频率误差产生在fo=400KHz时,其倍频值 而石英晶体振荡器的频率稳定度为50×10-6,那么1024KHz石英振荡器的最大频率误差为:1.024×106×50×10-6=51.2Hz 因此在40~400KHz频率范围内的最大频率误差为: 51.2× =1.2×0.39=20Hz 可见,采用频率合成器不但使装置的频率稳定度提高,而灶改变频率十分简便,给生产和运行维护带来极大的方便。 图2是晶振合成电路的原理图(电原理图见附图),由—个土振分频和两个独立的锁相环回路组成。其中,1024KHz晶振源和212分频器由SJ石英晶体和JC1振荡分频器集成电路组成;JC5锁相环CMOS集成电路和外接电阻R4、R5和电容C26构成相位比较器PD L和环路滤波器LPEL以及压控振荡器VCOL,可预置分频器由JC2、JC3、JC4 三个二进制减法计数器CMOS集成电路组成;PD0和VCO0由JC13锁相环CMOS集成电路组成;LPF0由R12、R13
8. 电机测速(电路)原理或方法
一、M/T法测速
该方法属于数字式测速,通常由光电脉冲编码器、直线光栅尺、感应同步器、旋转变压器、直线磁栅尺等传感器来完成。该类转子位置传感器发出的脉冲信号,可在可编程计数器8253的配合下,基于微机系统采用MT法对电机转速实现高精度的数字测量,这类传感器一般都输出两组相位相差90°的脉冲序列A、B,根据A、B的相位关系可以鉴别电机转
向,同时还可以进行四倍频处理,以减少通过M/T法获取速度反馈信号的纹波。其基本原理是:电机每转一圈,传感器输出的脉冲数一定,随着电动机转速和输出脉冲频率的不同,频率与转速成正比,能测量其频率,通过软件计算就能得到速度,鉴相电路还能同时反映实际转速的方向。
二、F/V测速
各种原理的数字脉冲测速机,主要有编码器和电磁式脉冲测速机。就位置伺服系统来说,它的速度环一般习惯上还是采用速度的模拟量反馈,而不是数字量反馈,因此基于计数器和微机软件实现的M/T法测速,还需增加D/A转换,也有一些系统采用编码器的测速脉冲经f/v变换获得速度的模拟量,或者由转子位置传感器的脉冲信号经f/v变换获得速度的模拟量。F/V法测速原理是:电机每转输出的脉冲信号频率与电机转速成正比,然后通过频压变换将脉冲信号转换成反映转速高低的模拟电压。为了反映转速的方向,要有旋转方向自动切换功能。测速精度与编码器每转脉冲数以及f/v变换电路时间常数的选择有关,每转脉冲数越多,测速越精确,这在低速段尤为重要。为保证f/v线性变换,f必须变成宽度一定的脉冲,事先由单稳电路定宽,然后经由运放组成的低通滤波器把频率变换为直流电压。f/v测速电路,如图所示。
图中,f+、f-是经过鉴相、倍频处理后的分别代表电机正、反转的且与转速成正比的脉冲序列。为防止信号中杂有噪声及共模干扰,放大电路采用新型的双差分电路,它由3个运放组成,其差动输入端为v+和v-,且采用对称结构。该电路输入阻抗高,且失调电压、温度漂移系数低、放大倍数稳定,放大倍数:
G=vout/(v+-v-)=R3/R2(1+2R1/RG),
其中RG是用于调整速度反馈信号的放大系数。当电机正向旋转时,f+有脉冲,f-为低电平,此时vout为正;当电机反向旋转时,f-有脉冲,f+为低电平,vout输出为负。
三、其它间接转速测量方法
带有转子位置检测器类电动机的测速除了上述介绍的一些测速方法外,目前使用与研究的还有一些特有的测速方法。如有文献提出了:(1)利用直流电动机外壳漏磁通设计成新型转速检测器,并由它构成了结构简单、成本低廉的PWM闭环调速系统;(2)无位置传感器无刷直流电动机的调速方案,它的原理是通过检测电路检测三相定子绕组反电势过零点,而后转换成脉冲链,经脉冲发生电路延时脉冲,给定逻辑电路产生六相位置信号,送入驱动电路产生三相定子绕组驱动电流,使转子转动。一些新的特殊方法来进行转速测量,提出了用反电势系数、换向脉冲及瞬时转速的测速方案,并进行了比较。
总之,电机测速有多种多样的方法,在实用中根据不同环境及场所要求,选择合理的反馈器件及测速方法,对提高电动机的调速和伺服性能具有十分重要的意义