导航:首页 > 电器电路 > 电路原理6

电路原理6

发布时间:2023-01-30 02:32:23

A. 时钟电路原理及原理图

时钟电路就是一个振荡器,给单片机提供一个节拍,单片机执行各种操作必须在这个节拍的控制下才能进行。因此单片机没有时钟电路是不会正常工作的。时钟电路本身是不会控制什么东西,而是你通过程序让单片机根据时钟来做相应的工作。 在MCS-51单片机片内有一个高增益的反相放大器,反相放大器的输入端为XTAL1,输出端为XTAL2,由该放大器构成的振荡电路和时钟电路一起构成了单片机的时钟方式。根据硬件电路的不同,单片机的时钟连接方式可分为内部时钟方式和外部时钟方式,如图1所示。

内部时钟原理图 (就是一个自激振荡电路) 在内部方式时钟电路中,必须在XTAL1和XTAL2引脚两端跨接石英晶体振荡器和两个微调电容构成振荡电路,通常C1和C2一般取30pF,晶振的频率取值在1.2MHz~12MHz之间。对于外接时钟电路,要求XTAL1接地,XTAL2脚接外部时钟,对于外部时钟信号并无特殊要求,只要保证一定的脉冲宽度,时钟频率低于12MHz即可。 晶体振荡器的振荡信号从XTAL2端送入内部时钟电路,它将该振荡信号二分频,产生一个两相时钟信号P1和P2供单片机使用。时钟信号的周期称为状态时间S,它是振荡周期的2倍,P1信号在每个状态的前半周期有效,在每个状态的后半周期P2信号有效。CPU就是以两相时钟P1和P2为基本节拍协调单片机各部分有效工作的。

B. 电路原理9-6

冲激响应后,电容上得到的电压是uc(0)=4V.【先将电流源转电压源,然后该电压源在20K电阻上的分压就是uc(0)】
此后电路转为零输入响应uc(t)=4e^-t/τ。τ=RC=0.05S
uc(t)=4e^-20t

C. 这是一个IC的电路(CL1221),我想知道详细的电路原理

  1. 1是电解电抄容耐压在400v,与前面的桥堆袭构成全波整流滤波电路输出310v左右

  2. 3脚的电阻接的是芯片内部15v稳压管,限流的作用。保证芯片3脚电压最高只有15v, 3脚的电容不接也没事,去耦用的

  3. 4脚的电阻用来采样设置过流点,同内部比较器比较,来调节内部pwm脉宽

  4. 5脚接的是内部mos管的d级

  5. 6脚是尖峰吸收电路

  6. 7是半波整流滤波电路

D. 如何设计电路原理图

电路原理图设计阶段是一个产品设计的开始阶段,也是折腾时间最长的阶段,可以说是和PCB设计、修改时间相当的阶段。通过不断的修改电路原理图,最终确定原理图方案,达到产品的定型。因此,电路原理图可以说是一个电子产品的构架和灵魂.
在原理图设计中,要做到标号统一,通常表现为标号位置统一,显示信息统一。特别的,电阻、电容、电感等元件,每一个类型的元件更要标号统一。
一般来讲,进入SCH设计环境之后,需要经过以下几个步骤才算完成原理图的设计:
1.设置好原理图所用的图纸大小。最好在设计之处就确定好要用多大的图纸。虽然在设计过程中可以更改图纸的大小和属性,但养成良好的习惯会在将来的设计过程中受益。
2.制作元件库中没有的原理图符号。因为很多元件在Protel99中并没有收录,这时就需要用户自己绘制这些元件的原理图符号,并最终将其应用于电路原理图的绘制过程之中。
3.对电路图的元件进行构思。在放置元件之前,需要先大致地估计一下元件的位置和分布,如果忽略了这一步,有时会给后面的工作造成意想不到的困难!
4.元件布局。这是绘制原理图最关键的一步。虽然在简单的电路图中,即使并没有太在意元件布局,最终也可以成功地进行自动或手动布线,但是在设计较为复杂的电路图时,元件布局的合理与否将直接影响原理图的绘制效率以及所绘制出的原理图外观。
5.对原理图内的图件进行电气连接。这里提到的线路可以是导线、接点或者总线及其分支线。当然,在比较大型的系统设计中,原理图的走线并不多,更多的时候是应用网络标号来代替直接的线路连接。这样做既可以保证电路的电气连接,又可以避免使整个原理图看起来杂乱无章。
6.放置注释。这样做可以使电路图更加一目了然,增强了可读性。同时,它也是一个合格的电路设计人员所必须具备的素质之一。

E. 电路的原理

如果你是学电气专业的话,电路原理是最基础最重要的一门课。学不好它,后面的模电、电机、电力系统分析、高压简直没办法学。

对于这门课,你要想真正的领悟和掌握,奥秘就在于不能停止思考。而且我觉得这是最重要的一点。我以江辑光的《电路原理》为例(这本书编的相当不错)解释为何不能停止思考。

电路几乎是第一本开始培养你工程师思维的书,它不同于数学物理,很多可以理论推导。而电路更多的是你的思考和不断累积的经验。

在江的书中,前面用了四章讲解了电阻电路的基本知识,包括参考方向问题、替代定理,支路法、节点电压、回路电流、戴维南、特勒根、互易定理。这些基本内容都要掌握到烂熟于心才能在之后的章节里灵活的用。怎样才能烂熟于心?我时刻提醒自己要不停思考。这套教材的课后习题就是最好的激发你大脑思考能力的宝库。可以说里面的每一道题都极具针对性,题目并不难。

一个合格的工程师应该把更多的时间留给思考如何最合理地解决问题,而不是花大把时间计算,电路的计算量是非常大的,一个节点电压方程组有可能是四元方程,显然这些东西留给计算器算就好了。为了学好电路你应该买一个卡西欧991,节省那些不必要浪费的时间留下来思考问题本身。

前四章的基础一定要打得极为扎实,不是停留在只是会用就行了,那样学不好电路。你要认真研究到每个定理是怎么来的,最好自己可以随手证明,你要知道戴维宁是有叠加推出来的,而叠加定理又是在电阻电路是线性时不变得来的,互易定理是由特勒根得来的。这一切知识都是靠细水长流一点点积累出来的,刚开始看到他们你会觉得迷糊,但你要相信这是一个过程,渐渐地你会觉得电路很美妙甚至会爱上它。当你发现用一页纸才能解出来的答案,你只用五六行就可以将其解决,那时候你就会感觉电路好像是从身体中流淌出来一般。这就是一直要追求的境界。

后面就是非线性,这一章很多学校要求都不高,而且考起来也不难,最为兴趣的话研究起来很有意思。

接着后面是一阶二阶动态电路,这里如果你高数的微分方程学得不错的话,高中电路知识都极本可以解了。这一部分的本质就是求解微分方程。

说白了,你根据电路列出微分方程是需要用到电路知识的,剩下来怎么解就看你的数学功底了。但是电路老师们为了给我们减轻压力有把一阶电路单独拿出来做了一个专题,并将一切关于它上面的各支路电流或者电压用一个简单的结论进行了总结,即三要素法。

学了三要素一阶电路连方程也不用列了。只要知道电路初始状态、末状态和时间常数就可以得到结果。如果你愿意思考,其实二阶电路也可以类比它的,在二阶电路中你只要求出时间常数,初值和末值,同样也可以求通解。

在这部分的最后,介绍了一种美妙的积分——卷积。很多人会被他的名字唬住,提起来就很高科技的样子。其实它的确很高科技,但只要你掌握它的精髓,能够很好的用它,对你的电路思维有极大的提升,关于卷积在知乎和网络上都有很多很好的解释和生动的例子,我也是从他们那里汲取经验的。我在这里只能提醒你,不要因为老师不做重点就忽略卷积,否则这将无异于丢了一把锐利的宝剑。记得我在学习杜阿美尔积分(卷积的一种)的时候,感觉如获至宝,虽然书上对它的描述只有一句话。但为了那一句我的心情竟久久无法平静,因为实在太好用了。

接下来是正弦电路,这里主要是要理解电路从时域域的转化,这里是电路的第一次升华,伟大的人类用自己的智慧把交流量头上打个点,然后一切又归于平静了,接下来还是前四章的知识。我想他用的就是以不变应万变的道理吧,所有量都以一个频率在变,其效果就更想对静止差不多了吧,但是他们对电容和电感产生了新的影响,因为他们的电流电压之间有微分和积分的关系。在新的思路下你可以将电感变成jwl,将电容变成1/jwc,接下来你又改思考为什么可以这样变。

这是在极坐标下的电流电压关系可以推导出来的。你要再追根溯源说,为什么可以用复数来代替正弦?那是因为欧拉公式将正弦转化成了复数表达。你还问欧拉公式又是什么?它是迈克劳林(泰勒)公式得到的。你必须不断地思考,不断地提问才能明白这一起是怎么回事。

不过这都是基础,在正弦稳态这里精髓在于画向量图,能正确地画出向量图你才能说真正理解了它。向量图不是乱画的,不是你随便找个支路放水平之后就可以得到正确的图,有时候走错了路得不到正确答案不说,反而可能陷入思维漩涡。做向量图一般要以电阻支路或者含有电阻的支路为水平向量,接下来根据它的电流电压来一步步推。而且很多难题都是把很多信息隐藏在图里面,不画得一幅好图你是解不出来的。这也需要自己揣摩。

跟着张飞老师一起学习

1(功率因素校正)如何设计

2如何快速去理解一个陌生的组件的data sheet

3详细讲解NCP1654 PFC控制芯片内部的电路设计

4D触发组、RS触发组、与门、或门的详细讲解

5NCP芯片内部各种保护(OUP、BO、UVLO、OPL、UVP、OCP)电路和实现方式的详细讲解

6如何用数字电路,通过逻辑控制,实现软起功能,关于软起作用的深度讲解

7V/I转换、I/V转换、V/F转换、F/V转换的讲解

8三极管如何工作在放大区,如何精准控制电流

9如何设计镜像电流源,如何让电流间接控制,如何用N管和P管做镜像恒流源

10PFC电阻采样电流如何做到全周期采样,既不管在MOSFET ON和OFF之间,都能实现电流采样。为什么要采样负极电源?

后面是互感,我相信很多人被同名端折磨的死去活来。其实,电感是描述,线圈建立磁场能力的量,电感大了,产生磁场越大。所以同名端的意思就是:从同名端流入的电流,磁场相加,表现在方程上为电感相加。只要牢记这一点,列含有互感的方程式就不会错了。你不要胡思乱想,有时候你会被电流方向弄糊涂,别管它,图上画的是参考方向,就算你假设的方向与实际方向反了,对真确结果依然没有丝毫影响。这里其实是考察你对参考方向的理解。

然后是谐振,这是很有趣也很有用的一节,无论是电气,通信,模电还是高压都离不开它。这是在一种美妙的状态下,电厂能量和立场能量达到完美的交替。通过谐振可以实现滤波、升压等具有实际意义的电路。但就电路内容来说这里并不难,总结一下就是,阻抗虚部为零则串联谐振,导纳虚部为零为并联谐振。在求解谐振频率时有时候用导纳求解会比较方便,这在于多做题开阔思路。

接下来是三相电路。要我来说,三相电路是最简单的部分。很多人觉得它难(当然一开始我也觉得它让人头晕),完全是因为我们总是害怕恐惧本身。其实你看它有三个地但一点也不难。这要你头脑清晰别被他的表面吓住了。三相电路跟普通电路没有任何区别。做到五个六个电源也不会害怕,因为你知道,一个所有元件都告知的电路,用节点电压或回路电流肯定是可以求的出来的。为什么到了三相你就被吓得魂不守舍了。你是不明白线电压和相电流的关系,还是一相断线对中线电流的影响?你管那些干嘛?什么相啊线呀都只是个代号而已。你把它看成一个普通电路解,它就是一个普通电路而已。很多同学总是喜欢在线和相的关系上纠结。其实一句话就可以概括的:线量都是向量的根3倍。其实这些都不用记,需要的时候画个图就来了。最重要的是你要明白三相只不过是个有三个电源的普通电路而已。你只要会节点电压法,不学三相的知识都可以解答的很好。当你以一个正常电路看它的时候,三相就已经学得差不多了。三相唯一的难点在计算,只要你是个细心的人,平时多找几个题算算,以后三相想错都难。

后面是拉普拉斯变换。这里是电路思维的又一次飞跃。人们发现高阶电路真的不好求解,而且如果电源改变的话除了卷积,找不到更好的办法。所以为了方便的使用卷积,前辈们把拉氏变换引入电路。如果说前面正弦稳态时域到频域是由泰勒公式一步步推来的。那这里就是高数的最后一章——傅立叶变换推倒的。关于傅立叶知乎也有许多精彩的讲解,自己找吧。傅立叶变换有两种形式,一种是时域形态,一种是频域形态。而拉普拉斯变换就是将由频域形态的傅立叶变换,推广到复频域形态。其基本变换公式也是由傅立叶变换公式推广得到的。这一章的学习,你要从变换公式入手,自己把基本的几个变换推导出来。还要理解终值定理和初值定理,这两个定理是检验结果正确与否的有力证据。学电路只知道思路是一回事,能做对是另外一回事。只有在学习中不断培养自己开阔的视野和强大的计算能力才可以学好这门课,学电路是要靠硬功夫的,你看着老师解题的时候感觉信手拈来,自己却百思不得其解。那是功夫没下到位。我考研时看了电路大概一百天,新书都翻烂了,自己的旧书都快散架了,各种习题不计重复的做了至少1500道以上。当我做电路的时候,我会觉得时间停止了,根本感受不到自习室里还有别人。那种你在冥思苦想后终于解决一个问题所带来的足以让你笑出声来的快乐,是陪伴着我的最好的药。每天走在月光下,我都会想,如果当不了科学家,那就干点别的吧。

所以说啊,要学好电路,还是要发自内心的爱上它。

1芯片内部是如何做到低功耗的

2NCP1654内部是如何用数字电路实现电压和电流相位跟踪的

3电压源对电容充电与电流源对电容充电的区别和波形有何不同

4单周期控制电压公式的详细推论

5如何进行有效的公式推导,推导公式的原则和方法?如何在公式推导中引入检流电阻?

6当我们公式推导结束后,如何将公式转化为电路。如何自己搭建电路,实现公式推导的结果?这也是本部视频讲解的核心。

7如何用分立组件搭建OCC单周期控制的PFC

8基于NCP1654搭建PFC电路

9详细讲解PFC PCB板调试完整过程。包括:用示波器测试波形、分析波形、优化波形,最终把PFC功率板调试出来

F. 电路原理,用网孔电流法 求图中通过6欧姆电阻上的电流I,和6欧姆电阻上的功率P

网孔i1: i1=5A.........(1)
网孔i2: -10+6i2+4(i1+i2)=0......(2)
从(2) -10+6i2+20+4i2=0,10i2=-10,i2=-1 A,
而i2=-i,i=1 A,6欧功率 P=6i²=6w。

G. 电路原理 戴维南与诺顿电路6-13

10=6i1+4i1,i1=1A,开路端口(11')电压=6i1+2i1=8v。

电压源置短路,保留受控源,外加电源 u'到端口(11'),流入电流 i',

-2i1=6i1 +2(i1+i')=8i1+2i',-10i1=2i',i1=-i'/5

u'=-2i1=2i'/5,Req=u'/i'=2/5 欧。

戴维南等效电路为8v串2/5 欧,诺顿等效为20A并2/5 欧。

H. 牵引逆变器的作用是什么

牵引逆变器的作用是什么

牵引逆变器的作用是什么,逆变器是把直流电能转变成交流电,通俗的讲就是逆变器是一种将直流电转化为交流电的装置。它由逆变桥、控制逻辑和滤波电路组成。以下分享牵引逆变器的作用是什么?

牵引逆变器的作用是什么1

牵引逆变器

简介:牵引逆变器是城市轨道交通车辆的心脏,其性能的优劣直接影响到城市轨道交通车辆的运行能力、运输能力、耗电量等等。

上个世纪90年代末,随着大功率电力电子技术的不断进步与发展,车辆牵引电气系统也在不断地更新与发展。牵引逆变器中的电子器件经历了半控型晶闸管(SCR、、全控型晶闸管(GTO、及绝缘门极双极型晶体管(IGBT、的发展过程。

牵引逆变器采用热管走行风冷。对于大功率电力电子器件的散热方式有多重,如强迫风冷,水冷,油冷等,其中还油冷及水冷系统较为复杂,强迫风冷产生较大的噪声。采用热管散热既保留了风冷散热器结构简单、维护方便的特点,又保证了散热效率,而且无噪声、无污染。

牵引逆变器的保护和作用

在设计牵引逆变器时,既要充分发挥逆变器的输出能力,又要保证其可靠性,所以逆变器的保护设置非常重要。

1、逆变器控制机保护

2、触发脉冲级保护

3、元件级保护

在设计牵引逆变器时,为保证其可靠性,保护设置非常重要。逆变器的保护分为3级,即逆变器控制级保护、触发脉冲级保护和元件级保护。第1级保护的种类比较多,主要包括逆变器的输入、输出电流过流,电压的过压、欠压,逆变器的温度、电机过电流及相电流不平衡等保护;第2级保护主要为IGBT元件提供稳定而可靠的触发脉冲;

第3级保护是为IGBT元件的本身特性设定的,也称驱动级保护,用于防止IGBT元件的损坏。本牵引逆变器设有各级保护功能,其中轻微故障引起的保护动作在系统恢复正常后或主控制器操作回零后自动复位。

控制方式

牵引逆变器的控制方式经历了凸轮调阻、斩波调压和调频调压(VVVF、三大方式。

由于VVVF交流传动系统具有诸多优点及其技术上已趋成熟,采用VVVF交流传动系统的地铁、轻轨车辆已在世界各国新建地铁、轻轨系统中广泛应用,成为现在地铁、轻轨车辆的主流。

主电路

目前,城市轨道交通车辆牵引逆变器 的典型主电路主要有以下3种:一种是采用1个变流器模块驱动4台牵引电机(1C4M、的车控方式的主电路;一种是采用2个变流器模块驱动4台牵引电机(2C4M、的架控方式的主电路;一种是采用2个变流器模块驱动4台牵引电机(2C4M、的车控方式的主电路。

供电制式

目前供电制式主要有2种:一种是DC 750V供电电压制式,另一种是DC 1 500V供电电压制式。

牵引逆变器主要由2个相同的IGBT变流器模块构成,还包含有控制箱、传感器等部件。牵引逆变器所有对外控制连接器均采用密封结构;3个隔舱采用门锁结构设计,每个隔舱都设计一个密封门,不仅防水防尘,而且使得部件的安装和维护、拆卸更加方便;主电路的输入输出电缆通过电缆夹由铜接头压接,因此使得整柜密封完全能够满足车底设备防护 等级IP54的`要求。

牵引逆变器的作用是什么2

牵引变流器由:四象限斩波器、中间电压电路、制动斩波器、脉冲宽度调制逆变器四部分组成。作用是:转换直流制和交流制间的电能量,把来自接触网上的1500V直流电转换为0-1150V的三相交流电,通过调压调频控制实现对交流牵引电动机起动、制动、调速控制。

随着电力电子技术发展,牵引变流器在轨道车辆中的应用也在不断地进步与发展。其中IGBT、GTO、IPM器件属电压驱动的全控型开关器件,脉冲开关频率高、性能好、损耗小,且自保护能力也强。

①电压型逆变器:单相作用原理如图5中a所示,由于换向要求直流侧电压Ud需保持恒定而得名。如果控制电路触发脉冲使器件F1、F2的通断次序如图5中b,则交流侧可得一矩形波电压如图5中c。5c该交流电压幅值为Ud,而频率可由控制回路进行调节。图5中a中的c为支撑直流电压用的支撑电容,D1、D2为当负载电流和电压不同相时做续流用的续流二极管。

异步牵引电动机起动时要求逆变器供出幅值可变的、接近正弦的低频电压,这可用分谐波调制法控制F1、F2的通断顺序来达到。电压型逆变器在控制电路作用下能顺利地转入再生制动。利用这一可逆性又可制成交-直-交电力机车电源侧变流器,它能提供恒定的中间环节直流电压,又可调节交流电网侧的功率因数和改善电流波形,这就是电压型四象限变流器。

②电流型逆变器:电路原理如图6中a,它要求直流侧是一电流源,即Id要相对稳定,这可以采用串联电抗器Ld来达到。如果控制各强迫关断器件的导通顺序(图6中b),则在电机每相绕组中可得到2π/3电角度导通的交变电流(图6中c)。

在低频起动时为了避免因 2π/3矩形波电流而造成过大的电机力矩脉动,也可采用电流分谐波调制方法。电流型逆变器只能调频不能调压,调压功能由电源侧交-直变流器来完成。电流型逆变器已在地铁车辆上应用。

交流-交流变流器 不需经过直流中间环节,可直接将单相交流电变成三相可调频的交流电。这种变流器中较成功的是用次驱动同步型牵引电动机的两组三相反并桥式系统,它在原理上类似一电流型直-交逆变器,并借助于电源和负载电势进行换向。这种类型的变流器已在苏联ВЛ83型电力机车上应用。循环变流器是另一种降频交-交变流器,是燃气轮机车电传动系统可以选择的一种设备。

牵引逆变器的作用是什么3

正弦波逆变器与普通逆变器有什么不同

纯正弦波逆变器功能参数要求严格,价格较高,用于对波形参数要求较高的电子电路。而普通逆变器是正弦波、方波、杂波等成分的杂合波形,对于一般用电器可以使用,价格较低。

1、正弦波逆变器输入电路

逆变器的输入通常是直流电,或市电经过整流滤波得到的直流电,这些直流电包括直流电网、蓄电池、光伏电池以及其他方式得到的直流电,通常这些电能不能直接作为逆变器输入侧电压,而是通过一定的滤波电路和EMC电路之后才作为逆变器的输入。

2、逆变主电路

逆变器主电路是由功率开关器件组成的功率变换电路,主电路的结构形式分很多种,不同的输入输出条件下,主电路形式也不相同,每种功率变换电路都有它的优缺点,在实际设计中应考虑最合适的电路拓扑作为主电路结构。

3、控制电路

控制电路按照逆变器输出的要求,通过一定的控制技术产生一组或者多组脉冲电压,通过驱动电路作用于功率开关管,使功率开关管按照指定的次序导通或者关断,最终在主电路输出端得到所需的电压波形。控制电路的作用对于逆变系统至关重要,控制电路的性能直接决定了逆变器输出电压波形的质量。

4、输出电路

输出电路一般包括输出滤波电路和EMC电路,如果输出为直流电,应在后面加入整流电路。对于隔离输出的逆变器,输出电路前级还应有隔离变压器。根据输出是否需要稳压电路,可将输出电路分为开环和闭环控制,开环系统输出量只由控制电路决定,而闭环系统中输出量还受反馈回路影响,使输出更加稳定。

5、辅助电源

控制电路与输入输出电路的某些部分或芯片有特定的输入电压要求,辅助电源可满足电路中特定的电压需求。通常情况下辅助电源由一个或几个DC-DC变换器构成,对于交流输入的场合,辅助电源由整流后的电压与DC-DC变换器组合完成。

6、保护电路

保护电路通常包括输入过压、欠压保护、输出过压、欠压保护、过载保护、过流和短路保护。对于在特定场合工作的逆变器还有其他保护,如在温度很低或者很高的场合需要有温度保护,在某些气压变化的情况下还要有气压保护,在潮湿的环境中要有湿度保护等。

I. 大学电路原理

解:t=0-时,电感相当于短路。UL=0,受控电流源0.25UL=0,相当于开路。

此时,相当于3个2Ω电阻并联于6A电流源两端,因此iL(0-)=6/3=2(A)。

换路定理:iL(0+)=iL(0-)=2A。

t=∞时,电感再次相当于短路。UL(∞)=0,受控电流源0.25UL为零。

所以:iL(∞)=6/2=3(A)。

将电流源开路,从电感断开处外加电压U,设流入电流为I。

显然:U=UL。

KVL:U=2I+2×(I+0.25U)=2I+2I+0.5U。

0.5U=4I,Req=U/I=8(Ω),电路的时间常数为:τ=L/Req=0.5/8=0.0625(s)。

iL(t)=iL(∞)+[iL(0+)-iL(∞)]e^(-t/τ)=3+(2-3)e^(-t/0.0625)=3-e^(-16t) (A)。

UL(t)=LdiL(t)/dt=0.5×[3-e^(-16t)]'=0.5×(16e^(-16t))=8e^(-16t)(V)。

阅读全文

与电路原理6相关的资料

热点内容
工人维修费会计分录 浏览:484
电梯维修证多久可以考 浏览:185
pmma防水涂料是什么材料 浏览:901
家具城送什么东西好 浏览:338
一汽解放柳州维修电话 浏览:432
空气炸锅坏了 浏览:286
暨维修什么意思 浏览:458
美菱冰箱维修要找哪里 浏览:483
观音桥旧家具市场 浏览:583
脚刹坏了 浏览:47
福特福克斯维修电话 浏览:786
柯木家具为什么不能买 浏览:868
四轮车升降泵维修视频 浏览:174
怎么看翻新机视频 浏览:150
苹果手机漏电维修费 浏览:566
手机维修和卖的哪个好 浏览:859
浙江枕头厂家电话多少 浏览:15
家电清洗做什么的 浏览:681
装修房子家具家电买哪些 浏览:289
好多人傍晚搬家具什么意思 浏览:648